Physical Chemistry for the Biological Sciences
- Responsibility
- Gordon Hammes, Sharon Hammes-Schiffer.
- Edition
- Second edition / Gordon G. Hammes, Sharon Hammes-Schiffer.
- Publication
- Hoboken, NJ : Wiley, [2015]
- Physical description
- 1 online resource.
- Series
- Methods of biochemical analysis volume 55.
Online
More options
Description
Creators/Contributors
- Author/Creator
- Hammes, Gordon G., 1934- author.
- Contributor
- Hammes-Schiffer, Sharon, author.
Contents/Summary
- Bibliography
- Includes bibliographical references at the end of each chapters and index.
- Contents
-
- Preface to First Edition xv
- Preface to Second Edition xvii
- THERMODYNAMICS 1
- 1. Heat, Work, and Energy 3
- 1.1 Introduction 3
- 1.2 Temperature 4
- 1.3 Heat 5
- 1.4 Work 6
- 1.5 Definition of Energy 9
- 1.6 Enthalpy 11
- 1.7 Standard States 12
- 1.8 Calorimetry 13
- 1.9 Reaction Enthalpies 16
- 1.10 Temperature Dependence of the Reaction Enthalpy 18
- References 19
- Problems 20
- 2. Entropy and Gibbs Energy 23
- 2.1 Introduction 23
- 2.2 Statement of the Second Law 24
- 2.3 Calculation of the Entropy 26
- 2.4 Third Law of Thermodynamics 28
- 2.5 Molecular Interpretation of Entropy 29
- 2.6 Gibbs Energy 30
- 2.7 Chemical Equilibria 32
- 2.8 Pressure and Temperature Dependence of the Gibbs Energy 35
- 2.9 Phase Changes 36
- 2.10 Additions to the Gibbs Energy 39
- Problems 40
- 3. Applications of Thermodynamics to Biological Systems 43
- 3.1 Biochemical Reactions 43
- 3.2 Metabolic Cycles 45
- 3.3 Direct Synthesis of ATP 49
- 3.4 Establishment of Membrane Ion Gradients by Chemical Reactions 51
- 3.5 Protein Structure 52
- 3.6 Protein Folding 60
- 3.7 Nucleic Acid Structures 63
- 3.8 DNA Melting 67
- 3.9 RNA 71
- References 72
- Problems 73
- 4. Thermodynamics Revisited 77
- 4.1 Introduction 77
- 4.2 Mathematical Tools 77
- 4.3 Maxwell Relations 78
- 4.4 Chemical Potential 80
- 4.5 Partial Molar Quantities 83
- 4.6 Osmotic Pressure 85
- 4.7 Chemical Equilibria 87
- 4.8 Ionic Solutions 89
- References 93
- Problems 93
- CHEMICAL KINETICS 95
- 5. Principles of Chemical Kinetics 97
- 5.1 Introduction 97
- 5.2 Reaction Rates 99
- 5.3 Determination of Rate Laws 101
- 5.4 Radioactive Decay 104
- 5.5 Reaction Mechanisms 105
- 5.6 Temperature Dependence of Rate Constants 108
- 5.7 Relationship Between Thermodynamics and Kinetics 112
- 5.8 Reaction Rates Near Equilibrium 114
- 5.9 Single Molecule Kinetics 116
- References 118
- Problems 118
- 6. Applications of Kinetics to Biological Systems 121
- 6.1 Introduction 121
- 6.2 Enzyme Catalysis: The Michaelis Menten Mechanism 121
- 6.3 -Chymotrypsin 126
- 6.4 Protein Tyrosine Phosphatase 133
- 6.5 Ribozymes 137
- 6.6 DNA Melting and Renaturation 142
- References 148
- Problems 149
- QUANTUM MECHANICS 153
- 7. Fundamentals of Quantum Mechanics 155
- 7.1 Introduction 155
- 7.2 Schroedinger Equation 158
- 7.3 Particle in a Box 159
- 7.4 Vibrational Motions 162
- 7.5 Tunneling 165
- 7.6 Rotational Motions 167
- 7.7 Basics of Spectroscopy 169
- References 173
- Problems 174
- 8. Electronic Structure of Atoms and Molecules 177
- 8.1 Introduction 177
- 8.2 Hydrogenic Atoms 177
- 8.3 Many-Electron Atoms 181
- 8.4 Born Oppenheimer Approximation 184
- 8.5 Molecular Orbital Theory 186
- 8.6 Hartree Fock Theory and Beyond 190
- 8.7 Density Functional Theory 193
- 8.8 Quantum Chemistry of Biological Systems 194
- References 200
- Problems 201
- SPECTROSCOPY 203
- 9. X-ray Crystallography 205
- 9.1 Introduction 205
- 9.2 Scattering of X-Rays by a Crystal 206
- 9.3 Structure Determination 208
- 9.4 Neutron Diffraction 212
- 9.5 Nucleic Acid Structure 213
- 9.6 Protein Structure 216
- 9.7 Enzyme Catalysis 219
- References 222
- Problems 223
- 10. Electronic Spectra 225
- 10.1 Introduction 225
- 10.2 Absorption Spectra 226
- 10.3 Ultraviolet Spectra of Proteins 228
- 10.4 Nucleic Acid Spectra 230
- 10.5 Prosthetic Groups 231
- 10.6 Difference Spectroscopy 233
- 10.7 X-Ray Absorption Spectroscopy 236
- 10.8 Fluorescence and Phosphorescence 236
- 10.9 RecBCD: Helicase Activity Monitored by Fluorescence 240
- 10.10 Fluorescence Energy Transfer: A Molecular Ruler 241
- 10.11 Application of Energy Transfer to Biological Systems 243
- 10.12 Dihydrofolate Reductase 245
- References 247
- Problems 248
- 11. Circular Dichroism, Optical Rotary Dispersion, and Fluorescence Polarization 253
- 11.1 Introduction 253
- 11.2 Optical Rotary Dispersion 254
- 11.3 Circular Dichroism 256
- 11.4 Optical Rotary Dispersion and Circular Dichroism of Proteins 257
- 11.5 Optical Rotation and Circular Dichroism of Nucleic Acids 259
- 11.6 Small Molecule Binding to DNA 260
- 11.7 Protein Folding 263
- 11.8 Interaction of DNA with Zinc Finger Proteins 266
- 11.9 Fluorescence Polarization 267
- 11.10 Integration of HIV Genome Into Host Genome 269
- 11.11 -Ketoglutarate Dehydrogenase 270
- References 272
- Problems 273
- 12. Vibrations in Macromolecules 277
- 12.1 Introduction 277
- 12.2 Infrared Spectroscopy 278
- 12.3 Raman Spectroscopy 279
- 12.4 Structure Determination with Vibrational Spectroscopy 281
- 12.5 Resonance Raman Spectroscopy 283
- 12.6 Structure of Enzyme Substrate Complexes 286
- 12.7 Conclusion 287
- References 287
- Problems 288
- 13. Principles of Nuclear Magnetic Resonance and Electron Spin Resonance 289
- 13.1 Introduction 289
- 13.2 NMR Spectrometers 292
- 13.3 Chemical Shifts 293
- 13.4 Spin Spin Splitting 296
- 13.5 Relaxation Times 298
- 13.6 Multidimensional NMR 300
- 13.7 Magnetic Resonance Imaging 306
- 13.8 Electron Spin Resonance 306
- References 310
- Problems 310
- 14. Applications of Magnetic Resonance to Biology 315
- 14.1 Introduction 315
- 14.2 Regulation of DNA Transcription 315
- 14.3 Protein DNA Interactions 318
- 14.4 Dynamics of Protein Folding 320
- 14.5 RNA Folding 322
- 14.6 Lactose Permease 325
- 14.7 Proteasome Structure and Function 328
- 14.8 Conclusion 329
- References 329
- STATISTICAL MECHANICS 331
- 15. Fundamentals of Statistical Mechanics 333
- 15.1 Introduction 333
- 15.2 Kinetic Model of Gases 333
- 15.3 Boltzmann Distribution 338
- 15.4 Molecular Partition Function 343
- 15.5 Ensembles 346
- 15.6 Statistical Entropy 349
- 15.7 Helix-Coil Transition 350
- References 353
- Problems 354
- 16. Molecular Simulations 357
- 16.1 Introduction 357
- 16.2 Potential Energy Surfaces 358
- 16.3 Molecular Mechanics and Docking 364
- 16.4 Large-Scale Simulations 365
- 16.5 Molecular Dynamics 367
- 16.6 Monte Carlo 373
- 16.7 Hybrid Quantum/Classical Methods 373
- 16.8 Helmholtz and Gibbs Energy Calculations 375
- 16.9 Simulations of Enzyme Reactions 376
- References 379
- Problems 379
- SPECIAL TOPICS 383
- 17. Ligand Binding to Macromolecules 385
- 17.1 Introduction 385
- 17.2 Binding of Small Molecules to Multiple Identical Binding Sites 385
- 17.3 Macroscopic and Microscopic Equilibrium Constants 387
- 17.4 Statistical Effects in Ligand Binding to Macromolecules 389
- 17.5 Experimental Determination of Ligand Binding Isotherms 392
- 17.6 Binding of Cro Repressor Protein to DNA 395
- 17.7 Cooperativity in Ligand Binding 397
- 17.8 Models for Cooperativity 402
- 17.9 Kinetic Studies of Cooperative Binding 406
- 17.10 Allosterism 408
- References 412
- Problems 412
- 18. Hydrodynamics of Macromolecules 415
- 18.1 Introduction 415
- 18.2 Frictional Coefficient 415
- 18.3 Diffusion 418
- 18.4 Centrifugation 421
- 18.5 Velocity Sedimentation 422
- 18.6 Equilibrium Centrifugation 424
- 18.7 Preparative Centrifugation 425
- 18.8 Density Centrifugation 427
- 18.9 Viscosity 428
- 18.10 Electrophoresis 429
- 18.11 Peptide-Induced Conformational Change of a Major Histocompatibility Complex Protein 432
- 18.12 Ultracentrifuge Analysis of Protein DNA Interactions 434
- References 435
- Problems 435
- 19. Mass Spectrometry 441
- 19.1 Introduction 441
- 19.2 Mass Analysis 441
- 19.3 Tandem Mass Spectrometry (MS/MS) 445
- 19.4 Ion Detectors 445
- 19.5 Ionization of the Sample 446
- 19.6 Sample Preparation/Analysis 449
- 19.7 Proteins and Peptides 450
- 19.8 Protein Folding 452
- 19.9 Other Biomolecules 455
- References 455
- Problems 456
- APPENDICES 457
- Appendix 1. Useful Constants and Conversion Factors 459
- Appendix 2. Structures of the Common Amino Acids at Neutral pH 461
- Appendix 3. Common Nucleic Acid Components 463
- Appendix 4. Standard Gibbs Energies and Enthalpies of Formation at 298 K, 1 atm, pH 7, and 0.25 M Ionic Strength 465
- Appendix 5. Standard Gibbs Energy and Enthalpy Changes for Biochemical Reactions at 298 K, 1 atm, pH 7.0, pMg 3.0, and 0.25M Ionic Strength 467
- Appendix 6. Introduction to Electrochemistry 469
- A6-1 Introduction 469
- A6-2 Galvanic Cells 469
- A6-3 Standard Electrochmical Potentials 471
- A6-4 Concentration Dependence of the Electrochemical Potential 472
- A6-5 Biochemical Redox Reactions 473
- References 473
- Index 475.
- (source: Nielsen Book Data)
- Publisher's summary
-
This book provides an introduction to physical chemistry that is directed toward applications to the biological sciences. Advanced mathematics is not required. This book can be used for either a one semester or two semester course, and as a reference volume by students and faculty in the biological sciences.
(source: Nielsen Book Data)
Subjects
Bibliographic information
- Publication date
- 2015
- Series
- Wiley series in methods of biochemical analysis ; volume 55
- Note
- Includes index.
- ISBN
- 9781118858912 electronic bk.
- 1118858913 electronic bk.
- 9781118859001 (cloth)
- 9781118859148
- 1118859146
- 1118859006
- 9781118859001
- 9781118858837
- 1118858832