Stanford Libraries Stanford Libraries
Login My Account Feedback
Reporting from:

(Stanford users can avoid this Captcha by logging in.)

Cancel
Check system status

SearchWorks catalog

Home
Select search scope, currently: catalog
  • all catalog, articles, website, & more in one search
  • catalog books, media & more in the Stanford Libraries' collections
  • articles+ journal articles & other e-resources
  • Help
    • Need help?
      • Chat with us (limited to Stanford community)
      • Email a reference question
      • Find a subject specialist
      • Using SearchWorks
    • Connection
      • Connect to e-resources
      • Report a connection problem
    • If we don't have it
      • Interlibrary borrowing
      • Suggest a purchase (limited to Stanford community)
    • System status
  • COVID-19 Libraries update
  • Advanced search
  • Course reserves
  • Selections (0)
    • Clear all lists
Reporting from:

(Stanford users can avoid this Captcha by logging in.)

Cancel

Librarian View

LEADER 02699nam a22003733i 4500
001 a12746437
003 SIRSI
005 20210220050001.0
006 m d
007 cr un
008 180904t20182018cau om 000 0 eng d
040
  
  
a| CSt b| eng e| rda c| CSt
100
1
  
a| Feinberg, Evan N., e| author. ?| UNAUTHORIZED
245
1
0
a| Artificial intelligence methods for molecular property prediction / c| Evan N. Feinberg.
264
  
1
a| [Stanford, California] : b| [Stanford University], c| 2018.
264
  
4
c| ©2018
300
  
  
a| 1 online resource.
336
  
  
a| text 2| rdacontent
337
  
  
a| computer 2| rdamedia
338
  
  
a| online resource 2| rdacarrier
500
  
  
a| Submitted to the Biophysics Program.
502
  
  
g| Thesis b| Ph.D. c| Stanford University d| 2018.
520
3
  
a| This dissertation covers work discussed in the following papers: "Spatial Graph Convolutions for Drug Discovery" describes new deep neural network architectures for modeling drug-receptor interactions. We argue that the future of predicting the interactions between a drug and its prospective target demands more than simply applying deep learning algorithms from other domains, like vision and natural language, to molecules. "Machine Learning Harnesses Molecular Dynamics to Discover New Opioid Chemotypes" describes an algorithm that leverages protein motion to enrich the search for active molecules. We then applied the method to find a new chemical scaffold that we experimentally verified is an agonist for the μ Opioid Receptor. "Kinetic Machine Learning Unravels Ligand-Directed Conformational Change of Opioid Receptor" describes differential pathways of deactivation and differential conformational states sampled by the μ Opioid Receptor in response to different opioid ligands.
700
1
  
a| Pande, Vijay e| degree supervisor. 4| ths 0| http://id.loc.gov/authorities/names/no2010060546 =| ^A2467733
700
1
  
a| Dror, Ron, d| 1975- e| degree committee member. 4| ths 0| http://id.loc.gov/authorities/names/no2015118009 =| ^A3339796
700
1
  
a| Kobilka, Brian K. e| degree committee member. 4| ths 0| http://id.loc.gov/authorities/names/no2010078364 =| ^A2485278
700
1
  
a| Shamloo, Mehrdad, d| 1966- e| degree committee member. 4| ths =| ^A3692604
710
2
  
a| Stanford University. b| Biophysics Program. 0| http://id.loc.gov/authorities/names/no2011135806 =| ^A2684687
035
  
  
a| (OCoLC-M)1051432812
596
  
  
a| 21 22
856
4
0
u| http://purl.stanford.edu/yx988ss4352 x| SDR-PURL x| item
916
  
  
a| DATE CATALOGED b| 20180907
999
  
  
a| 3781 2018 F w| ALPHANUM c| 1 i| 36105233216311 l| UARCH-30 m| SPEC-COLL r| Y s| Y t| NONCIRC u| 9/5/2018
999
  
  
a| INTERNET RESOURCE w| ASIS c| 1 i| 12746437-2001 l| INTERNET m| SUL r| Y s| Y t| SUL u| 9/5/2018 x| E-THESIS
Stanford Libraries
  • Hours & locations
  • My Account
  • Ask us
  • Opt out of analytics
  • System status
Stanford University
  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Privacy
  • Copyright
  • Trademarks
  • Non-Discrimination
  • Accessibility

© Stanford University, Stanford, California 94305.