Analytic capacity, the Cauchy transform, and nonhomogeneous CalderónZygmund theory
 Responsibility
 Xavier Tolsa.
 Language
 English.
 Publication
 Basel : Birkhäuser, [2014].
 Physical description
 xiii, 396 pages : illustrations ; 24 cm.
 Series
 Progress in mathematics (Boston, Mass.) ; v. 307.
Access
Available online
Math & Statistics Library
Stacks
Call number  Status 

QA331.7 .T65 2014  Unknown 
More options
Creators/Contributors
 Author/Creator
 Tolsa, Xavier, author.
Contents/Summary
 Bibliography
 Includes bibliographical references (pages 381392) and index.
 Contents

 Introduction. Basic notation. Chapter 1. Analytic capacity. Chapter 2. Basic CalderonZygmund theory with non doubling measures. Chapter 3. The Cauchy transform and Menger curvature. Chapter 4. The capacity gamma+. Chapter 5. A Tb theorem of Nazarov, Treil and Volberg. Chapter 6. The comparability between gamma and gamma +, and the semiadditivity of analytic capacity. Chapter 7. Curvature and rectifiability. Chapter 8. Principal values for the Cauchy transform and rectifiability. Chapter 9. RBMO(mu) and H1 atb(mu). Bibliography. Index.
 (source: Nielsen Book Data)9783319005959 20160612
 Publisher's Summary
 This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 19952005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the socalled nonhomogeneous CalderonZygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painleve problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin's conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely selfcontained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.
(source: Nielsen Book Data)9783319005959 20160612
Bibliographic information
 Publication date
 2014
 Series
 Progress in mathematics ; v. 307
 ISBN
 9783319005959 (hbk.)
 3319005952 (hbk.)