- Book
- 1 online resource () : color illustrations.
- 1 Introduction 1.1 Scope of the Thesis 1.2 Outline of the Thesis 1.3 Quantum Hall States 1.4 Topological Insulators 1.5 Weyl and Dirac Semimetals 1.6 -(BEDT-TTF)2I3 1.7 Topological Mott Insulators 1.8 Topological Crystalline Insulators 1.9 Classification of Topological States of Matter 2 Interacting Dirac Fermions in (3+1) Dimensions 2.1 Model 2.2 Renormalization Group Analysis 2.3 Density of States 2.4 Electromagnetic Properties 2.5 Spectral Function 2.6 Electric Conductivity 2.7 Energy Gap 2.8 Discussions and Summary 3 Tilted Dirac Cones in Two Dimensions 3.1 Model 3.2 Perturbative Renormalization Group Analysis 3.3 Spin Susceptibility 3.4 Discussions and Summary 4 Generalized Hund's Rule for Two-Atom Systems 4.1 Model 4.2 Results 4.3 Perturbative Calculation 4.4 Entanglement Entropy 4.5 Symmetry 4.6 Discussions and Summary 5 Interacting Topological Crystalline Insulators 5.1 Classification in Two Dimensions 5.2 Interacting TCIs in Three Dimensions 5.3 Discussions and Summary 6 Conclusions and Prospects.
- (source: Nielsen Book Data)9789811037429 20170612
(source: Nielsen Book Data)9789811037429 20170612
- 1 Introduction 1.1 Scope of the Thesis 1.2 Outline of the Thesis 1.3 Quantum Hall States 1.4 Topological Insulators 1.5 Weyl and Dirac Semimetals 1.6 -(BEDT-TTF)2I3 1.7 Topological Mott Insulators 1.8 Topological Crystalline Insulators 1.9 Classification of Topological States of Matter 2 Interacting Dirac Fermions in (3+1) Dimensions 2.1 Model 2.2 Renormalization Group Analysis 2.3 Density of States 2.4 Electromagnetic Properties 2.5 Spectral Function 2.6 Electric Conductivity 2.7 Energy Gap 2.8 Discussions and Summary 3 Tilted Dirac Cones in Two Dimensions 3.1 Model 3.2 Perturbative Renormalization Group Analysis 3.3 Spin Susceptibility 3.4 Discussions and Summary 4 Generalized Hund's Rule for Two-Atom Systems 4.1 Model 4.2 Results 4.3 Perturbative Calculation 4.4 Entanglement Entropy 4.5 Symmetry 4.6 Discussions and Summary 5 Interacting Topological Crystalline Insulators 5.1 Classification in Two Dimensions 5.2 Interacting TCIs in Three Dimensions 5.3 Discussions and Summary 6 Conclusions and Prospects.
- (source: Nielsen Book Data)9789811037429 20170612
(source: Nielsen Book Data)9789811037429 20170612
EBSCOhost Access limited to 1 user
- EBSCOhost Access limited to 1 user
- Google Books (Full view)
2. Recent progress in general topology III [2014]
- Book
- 1 online resource (880 pages) : illustrations
- Topological Homogeneity.- Some Recent Progress Concerning Topology of Fractals.- A biased view of topology as a tool in functional analysis.- Large scale versus small scale.- Descriptive aspects of Rosenthal compacta.- Minimality conditions in topological groups.- Set-Theoretic update on Topology.- Topics in Dimension Theory.- Representations of dynamical systems on Banach spaces.- Generalized metrizable spaces.- Permanence in Coarse Geometry.- Selections and Hyperspaces.- Continuum Theory.- Almost disjoint families and topology.- Some Topics in Geometric Topology II.- Topological aspects of dynamics of pairs, tuples and sets.- Continuous selections of multivalued mappings.- The combinatorics of open covers.- Covering properties.- Paratopological and semitopological groups vs topological groups.
- (source: Nielsen Book Data)9789462390232 20160614
(source: Nielsen Book Data)9789462390232 20160614
- Topological Homogeneity.- Some Recent Progress Concerning Topology of Fractals.- A biased view of topology as a tool in functional analysis.- Large scale versus small scale.- Descriptive aspects of Rosenthal compacta.- Minimality conditions in topological groups.- Set-Theoretic update on Topology.- Topics in Dimension Theory.- Representations of dynamical systems on Banach spaces.- Generalized metrizable spaces.- Permanence in Coarse Geometry.- Selections and Hyperspaces.- Continuum Theory.- Almost disjoint families and topology.- Some Topics in Geometric Topology II.- Topological aspects of dynamics of pairs, tuples and sets.- Continuous selections of multivalued mappings.- The combinatorics of open covers.- Covering properties.- Paratopological and semitopological groups vs topological groups.
- (source: Nielsen Book Data)9789462390232 20160614
(source: Nielsen Book Data)9789462390232 20160614
- Book
- xv, 404 p. : ill. (some col.).
- Fundamentals What Is Topology? First Definitions Mappings The Separation Axioms Compactness Homeomorphisms Connectedness Path-Connectedness Continua Totally Disconnected Spaces The Cantor Set Metric Spaces Metrizability Baire's Theorem Lebesgue's Lemma and Lebesgue Numbers Advanced Properties of Topological Spaces Basis and Sub-Basis Product Spaces Relative Topology First Countable, Second Countable, and So Forth Compactifications Quotient Topologies Uniformities Morse Theory Proper Mappings Paracompactness An Application to Digital Imaging Basic Algebraic Topology Homotopy Theory Homology Theory Covering Spaces The Concept of Index Mathematical Economics Manifold Theory Basic Concepts The Definition Moore-Smith Convergence and Nets Introductory Remarks Nets Function Spaces Preliminary Ideas The Topology of Pointwise Convergence The Compact-Open Topology Uniform Convergence Equicontinuity and the Ascoli-Arzela Theorem The Weierstrass Approximation Theorem Knot Theory What Is a Knot? The Alexander Polynomial The Jones Polynomial Graph Theory Introduction Fundamental Ideas of Graph Theory Application to the Konigsberg Bridge Problem Coloring Problems The Traveling Salesman Problem Dynamical Systems Flows Planar Autonomous Systems Lagrange's Equations Appendix 1: Principles of Logic Truth "And" and "Or" "Not" "If - Then" Contrapositive, Converse, and "Iff" Quantifiers Truth and Provability Appendix 2: Principles of Set Theory Undefinable Terms Elements of Set Theory Venn Diagrams Further Ideas in Elementary Set Theory Indexing and Extended Set Operations Countable and Uncountable Sets Appendix 3: The Real Numbers The Real Number System Construction of the Real Numbers Appendix 4: The Axiom of Choice and Its Implications Well Ordering The Continuum Hypothesis Zorn's Lemma The Hausdorff Maximality Principle The Banach-Tarski Paradox Appendix 5: Ideas from Algebra Groups Rings Fields Modules Vector Spaces Solutions of Selected Exercises Bibliography Index Exercises appear at the end of each chapter.
- (source: Nielsen Book Data)9781420089752 20160616
(source: Nielsen Book Data)9781420089752 20160616
- Fundamentals What Is Topology? First Definitions Mappings The Separation Axioms Compactness Homeomorphisms Connectedness Path-Connectedness Continua Totally Disconnected Spaces The Cantor Set Metric Spaces Metrizability Baire's Theorem Lebesgue's Lemma and Lebesgue Numbers Advanced Properties of Topological Spaces Basis and Sub-Basis Product Spaces Relative Topology First Countable, Second Countable, and So Forth Compactifications Quotient Topologies Uniformities Morse Theory Proper Mappings Paracompactness An Application to Digital Imaging Basic Algebraic Topology Homotopy Theory Homology Theory Covering Spaces The Concept of Index Mathematical Economics Manifold Theory Basic Concepts The Definition Moore-Smith Convergence and Nets Introductory Remarks Nets Function Spaces Preliminary Ideas The Topology of Pointwise Convergence The Compact-Open Topology Uniform Convergence Equicontinuity and the Ascoli-Arzela Theorem The Weierstrass Approximation Theorem Knot Theory What Is a Knot? The Alexander Polynomial The Jones Polynomial Graph Theory Introduction Fundamental Ideas of Graph Theory Application to the Konigsberg Bridge Problem Coloring Problems The Traveling Salesman Problem Dynamical Systems Flows Planar Autonomous Systems Lagrange's Equations Appendix 1: Principles of Logic Truth "And" and "Or" "Not" "If - Then" Contrapositive, Converse, and "Iff" Quantifiers Truth and Provability Appendix 2: Principles of Set Theory Undefinable Terms Elements of Set Theory Venn Diagrams Further Ideas in Elementary Set Theory Indexing and Extended Set Operations Countable and Uncountable Sets Appendix 3: The Real Numbers The Real Number System Construction of the Real Numbers Appendix 4: The Axiom of Choice and Its Implications Well Ordering The Continuum Hypothesis Zorn's Lemma The Hausdorff Maximality Principle The Banach-Tarski Paradox Appendix 5: Ideas from Algebra Groups Rings Fields Modules Vector Spaces Solutions of Selected Exercises Bibliography Index Exercises appear at the end of each chapter.
- (source: Nielsen Book Data)9781420089752 20160616
(source: Nielsen Book Data)9781420089752 20160616
5. A guide to topology [2009]
- Book
- xii, 107 p. : ill. ; 24 cm.
- Preface-- Part I. Fundamentals: 1.1. What is topology?-- 1.2. First definitions-- 1.3 Mappings-- 1.4. The separation axioms-- 1.5. Compactness-- 1.6. Homeomorphisms-- 1.7. Connectedness-- 1.8. Path-connectedness-- 1.9. Continua-- 1.10. Totally disconnected spaces-- 1.11. The Cantor set-- 1.12. Metric spaces-- 1.13. Metrizability-- 1.14. Baire's theorem-- 1.15. Lebesgue's lemma and Lebesgue numbers-- Part II. Advanced Properties: 2.1 Basis and subbasis-- 2.2. Product spaces-- 2.3. Relative topology-- 2.4. First countable and second countable-- 2.5. Compactifications-- 2.6. Quotient topologies-- 2.7. Uniformities-- 2.8. Morse theory-- 2.9. Proper mappings-- 2.10. Paracompactness-- Part III. Moore-Smith Convergence and Nets: 3.1. Introductory remarks-- 3.2. Nets-- Part IV. Function Spaces: 4.1. Preliminary ideas-- 4.2. The topology of pointwise convergence-- 4.3. The compact-open topology-- 4.4. Uniform convergence-- 4.5. Equicontinuity and the Ascoli-Arzela theorem-- 4.6. The Weierstrass approximation theorem-- Table of notation-- Glossary-- Bibliography-- Index.
- (source: Nielsen Book Data)9780883853467 20160603
(source: Nielsen Book Data)9780883853467 20160603
- Preface-- Part I. Fundamentals: 1.1. What is topology?-- 1.2. First definitions-- 1.3 Mappings-- 1.4. The separation axioms-- 1.5. Compactness-- 1.6. Homeomorphisms-- 1.7. Connectedness-- 1.8. Path-connectedness-- 1.9. Continua-- 1.10. Totally disconnected spaces-- 1.11. The Cantor set-- 1.12. Metric spaces-- 1.13. Metrizability-- 1.14. Baire's theorem-- 1.15. Lebesgue's lemma and Lebesgue numbers-- Part II. Advanced Properties: 2.1 Basis and subbasis-- 2.2. Product spaces-- 2.3. Relative topology-- 2.4. First countable and second countable-- 2.5. Compactifications-- 2.6. Quotient topologies-- 2.7. Uniformities-- 2.8. Morse theory-- 2.9. Proper mappings-- 2.10. Paracompactness-- Part III. Moore-Smith Convergence and Nets: 3.1. Introductory remarks-- 3.2. Nets-- Part IV. Function Spaces: 4.1. Preliminary ideas-- 4.2. The topology of pointwise convergence-- 4.3. The compact-open topology-- 4.4. Uniform convergence-- 4.5. Equicontinuity and the Ascoli-Arzela theorem-- 4.6. The Weierstrass approximation theorem-- Table of notation-- Glossary-- Bibliography-- Index.
- (source: Nielsen Book Data)9780883853467 20160603
(source: Nielsen Book Data)9780883853467 20160603
Science Library (Li and Ma)
Science Library (Li and Ma) | Status |
---|---|
Stacks | |
QA611 .K683 2009 | Unknown |
- Book
- 1 online resource (218 pages)
- Book
- ix, 152 p. : ill. ; 24 cm.
- Homeomorphic Sets.- Topological Properties.- Equivalent Subsets.- Surfaces and Spaces.- Polyhedra.- Winding Number.
- (source: Nielsen Book Data)9781848009127 20160605
(source: Nielsen Book Data)9781848009127 20160605
- Homeomorphic Sets.- Topological Properties.- Equivalent Subsets.- Surfaces and Spaces.- Polyhedra.- Winding Number.
- (source: Nielsen Book Data)9781848009127 20160605
(source: Nielsen Book Data)9781848009127 20160605
dx.doi.org SpringerLink
- dx.doi.org SpringerLink
- Google Books (Full view)
8. Topologia [electronic resource] [2008]
- Book
- xii, 297 p. ; 24 cm.
dx.doi.org SpringerLink
- dx.doi.org SpringerLink
- Google Books (Full view)
9. Open problems in topology II [2007]
- Book
- xi, 763 p. : ill. ; 25 cm.
- Part 1. General Topology 1. Selected ordered space problems (H. Bennett and D. Lutzer) 2. Problems on star-covering properties (M. Bonanzinga and M. Matveev) 3. Function space topologies (D.N. Georgiou, S.D. Iliadis and F. Mynard) 4. Spaces and mappings: special networks (C. Liu and Y. Tanaka) 5. Extension problems of real-valued continuous functions (H. Ohta and K. Yamazaki) 6. LE(k)-spaces (O. Okunev) 7. Problems on (ir) resolvability (O. Pavlov) 8. Topological games and Ramsey theory (M. Scheepers) 9. Selection principles and special sets of reals (B. Tsaban) Part 2. Set-theoretic Topology 10. Introduction: Twenty problems in set-theoretic topology (M. Hrusak and J.T. Moore) 11. Thin-tall spaces and cardinal sequences (J. Bagaria) 12. Sequential order (A. Dow) 13. On D-spaces (T. Eisworth) 14. The fourth head of BN (I. Farah) 15. Are stratifiable spaces M1? (G. Gruenhage) 16. Perfect compacta and basis problems in topology (G. Gruenhage and J.T. Moore) 17. Selection problems for hyperspaces (V. Gutev and T. Nogura) 18. Efimov's problem (K.P. Hart) 19. Completely separable MAD families (M. Hrusak and P. Simon) 20. Good, splendid and Jakovlev (I. Juhasz and W.A.R. Weiss) 21. Homogeneous compacta (J. van Mill) 22. Compact spaces with hereditarily normal squares (J.T. Moore) 23. The metrization problem for Frechet groups (J.T. Moore and S. Todorcevic) 24. Cech-Stone remainders of discrete spaces (P.J. Nyikos) 25. First countable, countably compact, noncompact spaces (P.J. Nyikos) 26. Linearly Lindelof problems (E. Pearl) 27. Small Dowker spaces (P.J. Szeptycki) 28. Reflection of topological properties to N1 (F.D. Tall) 29. The Scarborough-Stone problem (J.E. Vaughan) Part 3. Continuum Theory 30. Questions in and out of context (D.P. Bellamy) 31. An update on the elusive fixed-point property (C.L. Hagopian) 32. Hyperspaces of continua (A. Ilanes) 33. Inverse limits and dynamical systems (W.T. Ingram) 34. Indecomposable continua (W. Lewis) 35. Open problems on dendroids (V. Martinez-de-la-Vega and J.M. Martinez-Montejano) 36. -Homogeneous continua (S.B. Nadler, Jr.) 37. Thirty open problems in the theory of homogeneous continua (J.R. Prajs) Part 4. Topological Algebra 38. Problems about the uniform structures of topological groups (A. Bouziad and J-P. Troallic) 39. On some special classes of continuous maps (M.M. Clementino and D. Hofmann) 40. Dense subgroups of compact groups (W.W. Comfort) 41. Selected topics from the structure theory of topological groups (D. Dikranjan and D. Shakhmatov) 42. Recent results and open questions relating Chu duality and Bohr compactifications of locally compact groups (J. Galindo, S. Hernandez and T-S. Wu) 43. Topological transformation groups: selected topics (M. Megrelishvili) 44. Forty-plus annotated questions about large topological groups (V. Pestov) Part 5. Dynamical Systems 45. Minimal flows (W.F. Basener, K. Parwani and T. Wiandt) 46. The dynamics of tiling spaces (A. Clark) 47. Open problems in complex dynam.
- (source: Nielsen Book Data)9780444522085 20160528
(source: Nielsen Book Data)9780444522085 20160528
- Part 1. General Topology 1. Selected ordered space problems (H. Bennett and D. Lutzer) 2. Problems on star-covering properties (M. Bonanzinga and M. Matveev) 3. Function space topologies (D.N. Georgiou, S.D. Iliadis and F. Mynard) 4. Spaces and mappings: special networks (C. Liu and Y. Tanaka) 5. Extension problems of real-valued continuous functions (H. Ohta and K. Yamazaki) 6. LE(k)-spaces (O. Okunev) 7. Problems on (ir) resolvability (O. Pavlov) 8. Topological games and Ramsey theory (M. Scheepers) 9. Selection principles and special sets of reals (B. Tsaban) Part 2. Set-theoretic Topology 10. Introduction: Twenty problems in set-theoretic topology (M. Hrusak and J.T. Moore) 11. Thin-tall spaces and cardinal sequences (J. Bagaria) 12. Sequential order (A. Dow) 13. On D-spaces (T. Eisworth) 14. The fourth head of BN (I. Farah) 15. Are stratifiable spaces M1? (G. Gruenhage) 16. Perfect compacta and basis problems in topology (G. Gruenhage and J.T. Moore) 17. Selection problems for hyperspaces (V. Gutev and T. Nogura) 18. Efimov's problem (K.P. Hart) 19. Completely separable MAD families (M. Hrusak and P. Simon) 20. Good, splendid and Jakovlev (I. Juhasz and W.A.R. Weiss) 21. Homogeneous compacta (J. van Mill) 22. Compact spaces with hereditarily normal squares (J.T. Moore) 23. The metrization problem for Frechet groups (J.T. Moore and S. Todorcevic) 24. Cech-Stone remainders of discrete spaces (P.J. Nyikos) 25. First countable, countably compact, noncompact spaces (P.J. Nyikos) 26. Linearly Lindelof problems (E. Pearl) 27. Small Dowker spaces (P.J. Szeptycki) 28. Reflection of topological properties to N1 (F.D. Tall) 29. The Scarborough-Stone problem (J.E. Vaughan) Part 3. Continuum Theory 30. Questions in and out of context (D.P. Bellamy) 31. An update on the elusive fixed-point property (C.L. Hagopian) 32. Hyperspaces of continua (A. Ilanes) 33. Inverse limits and dynamical systems (W.T. Ingram) 34. Indecomposable continua (W. Lewis) 35. Open problems on dendroids (V. Martinez-de-la-Vega and J.M. Martinez-Montejano) 36. -Homogeneous continua (S.B. Nadler, Jr.) 37. Thirty open problems in the theory of homogeneous continua (J.R. Prajs) Part 4. Topological Algebra 38. Problems about the uniform structures of topological groups (A. Bouziad and J-P. Troallic) 39. On some special classes of continuous maps (M.M. Clementino and D. Hofmann) 40. Dense subgroups of compact groups (W.W. Comfort) 41. Selected topics from the structure theory of topological groups (D. Dikranjan and D. Shakhmatov) 42. Recent results and open questions relating Chu duality and Bohr compactifications of locally compact groups (J. Galindo, S. Hernandez and T-S. Wu) 43. Topological transformation groups: selected topics (M. Megrelishvili) 44. Forty-plus annotated questions about large topological groups (V. Pestov) Part 5. Dynamical Systems 45. Minimal flows (W.F. Basener, K. Parwani and T. Wiandt) 46. The dynamics of tiling spaces (A. Clark) 47. Open problems in complex dynam.
- (source: Nielsen Book Data)9780444522085 20160528
(source: Nielsen Book Data)9780444522085 20160528
www.sciencedirect.com ScienceDirect
- www.sciencedirect.com ScienceDirect
- ebrary
- Google Books (Full view)
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request |
QA611 .O562 2007 | Available |
- Book
- 1 v ; 25 cm.
www.springerlink.com SpringerLink
- www.springerlink.com SpringerLink
- www.myilibrary.com MyiLibrary
- Google Books (Full view)
- Book
- 1 v ; 25 cm.
www.springerlink.com SpringerLink
- www.springerlink.com SpringerLink
- www.myilibrary.com MyiLibrary
- Google Books (Full view)
- Book
- xiv, 127 p. : ill. (some col.).
- A Crisis in the Experimental Method Archetype-- Orbit Organization in R2 x S1-- Braids as Indicators of Phase-Space Dynamics-- Braids and the Poincare Section-- Reconstruction of Phase-Space Dynamics -- Basic Course-- Reconstruction of Phase-Space Dynamics -- Advanced Course.
- (source: Nielsen Book Data)9789812703804 20160528
(source: Nielsen Book Data)9789812703804 20160528
- A Crisis in the Experimental Method Archetype-- Orbit Organization in R2 x S1-- Braids as Indicators of Phase-Space Dynamics-- Braids and the Poincare Section-- Reconstruction of Phase-Space Dynamics -- Basic Course-- Reconstruction of Phase-Space Dynamics -- Advanced Course.
- (source: Nielsen Book Data)9789812703804 20160528
(source: Nielsen Book Data)9789812703804 20160528
15. Topology : a geometric approach [2003]
- Book
- xv, 388 p. : ill. ; 24 cm.
- PART I: A GEOMETRIC INTRODUCTION TO TOPOLOGY-- 1. Basic point set topology-- 2. The classification of surfaces-- 3. The fundamental group and its applications-- PART II: COVERING SPACES, CW COMPLEXES AND HOMOLOGY-- 4. Covering spaces-- 5. CW complexes-- 6. Homology-- Selected solutions-- References-- Index.
- (source: Nielsen Book Data)9780199202485 20160528
(source: Nielsen Book Data)9780199202485 20160528
- PART I: A GEOMETRIC INTRODUCTION TO TOPOLOGY-- 1. Basic point set topology-- 2. The classification of surfaces-- 3. The fundamental group and its applications-- PART II: COVERING SPACES, CW COMPLEXES AND HOMOLOGY-- 4. Covering spaces-- 5. CW complexes-- 6. Homology-- Selected solutions-- References-- Index.
- (source: Nielsen Book Data)9780199202485 20160528
(source: Nielsen Book Data)9780199202485 20160528
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request |
QA611 .L36 2006 | Available |
- Book
- 408 p. : ill. ; 24 cm.
- PART I: A GEOMETRIC INTRODUCTION TO TOPOLOGY-- 1. Basic point set topology-- 2. The classification of surfaces-- 3. The fundamental group and its applications-- PART II: COVERING SPACES, CW COMPLEXES AND HOMOLOGY-- 4. Covering spaces-- 5. CW complexes-- 6. Homology-- Selected solutions-- References-- Index.
- (source: Nielsen Book Data)9780199202485 20160528
(source: Nielsen Book Data)9786610904259 20160527
- PART I: A GEOMETRIC INTRODUCTION TO TOPOLOGY-- 1. Basic point set topology-- 2. The classification of surfaces-- 3. The fundamental group and its applications-- PART II: COVERING SPACES, CW COMPLEXES AND HOMOLOGY-- 4. Covering spaces-- 5. CW complexes-- 6. Homology-- Selected solutions-- References-- Index.
- (source: Nielsen Book Data)9780199202485 20160528
(source: Nielsen Book Data)9786610904259 20160527
www.myilibrary.com MyiLibrary
- www.myilibrary.com MyiLibrary
- Google Books (Full view)
17. A taste of topology [2005]
- Book
- x, 176 p. : ill., map ; 23 cm.
- Preface.- Introduction.- Set Theory.- Metric Spaces.- Set Theoretic Topology.- Systems of Continuous Functions.- Basic Algebraic Topology.- The Classical Mittag-Leffler Theorem Derived from Bourbaki?s.- Failure of the Heine-Borel Theorem in Infinite-Dimensional Spaces.- The Arzela-Ascoli Theorem.- References.- List of Symbols.- Index.
- (source: Nielsen Book Data)9780387257907 20160528
(source: Nielsen Book Data)9780387257907 20160528
- Preface.- Introduction.- Set Theory.- Metric Spaces.- Set Theoretic Topology.- Systems of Continuous Functions.- Basic Algebraic Topology.- The Classical Mittag-Leffler Theorem Derived from Bourbaki?s.- Failure of the Heine-Borel Theorem in Infinite-Dimensional Spaces.- The Arzela-Ascoli Theorem.- References.- List of Symbols.- Index.
- (source: Nielsen Book Data)9780387257907 20160528
(source: Nielsen Book Data)9780387257907 20160528
www.springerlink.com SpringerLink
- www.springerlink.com SpringerLink
- www.myilibrary.com MyiLibrary
- site.ebrary.com ebrary
- Google Books (Full view)
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request |
QA611 .R85 2005 | Available |
18. Topologie [electronic resource] [2005]
- Book
- 239 p. : ill. ; 21 cm.
www.myilibrary.com MyiLibrary
- www.myilibrary.com MyiLibrary
- www.springerlink.com SpringerLink
- Google Books (Full view)
19. Topología básica [2003]
- Book
- 229 p. : ill. ; 24 cm.
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request |
QA611 .M83 2003 | Available |
20. Handbook of geometric topology [2002]
- Book
- x, 1133 p. : ill. ; 25 cm.
- Topics in transformation groups (A. Adem and J.F .Davis). Piecewise linear topology (J.L. Bryant). Infinite dimensional topology and shape theory (A. Chigogidze). Nonpositive curvature and reflection groups (M.W. Davis). Nielsen fixed point theory (R. Geoghegan). Mapping class groups (N.V. Ivanov). Seifert manifolds (Kyung Bai Lee and F. Raymond). Quantum invariants of 3-manifolds and CW-complexes (W. Lueck). Hyperbolic manifolds (J.G .Ratcliffe). Flows with knotted closed orbits (J. Franks and M.C. Sullivan). Heegaard splittings of compact 3-manifolds (M. Scharlemann). Representations of 3-manifold groups (P.B. Schalen). Homology manifolds (S. Weinberger). R-trees in topology, geometry, and group theory (F. Bonathon). Dehn surgery on knots (S. Boyer). Geometric group theory (J. Cannon). Cohomological dimension theory (J. Dydak). Metric spaces of curvature greater than or equal to k (C. Plaut). Topological rigidity theorems (C.W. Stark).
- (source: Nielsen Book Data)9780444824325 20160528
(source: Nielsen Book Data)9780444824325 20160528
- Topics in transformation groups (A. Adem and J.F .Davis). Piecewise linear topology (J.L. Bryant). Infinite dimensional topology and shape theory (A. Chigogidze). Nonpositive curvature and reflection groups (M.W. Davis). Nielsen fixed point theory (R. Geoghegan). Mapping class groups (N.V. Ivanov). Seifert manifolds (Kyung Bai Lee and F. Raymond). Quantum invariants of 3-manifolds and CW-complexes (W. Lueck). Hyperbolic manifolds (J.G .Ratcliffe). Flows with knotted closed orbits (J. Franks and M.C. Sullivan). Heegaard splittings of compact 3-manifolds (M. Scharlemann). Representations of 3-manifold groups (P.B. Schalen). Homology manifolds (S. Weinberger). R-trees in topology, geometry, and group theory (F. Bonathon). Dehn surgery on knots (S. Boyer). Geometric group theory (J. Cannon). Cohomological dimension theory (J. Dydak). Metric spaces of curvature greater than or equal to k (C. Plaut). Topological rigidity theorems (C.W. Stark).
- (source: Nielsen Book Data)9780444824325 20160528
(source: Nielsen Book Data)9780444824325 20160528
www.sciencedirect.com ScienceDirect
- www.sciencedirect.com ScienceDirect
- www.myilibrary.com MyiLibrary
- Google Books (Full view)
Science Library (Li and Ma)
Science Library (Li and Ma) | Status |
---|---|
Stacks | |
QA161 .H36 2002 | Unknown |
Articles+
Journal articles, e-books, & other e-resources
- Articles+ results include