Deformations of surface singularities
 Responsibility
 András Némethi, Ágnes Szilárd (eds.).
 Language
 English.
 Imprint
 Berlin ; New York : Springer ; Budapest : János Bolyai Mathematical Society, c2013.
 Physical description
 287 p. : ill. ; 25 cm.
 Series
 Bolyai Society mathematical studies ; 23.
Access
Creators/Contributors
 Contributor
 Némethi, András.
 Szilárd, Ágnes.
Contents/Summary
 Bibliography
 Includes bibliographical references.
 Contents

 Altmann, K. and Kastner, L.: Negative Deformations of Toric Singularities that are Smooth in Codimension Two. Bhupal, M. and Stipsicz, A.I.: Smoothing of Singularities and Symplectic Topology. Ilten, N.O.: Calculating Milnor Numbers and Versal Component Dimensions from PResolution Fans. Nemethi, A: Some Meeting Points of Singularity Theory and Low Dimensional Topology. Stevens, J.: The Versal Deformation of Cyclic Quotient Singularities. Stevens, J.: Computing Versal Deformations of Singularities with Hauser's Algorithm. Van Straten, D.: Tree Singularities: Limits, Series and Stability.
 (source: Nielsen Book Data)
 Publisher's Summary
 The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems and examples. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several open problems. Recently several connections were established with low dimensional topology, symplectic geometry and theory of Stein fillings. This created an intense mathematical activity with spectacular bridges between the two areas. The theory of deformation of singularities is the key object in these connections.
(source: Nielsen Book Data)
Subjects
Bibliographic information
 Publication date
 2013
 Series
 Bolyai Society mathematical studies ; 23
 Available in another form
 Online version: Deformations of surface singularities. Heidelberg : Springer, [2013] (OCoLC)869379074
 ISBN
 3642391303 (Berlin)
 9783642391309 (Berlin)
 9789639453166 (Budapest)
 9639453161 (Budapest)