1  20
Next
 Jaroszkiewicz, George, author.
 Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2023.
 Description
 Book — 1 online resource.
 Summary

Scientists have been debating the meaning of quantum mechanics for more than a century. This book for graduate students and researchers gets to the root of the problem: how the contextual nature of empirical truth and the laws of observation impact on our understanding of quantum physics. Bridging the gap between nonrelativistic quantum mechanics and quantum field theory, this novel approach to quantum mechanics extends the standard formalism to cover the observer and their apparatus. The author demystifies some of the aspects of quantum mechanics that have traditionally been regarded as extraordinary, such as waveparticle duality and quantum superposition, emphasizing the scientific principles rather than the mathematical modelling. Including key experiments and worked examples throughout, the author encourages the reader to focus on empirically sound concepts and avoid metaphysical speculation. Originally released in 2017, this title has been reissued as an Open Access publication on Cambridge Core.
 Janas, Michael, author.
 Cham, Switzerland : Springer, [2022]
 Description
 Book — xxiv, 247 pages : illustrations (some color) ; 25 cm
 Summary

 Chapter 1 Introduction
 Chapter 2 Representing distant correlations by correlation arrays and polytopes
 Chapter 3 The elliptope and the geometry of correlations
 Chapter 4 Generalization to singlet state of two particles with higher spin
 Chapter 5 Correlation arrays, polytopes and the CHSH inequality
 Chapter 6 Interpreting quantum mechanics
 Chapter 7 Conclusion.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
 Dick, Rainer, author.
 Second edition.  Switzerland : Springer, 2016.
 Description
 Book — 1 online resource (xix, 692 pages) : illustrations
 Summary

 The Need for Quantum Mechanics
 Selfadjoint Operators and Eigenfunction Expansions
 Simple Model Systems
 Notions from Linear Algebra and BraKet Formalism
 Formal Developments
 Harmonic Oscillators and Coherent States
 Central Forces in Quantum Mechanics
 Spin and Addition of Angular Momentum Type Operators
 Stationary Perturbations in Quantum Mechanics
 Quantum Aspects of Materials I
 Scattering Off Potentials
 The Density of States
 TimeDependent Perturbations in Quantum Mechanics
 Path Integrals in Quantum Mechanics
 Coupling to Electromagnetic Fields
 Principles of Lagrangian Field Theory
 Nonrelativistic Quantum Field Theory
 Quantization of the Maxwell Field: Photons
 Quantum Aspects of Materials II
 Dimensional Effects in Lowdimensional Systems
 Relativistic Quantum Fields
 Applications of Spinor QED.
 2.2 Selfadjoint operators and completeness of eigenstates2.3 Problems; 3 Simple Model Systems; 3.1 Barriers in quantum mechanics; 3.2 Box approximations for quantum wells, quantum wires and quantum dots; Energy levels in a quantum well; Energy levels in a quantum wire; Energy levels in a quantum dot; Degeneracy of quantum states; 3.3 The attractive δ function potential; 3.4 Evolution of free Schrödinger wave packets; The free Schrödinger propagator; Width of Gaussian wave packets; Free Gaussian wave packets in Schrödinger theory; 3.5 Problems
 Intro; Preface to the Second Edition; Preface to the First Edition; To the Students; To the Instructor; Contents; 1 The Need for Quantum Mechanics; 1.1 Electromagnetic spectra and evidence for discrete energy levels; 1.2 Blackbody radiation and Planck's law; 1.3 Blackbody spectra and photon fluxes; 1.4 The photoelectric effect; 1.5 Waveparticle duality; 1.6 Why Schrödinger's equation; 1.7 Interpretation of Schrödinger's wave function; 1.8 Problems; 2 Selfadjoint Operators and Eigenfunction Expansions; 2.1 The δ function and Fourier transforms; SokhotskyPlemelj relations
5. Quantum physics for dummies [2013]
 Holzner, Steven, 1957 author.
 Revised edition.  Hoboken, NJ : John Wiley & Sons, [2013]
 Description
 Book — 1 online resource (1 volume) : illustrations.
 Summary

 Introduction 1 Part I: Small World, Huh? Essential Quantum Physics 7
 Chapter 1: Discoveries and Essential Quantum Physics 9
 Chapter 2: Entering the Matrix: Welcome to State Vectors 23 Part II: Bound and Undetermined: Handling Particles in Bound States 55
 Chapter 3: Getting Stuck in Energy Wells 57
 Chapter 4: Back and Forth with Harmonic Oscillators 91 Part III: Turning to Angular Momentum and Spin 125
 Chapter 5: Working with Angular Momentum on the Quantum Level 127
 Chapter 6: Getting Dizzy with Spin 157 Part IV: Multiple Dimensions: Going 3D with Quantum Physics 167
 Chapter 7: Rectangular Coordinates: Solving Problems in Three Dimensions 169
 Chapter 8: Solving Problems in Three Dimensions: Spherical Coordinates 189
 Chapter 9: Understanding Hydrogen Atoms 205
 Chapter 10: Handling Many Identical Particles 231 Part V: Group Dynamics: Introducing Multiple Particles 253
 Chapter 11: Giving Systems a Push: Perturbation Theory 255
 Chapter 12: WhamBlam! Scattering Theory 275 Part VI: The Part of Tens 293
 Chapter 13: Ten Quantum Physics Tutorials 295
 Chapter 14: Ten Quantum Physics Triumphs 299 Glossary 303 Index 309.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Haroche, S.
 Oxford ; New York : Oxford University Press, 2006 (2008 printing)
 Description
 Book — x, 605 p. : ill. ; 25 cm.
 Summary

 1. Unveiling the quantum
 2. Strangeness and power of the quantum
 3. Of spins and springs
 4. The environment is watching
 5. Photons in a box
 6. Seeing light in subtle ways
 7. Taming Schrodinger's cats
 8. Atoms in a box
 9. Entangling matter waves
 Appendix: Representation of quantum states in phase space.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QC174.12 .H376 2008  Unknown 
7. Introduction to quantum mechanics [2005]
 Griffiths, David J. (David Jeffery), 1942
 2nd ed.  Upper Saddle River, NJ : Pearson Prentice Hall, c2005.
 Description
 Book — ix, 468 p. : ill. ; 24 cm.
 Summary

 I. THEORY.
 1. The Wave Function.
 2. The TimeIndependent Schrodinger Equation.
 3. Formalism.
 4. Quantum Mechanics in Three Dimensions.
 5. Identical Particles. II. APPLICATIONS.
 6. TimeIndependent Perturbation Theory.
 7. The Variational Principles.
 8. The WKB Approximation.
 9. TimeDependent Perturbation Theory.
 10. The Adiabatic Approximation.
 11. Scattering. Afterword. Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
SAL3 (offcampus storage), Science Library (Li and Ma)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
QC174.12 .G75 2005  Available 
Science Library (Li and Ma)  Status 

Ask at circulation desk  
QC174.12 .G75 2005  Unknown 
QC174.12 .G75 2005  Unknown 
QC174.12 .G75 2005  Unknown 
Stacks  
QC174.12 .G75 2005  Unknown 
QC174.12 .G75 2005  Unknown 
8. Quantum mechanics : fundamentals [2003]
 Gottfried, Kurt.
 2nd ed. / Kurt Gottfried, TungMow Yan.  New York : Springer, c2003.
 Description
 Book — xvii, 620 p. : ill. ; 24 cm.
 Summary

 Fundamental Concepts / The Formal Framework / Basic Tools / Low Dimensional Systems / Hydrogenic Atoms / TwoElectron Atoms / Symmetries / Elastic Scattering / Inelastic Collisions / Electrodynamics / Systems of Identical Particles / Interpretation / Relativistic Quantum Mechanics / Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
SAL3 (offcampus storage), Science Library (Li and Ma)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
QC174.12 .G68 2003  Available 
Science Library (Li and Ma)  Status 

Stacks  
QC174.12 .G68 2003  CHECKEDOUT Request 
 Fermi, Enrico, 19011954.
 2nd ed.  Chicago : University of Chicago Press, 1995.
 Description
 Book — vii, 188 pages : ill. ; 23 cm
 Summary

 Preface to the First Edition
 1: Optics  Mechanics Analogy
 2: Schrodinger Equation
 3: Simple OneDimensional Problems
 4: Linear Oscillator
 5: W. K. B. Method
 6: Spherical Harmonics
 7: Central Forces
 8: Hydrogen Atom
 9: Orthogonality of Wave Functions
 10: Linear Operators
 11: Eigenvalues and Eigenfunction
 12: Operators for Mass Point
 13: Uncertainty Principle
 14: Matrices
 15: Hermitian Matrices  Eigenvalue Problems
 16: Unitary Matrices  Transformations
 17: Observables
 18: The Angular Momentum
 19: Time Dependence of Observables  Heisenberg Representation
 20: Conservation Theorems
 21: TimeIndependent Perturbation Theory  Ritz Method
 22: Case of Degeneracy or Quasi Degeneracy  Hydrogen Stark Effect
 23: TimeDependent Perturbation Theory  Born Approximation
 24: Emission and Absorption of Radiation
 25: Pauli Theory of Spin
 26: Electron in Central Field
 27: Anomalous Zeeman Effect
 28: Addition of Angular Momentum Vectors
 29: Atomic Multiplets
 30: Systems with Identical Particles
 31: TwoElectron System
 32: Hydrogen Molecule
 33: Collision Theory
 34: Dirac's Theory of the Free Electron
 35: Dirac Electron in Electromagnetic Field
 36: Dirac Electron in Central Field  Hydrogen Atom
 37: Transformations of Dirac Spinors Introduction to Problems for Notes on Quantum Mechanics Problems.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
SAL3 (offcampus storage), Science Library (Li and Ma)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
QC174 .F44 1995  Available 
Science Library (Li and Ma)  Status 

Stacks  
QC174 .F44 1995  Unknown 
10. Elements of advanced quantum theory [1969]
 Ziman, J. M. (John M.), 19252005
 London, Cambridge U.P., 1969.
 Description
 Book — xii, 269 p. illus. 24 cm.
 Summary

 Preface
 1. Bosons
 2. Fermions
 3. Perturbation theory
 4. Green functions
 5. Some aspects of the manybody problems
 6. Relativistic formulations
 7. The algebra of symmetry
 Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
SAL3 (offcampus storage), Science Library (Li and Ma)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
QC174.1 .Z49  Available 
QC174.1 .Z49  Available 
Science Library (Li and Ma)  Status 

Stacks  
QC174.1 .Z49  Unknown 
 Fermi, Enrico, 19011954.
 Chicago : University of Chicago Press, 1962, ©1961.
 Description
 Book — 171 pages ; 21 cm.
 Summary

The lecture notes presented here in facsimile were prepared by Enrico Fermi for students taking his course at the University of Chicago in 1954. They are vivid examples of his unique ability to lecture simply and clearly on the most essential aspects of quantum mechanics.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
QC174 .F44 1962  Available 
 Groenewold, Hilbrand Johannes, author.
 [Dordrecht] : Springer Science+Business Media, B.V., 1946.
 Description
 Book — 1 online resource (viii, 60 pages)
13. Quantum mathematics I [2023]
 Cham : Springer, [2023]
 Description
 Book — 1 online resource (viii, 356 pages).
 Summary

 Chapter 1. Introduction
 Chapter 2. ManyBody Quantum Mechanics
 Chapter 3. Two Comments on the Derivation of the TimeDependent HartreeFock Equation
 Chapter 4. Bogoliubov Theory for Ultra Dilute Bose Gases
 Chapter 5. Derivation of the GinzburgLandau Theory for Interacting Fermions in a Trap
 Chapter 6. Energy expansions for dilute Bose gases from local condensation results: a review of known results
 Chapter 7. Bogoliubov theory for the dilute Fermi gas in three dimensions
 Chapter 8. Uniform in Time Convergence to BoseEinstein Condensation for a Weakly Interacting Bose Gas with External Potentials
 Chapter 9. Trial states for Bose gases: singular scalings and nonintegrable potentials
 Chapter 10. Bogoliubov Transformations Beyond ShaleStinespring: Generic v* v for bosons
 Chapter 11. Thermodynamic Game and The Kac Limit in Quantum Lattices
 Chapter 12. Topological Polarization in disordered systems
 Chapter 13. Open Quantum Systems
 Chapter 14. On the Asymptotics Dynamics of Open Quantum Systems
 Chapter 15. Boson quadratic GKLS generators
 Chapter 16. Semiclassical Analysis
 Chapter 17. Some Remarks on Semiclassical Analysis on TwoSteps Nilmanifolds
 Chapter 18. Waves in a Random Medium: Endpoint Strichartz Estimates and Number Estimates
 Chapter 19. QuasiClassical Spin Boson Models
 Chapter 20. On the Semiclassical Regularity of Thermal Equilibria
 Chapter 21. Invariant measures as probabilistic tools in the analysis of nonlinear ODEs & PDEs
 Chapter 22. Quantum Field Theory
 Chapter 23. An Evolution Equation Approach to Linear Quantum Field Theory
 Chapter 24. Renormalization of spinboson interactions mediated by singular form factors:The CasimirPolder effect for an approximate PauliFierz model: the atom plus wall case
 Chapter 25. Dynamical Systems Involving PseudoFermionic Operators and Generalized Quaternion Groups
 Chapter 26. Schroedinger and Dirac Operators
 Chapter 27. Spectral Asymptotics for Twodimensional Dirac Operators in Thin Waveguides
 Chapter 28. Quadratic forms for AharonovBohm Hamiltonians
 Chapter 29. On the magnetic Laplacian with a piecewise constant magnetic field in R3+
 Chapter 30. Quantum Systems at The Brink.  Chapter 31. Lowest Eigenvalue Asymptotics in Strong Magnetic Fields with Interior Singularities
 Chapter 32. Some Remarks on the Regularized Hamiltonian for Three Bosons with Contact Interactions.
14. Quantum mathematics II [2023]
 Singapore : Springer, 2023.
 Description
 Book — 1 online resource (viii, 374 pages) : illustrations.
 Summary

 Chapter 1. Quantum Field Theory
 Chapter 2. Open Quantum Systems
 Chapter 3. ManyBody Quantum Mechanics.
 First edition  Oxford ; New York, NY : Oxford University Press, 2022
 Description
 Book — xiv, 1296 pages : illustrations ; 25 cm
 Online
16. A first course in the sporadic SICs [2021]
 Stacey, Blake C., author.
 Cham, Switzerland : Springer, [2021]
 Description
 Book — 1 online resource : illustrations (black and white) Digital: text file.PDF.
 Summary

 Equiangular Lines. Sporadic SICs and the Exceptional Lie Algebras. The Hoggartype SICs.SICs as Equicoherent Quantum States. SICs and Bell Inequalities.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
17. A mathematical journey to quantum mechanics [2021]
 Capozziello, Salvatore.
 Cham, Switzerland : Springer, 2021.
 Description
 Book — 1 online resource
 Summary

 1 Newtonian Mechanics, Lagrangians and Hamiltonians 151.1 Some Words about the Priciples of Newtonian Mechanics . . . . . . . . . . . . 151.2 The Mechanical Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.3 Lagrangians and EulerLagrange Equations . . . . . . . . . . . . . . . . . . . . 211.4 The Mechanical Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.5 Hamiltonians and General Hamilton's Equations . . . . . . . . . . . . . . . . . 271.6 Poisson's Brackets in Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . 29 2 Can Light Be Described by Classical Mechanics? 332.1 MichelsonMorley Experiment and the Principles of Special Relativity . . . . . 332.2 Moving among Inertial Frames: Lorentz Transformations . . . . . . . . . . . . 382.3 Addition of Velocities: the Relativistic Formula . . . . . . . . . . . . . . . . . . 412.4 Einstein's Rest Energy Formula: E=mc2 . . . . . . . . . . . . . . . . . . . . . 422.5 Relativistic Energy Formula: E2 = p2 c2 + m2 c4 . . . . . . . . . . . . . . . . . 442.6 Describing Electromagnetic Waves: Maxwell's Equations . . . . . . . . . . . . . 442.7 Invariance under Lorentz Transformations and nonInvariance under Galilei'sTransformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Why Quantum Mechanics? 513.1 What Do We Think about the Nature of Matter . . . . . . . . . . . . . . . . . 513.2 Monochromatic Plane Waves  the One Dimensional Case . . . . . . . . . . . . 553.3 Young's Double Split Experiment: Light Seen as a Wave . . . . . . . . . . . . . 603.4 The PlankEinstein formula: E=hf . . . . . . . . . . . . . . . . . . . . . . . . . 643.5 Light Seen as a Corpuscle: Einstein's Photoelectric Eect . . . . . . . . . . . . 693.6 Atomic Spectra and Bohr's Model of Hydrogen Atom . . . . . . . . . . . . . . . 703.7 Louis de Broglie Hypothesis: Material Objects Exhibit Wavelike Behavior . . . 733.8 Strengthening Einstein's Idea: The Compton Eect . . . . . . . . . . . . . . . . 75 4 Schroedinger's Equations and Consequences 794.1 The Schroedinger's Equations  the one Dimensional Case . . . . . . . . . . . . . 794.2 Solving Schroedinger Equation for the Free Particle . . . . . . . . . . . . . . . . 814.3 Solving Schroedinger Equation for a Particle in a Box . . . . . . . . . . . . . . . 824.4 Solving Schroedinger Equation in the Case of Harmonic Oscillator. The Quantified Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 The Mathematics behind the Harmonic Oscillator 915.1 Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915.2 Real and Complex Vector Structures . . . . . . . . . . . . . . . . . . . . . . . . 975.2.1 Finite Dimensional Real and Complex Vector Spaces, Inner Product, Norm, Distance, Completeness . . . . . . . . . . . . . . . . . . . . . . . 975.2.2 PreHilbert and Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . 1005.2.3 Examples of Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 1035.2.4 Orthogonal and Orthonormal Systems in Hilbert Spaces . . . . . . . . . 1095.2.5 Linear Operators, Eigenvalues, Eigenvectors and Schroedinger Equation . 1105.3 Again about de Broglie Hypothesis: WaveParticle Duality and Wave Packets . 1155.4 More about Electron in an Atom . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6 Understanding Heisenberg's Uncertainty Principle and the Mathematicsbehind 1216.1 Wave Packets and Schroedinger Equation . . . . . . . . . . . . . . . . . . . . . . 1216.2 Wave Functions with Determined Momentum and Energy. Schroedinger's Equationfor related Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236.3 Gauss' Wave Packet and Heisenberg Uncertainty Principle . . . . . . . . . . . . 1256.4 The Mathematics behind the Wave Packets: Fourier Series and Fourier Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7 Evolving to Quantum Mechanics Principles 1437.1 Operators in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 1437.2 The Conservation Law . . . . . . . . . . . . . . 1497.3 Similarities with Hamiltonian Formalism of Classical Mechanics . . . . . . . . 1537.4 (t
 x) from a Wave Function to a Quantum State of a System. The Postulatesof Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8 Consequences of Quantum Mechanics Postulates 1678.1 Ehrenfest's Theorem and Consequences . . . . . . . . . . . . . . . . . . . . . . 1678.2 A Consequence of QM Postulates: Heisenberg's General Uncertainty Principle . 1708.3 Dirac Notation and what a QM Experiment Is . . . . . . . . . . . . . . . . . . . 1758.4 Polarization of Photons in Dirac Notation . . . . . . . . . . . . . . . . . . . . . 1788.5 Electron Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1868.6 Revisiting the Harmonic Oscillator: the Ladder Operators . . . . . . . . . . . . 1978.7 Angular Momentum Operators in Quantum Mechanics . . . . . . . . . . . . . . 2058.8 Gradient and Laplace Operator in Spherical Coordinates. Revisiting the SchroedingerEquation, now in Spherical Coordinates. Legendre's Polynomials and the SphericalHarmonics. The Hydrogen Atom and Quantum Numbers . . . . . . . . . . 2118.9 Pauli Matrices and Dirac Equation. Relativistic Quantum Mechanics . . . . . . 228.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Putz, Mihai V.
 Toronto : Apple Academic Press, c2013.
 Description
 Book — xii, 260 p. : ill. ; 25 cm.
 Summary

 Primer Density Functional Theory Basics of Density Functional Theory (DFT) Physical Realizations of DFT Popular Density Functionals of Energy Chemical Realization of DFT Primer Density Functional BoseEinstein Condensation Theory Basics of the BoseEinstein Condensation (BEC) ?Density Functional Theory of BoseEinstein Condensation Modern Quantum Theories of Chemical Bonding Bondonic Picture of Chemical Bond Chemical Action Picture of Chemical Bond FermionicBosonic Picture of Chemical Bond.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QC174.12 .P87 2013  Unknown 
 Cham : Springer, [2021]
 Description
 Book — 1 online resource : illustrations (chiefly color)
 Summary

 Preface.
 Section 1: Research in Physics/Science Education. Teaching/Learning Quantum Physics. Roland Eoetvoes and the equivalence principle. Experimentation, impact of PER and assessment.
 Section 2: Innovative Teaching Practices, Methods. Active Learning. Innovative projects.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Schirrmacher, Arne, author.
 Cham : Springer, [2019]
 Description
 Book — 1 online resource : illustrations
 Summary

 Situating Göttingen in the History of Quantum Physics: A Contextual Approach
 From Generational Change to Scientific Opportunity
 "Hilbert and Physics"
 Vision and Resources
 The Born "Schools" in Berlin, Frankfurt and Göttingen
 Göttingens Multiple Avenues Towards Quantum Mechanics
 Appendix: Selected Documents.
Articles+
Journal articles, ebooks, & other eresources
Guides
Course and topicbased guides to collections, tools, and services.