1  20
Next
Number of results to display per page
1. Relational topology [2018]
 Schmidt, Gunther, 1939 author.
 Cham, Switzerland : Springer, [2018]
 Description
 Book — xiv, 191 pages : illustrations (some color) ; 24 cm.
 Summary

 1.Introduction. 2. Prerequisites. 3. Products of Relations. 4. Meet and Join as Relations. 5. Applying Relations in Topology. 6. Construction of Topologies. 7. Closures and their Aumann Contacts. 8. Proximity and Nearness. 9. Frames. 10. Simplicial Complexes.
 (source: Nielsen Book Data)9783319744506 20180723
(source: Nielsen Book Data)9783319744506 20180723
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Serials  
Shelved by Series title V.2208  Unavailable At bindery Request 
 Ault, Shaun V., author.
 Baltimore : Johns Hopkins University Press, 2018.
 Description
 Book — x, 399 pages : illustrations ; 26 cm
 Summary

 PrefaceI Euclidean Topology1. Introduction to Topology1.1 Deformations1.2 Topological Spaces2. Metric Topology in Euclidean Space2.1 Distance2.2 Continuity and Homeomorphism2.3 Compactness and Limits2.4 Connectedness2.5 Metric Spaces in General3. Vector Fields in the Plane3.1 Trajectories and Phase Portraits3.2 Index of a Critical Point3.3 *Nullclines and Trapping RegionsII Abstract Topology with Applications4. Abstract PointSet Topology4.1 The Definition of a Topology4.2 Continuity and Limits4.3 Subspace Topology and Quotient Topology4.4 Compactness and Connectedness4.5 Product and Function Spaces4.6 *The Infinitude of the Primes5. Surfaces5.1 Surfaces and SurfaceswithBoundary5.2 Plane Models and Words5.3 Orientability5.4 Euler Characteristic6. Applications in Graphs and Knots6.1 Graphs and Embeddings6.2 Graphs, Maps, and Coloring Problems6.3 Knots and Links6.4 Knot ClassificationIII Basic Algebraic Topology7. The Fundamental Group7.1 Algebra of Loops7.2 Fundamental Group as Topological Invariant7.3 Covering Spaces and the Circle7.4 Compact Surfaces and Knot Complements7.5 *Higher Homotopy Groups8. Introduction to Homology8.1 Rational Homology8.2 Integral HomologyAppendixesA. Review of Set Theory and FunctionsA.1 Sets and Operations on SetsA.2 Relations and FunctionsB. Group Theory and Linear AlgebraB.1 GroupsB.2 Linear AlgebraC. Selected SolutionsD. NotationsBibliographyIndex.
 (source: Nielsen Book Data)9781421424071 20180226
(source: Nielsen Book Data)9781421424071 20180226
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA611 .A86 2018  Unknown 
 Isobe, Hiroki, author.
 Singapore : Springer, 2017.
 Description
 Book — 1 online resource () : color illustrations.
 Summary

 1 Introduction 1.1 Scope of the Thesis 1.2 Outline of the Thesis 1.3 Quantum Hall States 1.4 Topological Insulators 1.5 Weyl and Dirac Semimetals 1.6 (BEDTTTF)2I3 1.7 Topological Mott Insulators 1.8 Topological Crystalline Insulators 1.9 Classification of Topological States of Matter 2 Interacting Dirac Fermions in (3+1) Dimensions 2.1 Model 2.2 Renormalization Group Analysis 2.3 Density of States 2.4 Electromagnetic Properties 2.5 Spectral Function 2.6 Electric Conductivity 2.7 Energy Gap 2.8 Discussions and Summary 3 Tilted Dirac Cones in Two Dimensions 3.1 Model 3.2 Perturbative Renormalization Group Analysis 3.3 Spin Susceptibility 3.4 Discussions and Summary 4 Generalized Hund's Rule for TwoAtom Systems 4.1 Model 4.2 Results 4.3 Perturbative Calculation 4.4 Entanglement Entropy 4.5 Symmetry 4.6 Discussions and Summary 5 Interacting Topological Crystalline Insulators 5.1 Classification in Two Dimensions 5.2 Interacting TCIs in Three Dimensions 5.3 Discussions and Summary 6 Conclusions and Prospects.
 (source: Nielsen Book Data)9789811037429 20180730
(source: Nielsen Book Data)9789811037429 20180730
 Online

 EBSCOhost Access limited to 1 user
 Google Books (Full view)
4. Recent progress in general topology III [2014]
 [Place of publication not identified] : Atlantis Press, 2014.
 Description
 Book — 1 online resource (880 pages) : illustrations
 Summary

 Topological Homogeneity. Some Recent Progress Concerning Topology of Fractals. A biased view of topology as a tool in functional analysis. Large scale versus small scale. Descriptive aspects of Rosenthal compacta. Minimality conditions in topological groups. SetTheoretic update on Topology. Topics in Dimension Theory. Representations of dynamical systems on Banach spaces. Generalized metrizable spaces. Permanence in Coarse Geometry. Selections and Hyperspaces. Continuum Theory. Almost disjoint families and topology. Some Topics in Geometric Topology II. Topological aspects of dynamics of pairs, tuples and sets. Continuous selections of multivalued mappings. The combinatorics of open covers. Covering properties. Paratopological and semitopological groups vs topological groups.
 (source: Nielsen Book Data)9789462390232 20160614
(source: Nielsen Book Data)9789462390232 20160614
5. Introducció a la topologia [2011]
 Mascaró, F. (Francisca), author.
 2a edició.  [València] : Universitat de València, [2013]
 Description
 Book — 1 online resource : illustrations.
 Hackensack, N.J. : World Scientific, 2012.
 Description
 Book — xi, 349 p. : ill.
7. A guide to topology [2009]
 Krantz, Steven G. (Steven George), 1951
 [Washington, D.C.] : Mathematical Association of America, c2009.
 Description
 Book — xii, 107 p. : ill. ; 24 cm.
 Summary

 Preface Part I. Fundamentals: 1.1. What is topology? 1.2. First definitions 1.3 Mappings 1.4. The separation axioms 1.5. Compactness 1.6. Homeomorphisms 1.7. Connectedness 1.8. Pathconnectedness 1.9. Continua 1.10. Totally disconnected spaces 1.11. The Cantor set 1.12. Metric spaces 1.13. Metrizability 1.14. Baire's theorem 1.15. Lebesgue's lemma and Lebesgue numbers Part II. Advanced Properties: 2.1 Basis and subbasis 2.2. Product spaces 2.3. Relative topology 2.4. First countable and second countable 2.5. Compactifications 2.6. Quotient topologies 2.7. Uniformities 2.8. Morse theory 2.9. Proper mappings 2.10. Paracompactness Part III. MooreSmith Convergence and Nets: 3.1. Introductory remarks 3.2. Nets Part IV. Function Spaces: 4.1. Preliminary ideas 4.2. The topology of pointwise convergence 4.3. The compactopen topology 4.4. Uniform convergence 4.5. Equicontinuity and the AscoliArzela theorem 4.6. The Weierstrass approximation theorem Table of notation Glossary Bibliography Index.
 (source: Nielsen Book Data)9780883853467 20160603
(source: Nielsen Book Data)9780883853467 20160603
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA611 .K683 2009  Unknown 
 Krantz, Steven G. (Steven George), 1951
 [Washington, D.C.] : Mathematical Association of America, c2009.
 Description
 Book — xii, 107 p. : ill.
 Summary

 1. Fundamentals
 2. Advanced properties of topological spaces
 3. MooreSmith convergence and nets
 4. Function spaces.
 Naimpally, Somashekhar, author.
 München : Oldenbourg Verlag München, [2009]
 Description
 Book — 1 online resource (218 pages)
 Summary

Dieses Buch konzentriert das aktuelle Gesamtwissen zum ProximityKonzept und stellt es dem Leser in gut strukturierter Form dar. Hauptaugenmerk liegt auf den vielfaltigen Moeglichkeiten, die sich aus dem ProximityKonzept der raumlichen Nahe und seiner Verallgemeinerung im NearnessKonzept ergeben.
(source: Nielsen Book Data)9783486598605 20180530
10. A topological aperitif [electronic resource] [2009]
 Huggett, S. A.
 Rev. ed.  London : Springer, 2009.
 Description
 Book — ix, 152 p. : ill. ; 24 cm.
 Summary

 Homeomorphic Sets. Topological Properties. Equivalent Subsets. Surfaces and Spaces. Polyhedra. Winding Number.
 (source: Nielsen Book Data)9781848009127 20160605
(source: Nielsen Book Data)9781848009127 20160605
 Online

 dx.doi.org SpringerLink
 Google Books (Full view)
11. Topologia [electronic resource] [2008]
 Manetti, Marco.
 Milano : Springer, 2008 (2007 printing)
 Description
 Book — xii, 297 p. ; 24 cm.
 Online

 dx.doi.org SpringerLink
 Google Books (Full view)
12. Open problems in topology II [2007]
 1st ed.  Amsterdam ; Boston : Elsevier, 2007.
 Description
 Book — xi, 763 p. : ill. ; 25 cm.
 Summary

 Part 1. General Topology 1. Selected ordered space problems (H. Bennett and D. Lutzer) 2. Problems on starcovering properties (M. Bonanzinga and M. Matveev) 3. Function space topologies (D.N. Georgiou, S.D. Iliadis and F. Mynard) 4. Spaces and mappings: special networks (C. Liu and Y. Tanaka) 5. Extension problems of realvalued continuous functions (H. Ohta and K. Yamazaki) 6. LE(k)spaces (O. Okunev) 7. Problems on (ir) resolvability (O. Pavlov) 8. Topological games and Ramsey theory (M. Scheepers) 9. Selection principles and special sets of reals (B. Tsaban) Part 2. Settheoretic Topology 10. Introduction: Twenty problems in settheoretic topology (M. Hrusak and J.T. Moore) 11. Thintall spaces and cardinal sequences (J. Bagaria) 12. Sequential order (A. Dow) 13. On Dspaces (T. Eisworth) 14. The fourth head of BN (I. Farah) 15. Are stratifiable spaces M1? (G. Gruenhage) 16. Perfect compacta and basis problems in topology (G. Gruenhage and J.T. Moore) 17. Selection problems for hyperspaces (V. Gutev and T. Nogura) 18. Efimov's problem (K.P. Hart) 19. Completely separable MAD families (M. Hrusak and P. Simon) 20. Good, splendid and Jakovlev (I. Juhasz and W.A.R. Weiss) 21. Homogeneous compacta (J. van Mill) 22. Compact spaces with hereditarily normal squares (J.T. Moore) 23. The metrization problem for Frechet groups (J.T. Moore and S. Todorcevic) 24. CechStone remainders of discrete spaces (P.J. Nyikos) 25. First countable, countably compact, noncompact spaces (P.J. Nyikos) 26. Linearly Lindelof problems (E. Pearl) 27. Small Dowker spaces (P.J. Szeptycki) 28. Reflection of topological properties to N1 (F.D. Tall) 29. The ScarboroughStone problem (J.E. Vaughan) Part 3. Continuum Theory 30. Questions in and out of context (D.P. Bellamy) 31. An update on the elusive fixedpoint property (C.L. Hagopian) 32. Hyperspaces of continua (A. Ilanes) 33. Inverse limits and dynamical systems (W.T. Ingram) 34. Indecomposable continua (W. Lewis) 35. Open problems on dendroids (V. MartinezdelaVega and J.M. MartinezMontejano) 36. Homogeneous continua (S.B. Nadler, Jr.) 37. Thirty open problems in the theory of homogeneous continua (J.R. Prajs) Part 4. Topological Algebra 38. Problems about the uniform structures of topological groups (A. Bouziad and JP. Troallic) 39. On some special classes of continuous maps (M.M. Clementino and D. Hofmann) 40. Dense subgroups of compact groups (W.W. Comfort) 41. Selected topics from the structure theory of topological groups (D. Dikranjan and D. Shakhmatov) 42. Recent results and open questions relating Chu duality and Bohr compactifications of locally compact groups (J. Galindo, S. Hernandez and TS. Wu) 43. Topological transformation groups: selected topics (M. Megrelishvili) 44. Fortyplus annotated questions about large topological groups (V. Pestov) Part 5. Dynamical Systems 45. Minimal flows (W.F. Basener, K. Parwani and T. Wiandt) 46. The dynamics of tiling spaces (A. Clark) 47. Open problems in complex dynam.
 (source: Nielsen Book Data)9780444522085 20160528
(source: Nielsen Book Data)9780444522085 20160528
 Online

 www.sciencedirect.com ScienceDirect
 Google Books (Full view)
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request 
QA611 .O562 2007  Available 
 Bourbaki, Nicolas.
 Berlin : Springer, c2007.
 Description
 Book — 1 v. (various paging) : ill.
 Bourbaki, Nicolas.
 Berlin : Springer, c2007.
 Description
 Book — 328 p.
 Natiello, M. A. (Mario A.)
 Singapore ; New Jersey : World Scientific, c2007.
 Description
 Book — xiv, 127 p. : ill. (some col.).
 Summary

 A Crisis in the Experimental Method Archetype Orbit Organization in R2 x S1 Braids as Indicators of PhaseSpace Dynamics Braids and the Poincare Section Reconstruction of PhaseSpace Dynamics  Basic Course Reconstruction of PhaseSpace Dynamics  Advanced Course.
 (source: Nielsen Book Data)9789812703804 20160528
(source: Nielsen Book Data)9789812703804 20160528
16. Topology [2006]
 Lawson, Terry.
 Oxford : Oxford University Press, 2006.
 Description
 Book — 1 online resource (404 pages)
 Summary

 PART I: A GEOMETRIC INTRODUCTION TO TOPOLOGY PART II: COVERING SPACES, CW COMPLEXES AND HOMOLOGY.
 (source: Nielsen Book Data)9780199202485 20180521
(source: Nielsen Book Data)9780199202485 20180521
17. Topology : a geometric approach [2003]
 Lawson, Terry, 1945
 Oxford ; New York : Oxford University Press, 2006.
 Description
 Book — xv, 388 p. : ill. ; 24 cm.
 Summary

 PART I: A GEOMETRIC INTRODUCTION TO TOPOLOGY PART II: COVERING SPACES, CW COMPLEXES AND HOMOLOGY.
 (source: Nielsen Book Data)9780199202485 20180521
(source: Nielsen Book Data)9780199202485 20180521
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request 
QA611 .L36 2006  Available 
18. A taste of topology [2005]
 Runde, Volker.
 New York : Springer, c2005.
 Description
 Book — x, 176 p. : ill., map ; 23 cm.
 Summary

 Preface. Introduction. Set Theory. Metric Spaces. Set Theoretic Topology. Systems of Continuous Functions. Basic Algebraic Topology. The Classical MittagLeffler Theorem Derived from Bourbaki?s. Failure of the HeineBorel Theorem in InfiniteDimensional Spaces. The ArzelaAscoli Theorem. References. List of Symbols. Index.
 (source: Nielsen Book Data)9780387257907 20160528
(source: Nielsen Book Data)9780387257907 20160528
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request 
QA611 .R85 2005  Available 
19. Computational Homology [2004]
 Kaczynski, T.
 New York : Springer, 2004.
 Description
 Book — 1 online resource (497 pages)
 Summary

 Preface Part I Homology 1 Preview 1.1 Analyzing Images 1.2 Nonlinear Dynamics 1.3 Graphs 1.4 Topological and Algebraic Boundaries 1.5 Keeping Track of Directions 1.6 Mod 2 Homology of Graphs 2 Cubical Homology 2.1 Cubical Sets 2.1.1 Elementary Cubes 2.1.2 Cubical Sets 2.1.3 Elementary Cells 2.2 The Algebra of Cubical Sets 2.2.1 Cubical Chains 2.2.2 Cubical Chains in a Cubical Set 2.2.3 The Boundary Operator 2.2.4 Homology of Cubical Sets 2.3 Connected Components and H0(X) 2.4 Elementary Collapses 2.5 Acyclic Cubical Spaces 2.6 Homology of Abstract Chain Complexes 2.7 Reduced Homology 2.8 Bibliographical Remarks 3 Computing Homology Groups 3.1 Matrix Algebra over Z 3.2 Row Echelon Form 3.3 Smith Normal Form 3.4 Structure of Abelian Groups 3.5 Computing Homology Groups 3.6 Computing Homology of Cubical Sets 3.7 Preboundary of a CycleAlgebraic Approach 3.8 Bibliographical Remarks 4 Chain Maps and Reduction Algorithms 4.1 Chain Maps 4.2 Chain Homotopy 4.3 Internal Elementary Reductions 4.3.1 Elementary Collapses Revisited 4.3.2 Generalization of Elementary Collapses 4.4 CCR Algorithm 4.5 Bibliographical Remarks 5 PreviewofMaps 5.1 Rational Functions and Interval Arithmetic 5.2 Maps on an Interval 5.3 Constructing Chain Selectors 5.4 Maps of A1 6 Homology of Maps 6.1 Representable Sets 6.2 Cubical Multivalued Maps 6.3 Chain Selectors 6.4 Homology of Continuous Maps 6.4.1 Cubical Representations 6.4.2 Rescaling 6.5 Homotopy Invariance 6.6 Bibliographical Remarks 7 Computing Homology of Maps 7.1 Producing Multivalued Representation 7.2 Chain Selector Algorithm 7.3 Computing Homology of Maps 7.4 Geometric Preboundary Algorithm (optional section) 7.5 Bibliographical Remarks Part II Extensions 8 Prospects in Digital Image Processing 8.1 Images and Cubical Sets 8.2 Patterns from CahnHilliard 8.3 Complicated TimeDependent Patterns 8.4 Size Function 8.5 Bibliographical Remarks 9 Homological Algebra 9.1 Relative Homology 9.1.1 Relative Homology Groups 9.1.2 Maps in Relative Homology 9.2 Exact Sequences 9.3 The Connecting Homomorphism 9.4 MayerVietoris Sequence 9.5 Weak Boundaries 9.6 Bibliographical Remarks 10 Nonlinear Dynamics 10.1 Maps and Symbolic Dynamics 10.2 Differential Equations and Flows 10.3 Wayzewski Principle 10.4 FixedPoint Theorems 10.4.1 Fixed Points in the Unit Ball 10.4.2 The Lefschetz FixedPoint Theorem 10.5 Degree Theory 10.5.1 Degree on Spheres 10.5.2 Topological Degree 10.6 Complicated Dynamics 10.6.1 Index Pairs and Index Map 10.6.2 Topological Conjugacy 10.7 Computing Chaotic Dynamics 10.8 Bibliographical Remarks 11 Homology of Topological Polyhedra 11.1 Simplicial Homology 11.2 Comparison of Cubical and Simplicial Complexes 11.3 Homology Functor 11.3.1 Category of Cubical Sets 11.3.2 Connected Simple Systems 11.4 Bibliographical Remarks Part III Tools from Topology and Algebra 12 Topology 12.1 Norms and Metrics in Rd 12.2 Topology 12.3 Continuous Maps 12.4 Connectedness 12.5 Limits and Compactness 13 Algebra 13.1 Abelian Groups 13.1.1 Algebraic Operations 13.1.2 Groups 13.1.3 Cyclic Groups and Torsion Subgroup 13.1.4 Quotient Groups 13.1.5 Direct Sums 13.2 Fields and Vector Spaces 13.2.1 Fields 13.2.2 Vector Spaces 13.2.3 Linear Combinations and Bases 13.3 Homomorphisms 13.3.1 Homomorphisms of Groups 13.3.2 Linear Maps 13.3.3 Matrix Algebra 13.4 Free Abelian Groups 13.4.1 Bases in Groups 13.4.2 Subgroups of Free Groups 13.4.3 Homomorphisms of Free Groups 14 Syntax of Algorithms 14.1 Overview 14.2 Data Structures 14.2.1 Elementary Data Types 14.2.2 Lists 14.2.3 Arrays 14.2.4 Vectors and Matrices 14.2.5 Sets.
 (source: Nielsen Book Data)9781441923547 20180521
(source: Nielsen Book Data)9781441923547 20180521
20. Fixed Point Theory [2003]
 Dugundji, James.
 New York, NY : Springer, 2003.
 Description
 Book — 1 online resource (700 pages)
 Summary

 Elementary Fixed Point Theorems * Theorem of Borsuk and Topological Transversality * Homology and Fixed Points * LeraySchauder Degree and Fixed Point Index * The LefschetzHopf Theory * Selected Topics * Index.
 (source: Nielsen Book Data)9781441918055 20180521
(source: Nielsen Book Data)9781441918055 20180521
Articles+
Journal articles, ebooks, & other eresources
 Articles+ results include