1  20
Next
Number of results to display per page
 Lüttgens, Günter, author.
 Weinheim, Germany : WileyVCH, 2017.
 Description
 Book — 1 online resource : illustrations
 Summary

 About the Authors xiii Opening Remark xv Preliminary Remark xvii Preface xix
 1 Basics of Fire and Explosion: Risk Assessment 1 1.1 Basic Considerations on Fire and Explosion (T1) 1 1.2 Explosive Atmosphere 3 1.3 Hybrid Mixtures ( P7) 6 1.4 Allocation of ExplosionEndangered Areas and Permissible Equipment ( P6) 7 1.5 Permissible Equipment (Equipment Protection Level) 7 1.6 Ignition Sources 9 1.7 Minimum Ignition Energy (MIE) 11 1.8 Imaginary Experiment to Assess the Hazardous Potential of Flammable Liquids 15 PowerPoint Presentations 18 References 18
 2 Principles of Static Electricity 19 2.1 Basics 19 2.2 Electrostatic Charging of Solids ( T2) 21 2.3 Triboelectric Series 24 2.4 Surface Resistivity 24 2.5 Electrostatic Charging of Liquids ( T2, T8) 28 2.6 Charging by Gases 31 2.7 Electric Field 33 2.8 Electric Induction ( T3) 36 2.9 Capacitance and Capacitor 38 PowerPoint Presentations 38 References 39
 3 Metrology 41 3.1 Basics ( T7) 41 3.2 Appropriate Metrology for Electrostatic Safety Measures 44 3.3 Comparison: Electrostatics/Electrical Engineering 44 3.4 Selecting the Suitable Measurement Methods 45 3.5 Assignment and Summary 49 3.6 Conductivity of Liquids 51 3.7 Bulk Materials 52 3.8 Concerning the Use of Insulating Material in Endangered Areas 52 3.9 Measurement of Electrostatic Charges 52 3.10 Other Measurement Applications 68 3.11 Capacitance 77 3.12 Themes around Air Humidity 81 PowerPoint Presentations 87 Picture Credits 87 References 88
 4 Gas Discharges 89 4.1 Mechanisms of Gas Discharges ( T5) 89 4.2 Electrostatic Gas Discharges 90 4.3 Types of Gas Discharges 94 4.4 Consequences of Gas Discharges 102 4.5 Listing of Traces Caused by Gas Discharges ( P11 T8) 102 4.6 How Can Dangerous Gas Discharges Be Avoided? 103 PowerPoint Presentations 111 Picture Credits 111 Video Credits 111 References 111
 5 Preventing Electrostatic Disturbances 113 5.1 Electrostatics:When Sparks Fly 113 5.2 Dielectric Strength 117 5.3 Discharging Charged Surfaces 118 5.4 Potential Hazards Posed by Discharge Electrodes 134 Picture Credits 136 Video Credits 137 References 137 Further Reading 137
 6 Description of Demonstration Experiments 139 6.1 Preliminary Remarks 140 6.2 Static Voltmeter 141 6.3 Field Meter 142 6.4 Van de Graaff Generator 142 6.5 Explosion Tube 142 6.6 Electrostatic Force Effects 144 6.7 Charges Caused by Separating Process 149 6.8 Charging of Particles 150 6.9 Electric Induction 153 6.10 Dissipating Properties 157 6.11 Experiments with the Explosion Tube 158 6.12 Gas Discharges 160 6.13 Fire and Explosion Dangers 168 Reference 175
 7 Case Studies 177 7.1 Strategy of Investigation 177 7.2 Ignitions Due to Brush Discharges 180 7.3 Case Studies Related to Propagating Brush Discharges 192 7.4 Case Histories Related to Spark Discharges 204 7.5 Ignition Caused by Cone Discharges 212 7.6 Doubts with Electrostatic Ignitions 213 7.7 Act with Relevant Experience 219 PowerPoint Presentations 220 Video 221 References 221
 8 Targeted Use of Charges 223 8.1 Applications 223 8.2 Examples of the Creative Implementation of Applications 226 8.3 Summary 251 Picture Credits 251 Video Credits 252 References 252 M Mathematics Toolbox 253 M1 Energy W of a Capacitance 255 M1.1 Minimum Ignition Energy WMIE 255 M1.2 Power P 255 M1.3 Electrical Efficiency
 256 M2 Field E Field Strength E
 256 M2.1 Homogeneous Field between Plane Plates 256 M2.2 Field of Point Charge 256 M2.3 Permittivity
 257 M2.4 Field of Rod (Wire) Charge 257 M3 Flux Density D (Earlier: Dielectric Displacement)
 257 M4 Frequency f 258 M4.1 Wavelength
 258 M4.2 Circular Frequency
 258 M5 Inductance L 258 M5.1 Inductance Ls of an Air Coil 259 M6 Capacitance C 259 M6.1 Rod (Wire) across a Conductive Area 259 M6.2 Coaxial Cable/Cylinder Capacitance 260 M6.3 Conductive Sphere in Space 260 M6.4 Sphere Across a Conductive Area 260 M6.5 Shunt of Single Capacitors 261 M6.6 Plate Capacitor 261 M6.7 Series of Single Capacitors 261 M7 Force F, F
 262 M7.1 Force between 2 Point Charges (Coulomb's law) 262 M8 Charge Q 263 M8.1 Moved Charge Qm 263 M8.2 Charge of Electron Beam Qe 263 M8.3 Surface Charge Density
 263 M8.4 Mass Charge Density Q 264 M8.5 Volume Charge Density
 264 M9 Potential
 264 M10 Voltage U 265 M11 Resistance R (Universal) 267 Annex 275
 1 Videos for download from www.wileyvch.de 275
 2 PowerPoint Presentations 275 2.1 Theory of Electrostatics (Visualized by Experiments) 275 2.2 Practical Examples with "Freddy" (Electrostatic Hazards in Plant areas) 276 Index 277.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 New York : Academic Press, 1975.
 Description
 Book — 1 online resource (xi, 392 pages) : illustrations
 Summary

 Front Cover; Applied Solid State Science: Advances in Materials and Device Research; Copyright Page; Table of Contents; LIST OP CONTRIBUTORS; PREFACE; ARTICLES PLANNED FOR FUTURE VOLUMES;
 Chapter 1. High Efficiency Impatt Diodes; I. Introduction; II. Qualitative Theory of HighEfficiency Impatt Diodes; III. Quantitative Discussions of Modified Read Impatt Designs; IV. Experimental Performance; V. Noise Properties and Parasitic Oscillations; VI. Fabrication; VII. Reliability; VIII. Performance Comparisons and Applications; ACKNOWLEDGMENTS; REFERENCES
 Chapter 2. Physics of Xerographic PhotoreceptorsI. General Introduction; II. Photoconductor Parameters; III. Experimental Techniques; IV. Theory of Photoinduced Discharge; V. Discussion of Experimental Results; VI. Conclusions; ACKNOWLEDGMENTS; REFERENCES;
 Chapter 3. Ion Implantation in SiliconPhysics, Processing, and Microelectronic Devices; I. Introduction; II. Ion ImplantationRange and Straggle; III. Damage; IV. Processing Considerations; V. IonImplanted Devicespn Junctions; VI. IonImplanted DevicesField Effect Transistors; VII. Conclusion; ACKNOWLEDGMENTS; REFERENCES
 Chapter 4. Cadmium Sulfide Solar CellsI. Introduction; II. CdSCuxS Photovoltaic Cell Structures; III. Thin Film Solar Cell Technology; IV. Properties of Cadmium Sulfide and Cuprous Sulfide Layers; V. Properties of CdSCuxS Photovoltaic Cells; VI. Mechanisms of the CdSCuxS Photovoltaic Cell; VII. Other Photovoltaic Effects in CdS; VIII. Conclusions; REFERENCES; AUTHOR INDEX; SUBJECT INDEX; CONTENTS OF PREVIOUS VOLUMES
 [Oxford] : Pergamon Press, 1968.
 Description
 Book — 1 online resource.
 Summary

 Cover; Festkörper Problem VIII; Copyright Page; Vorwort; Table of Contents;
 Chapter 1. Strahlenschäden in Halbleitern und Halbleiterbauelementen; Summary;
 1. Einführung;
 2. Zum Erzeugungsmechanismus von Gitterfehlstellen;
 3. Die Mikrostruktur der Strahlungsdefekte;
 4. Elektrische und optische Untersuchungen an bestrahlten Halbleitern;
 5. Strahlenschädigung von Halbleiterbauelementen;
 6. Tempereffekte an bestrahIten Halbleitern; Literatur;
 Chapter 2. Kristallzucht aus der Gasphase; Summary;
 1. Einleitung;
 2. Allgemeines zur Kristallzucht;
 3. Bildung fester Phasen aus Gasen
 4. Kristallzucht aus gasförmigen Nährphasen5. Schlußbemerkungen; Literatur;
 Chapter 3. Die Physik des photographischen Prozesses; Summary: Physical problems of the photographic process; I. Einleitung; II. Die Übertragungskette; III. Die Lichtstreuung in photographischen Schichten; IV. Zusammenhang zwischen Quantenempfindlichkeit der Halogensilberkristalle und Schwärzung der photographischen Schicht; V. Kristallstruktur photographischer Emulsionen; VI. Bindungsverhältnisse im Halogensilberkristall; VII. Elektrische Leitfähigkeit des Halogensilbers
 VIII. Die Beteiligung von beweglichen (Photo) Elektronen und (Zwischengitter)Silberionen am photographischen ElementarprozeßIX. Lichtabsorption, Bändermodell und Elektronenfallen; X. Randschichtprobleme am Kontakt AgBr/wässrige Lösung; XI. Die Chemische Reifung; XII. Spektrale Sensibilisierung; XIII. Solarisation; XIV. Reziprozitätsverhalten; XV. Doppelbelichtungseffekte; XVI. Mechanismus der photographischen Entwicklung; Literatur;
 Chapter 4. Zur Physik der Elektrophotographie;
 1. Einleitung;
 2. Aufladung;
 3. Entladung durch Belichtung;
 4. Entwicklungscharakteristik
 5. Farbelektrophotographie6. Ausblick; Literatur;
 Chapter 5. Der photokapazitive Effekt;
 1. Einleitung;
 2. Ursachen fur die photokapazitiven Effekte;
 3. Kriterien fur die Unterscheidung der Effekte;
 4. Historische Entwicklung der Arbeiten über photokapazitive Effekte;
 5. Neuere Untersuchungen an Il/VIPhotohalbleitern;
 6. Untersuchungen an anderen Substanzen;
 7. Photokapazitive Effekte in der Elektronik;
 8. Zusammenfassung; Literatur;
 Chapter 6. Neue Ergebnisse über Elektronentraps und "TunnelNachleuchten"" in ZnS; Allgemeine Vorbemerkungen über ZnSPhosphore
 Bisherige Ergebnisse über Traps in Phosphoren der ZnSGruppeNeue Ergebnisse bei tiefer Temperatur (> 4,2 ° K); Zeitliche Abklingung des Nachleuchtens bei festgehaltener Temperatur; Abhängigkeit der Einfangwahrscheinlichkeit durch Traps von der Temperatur; Beziehung des "TunnelNachleuchtens"" zum "DonorAcceptor""Modell der Lumineszenz; Literatur;
 Chapter 7. Ergebnisse und Mängel der heutigen Theorie der Supraleiter
 2. Art;
 1. Einleitung;
 2. Grundlagen der Theorie der Supraleiter
 2. Art;
 3. Vorhandene Ergebnisse;
 4. Möglichkeiten für weitere Ergebnisse; Literatur
 Toptygin, I. N. (Igorʹ Nikolaevich), author.
 Weinheim [Germany] : WileyVCH, [2015]
 Description
 Book — 1 online resource : illustrations.
 Summary

 Preface IX
 Basis Notations XIII
 Fundamental Constants and Frequently Used Numbers XVII
 1 Equations of Steady Electric and Magnetic Fields in Media 1
 1.1 Averaging Microscopic Maxwell Equations. Vectors of Electromagnetic Fields in Media 2
 1.2 Equations of Electrostatics and Magnetostatics in Medium 4
 1.3 Polarization of Media in a Constant Field 7
 Problems 12
 1.4 Answers and Solutions 17
 2 Electrostatics of Conductors and Dielectrics 37
 2.1 Basic Concepts and Methods of Electrostatics 37
 Problems 41
 2.2 Special Methods of Electrostatics 45
 Problems 54
 2.3 Energy, Forces, and Thermodynamic Relations for Conductors and Dielectrics 59
 Problems 71
 2.4 Answers and Solutions 76
 3 Stationary Currents and Magnetic Fields in Media 115
 3.1 Stationary Current 115
 Problems 123
 3.2 Magnetic Field in Magnetic Media 129
 Problems 131
 3.3 Energy, Forces, and Thermodynamic Relations for Magnetics 133
 Problems 145
 3.4 Electric and Magnetic Properties of Superconductors 149
 Problems 153
 Problems 155
 Problems 160
 3.5 Answers and Solutions 164
 4 QuasiStationary Electromagnetic Field 193
 4.1 QuasiStationary Phenomena in Linear Conductors 193
 Problems 197
 4.2 Eddy Currents and SkinEffect 201
 Problems 205
 4.3 Magnetic Hydrodynamics 207
 Problems 222
 4.4 Answers and Solutions 228
 5 Maxwell Equations for Alternating and Inhomogeneous Fields 275
 5.1 Different Forms of Maxwell Equations in Media. Coupling Equations and Electromagnetic Response Functions 275
 Problems 287
 5.2 Causality Principle and Dispersion Relations 291
 Problems 296
 5.3 Energy Relations for Alternating Electromagnetic Field in Media. Longitudinal Electric Oscillations 297
 Problems 302
 5.4 Magnetic Oscillations and Magnetic Resonance 304
 Problems 306
 5.5 Electrodynamics of Moving Media 308
 Problems 311
 Problems 321
 5.6 Energy Momentum Tensor in Dispersive Media 322
 Problems 327
 5.7 Answers and Solutions 327
 6 Propagation of Electromagnetic Waves 363
 6.1 Transverse Waves in Isotropic Media. Reflection and Refraction of Waves 363
 Problems 377
 6.2 Plane Waves in Anisotropic and Gyrotropic Media 382
 Problems 387
 6.3 Scattering of Electromagnetic Waves by Macroscopic Bodies. Diffraction 390
 Problem 393
 Problems 401
 6.4 Diffraction of XRays 405
 Problems 408
 6.5 Answers and Solutions 410
 7 Coherence and Nonlinear Waves 463
 7.1 Coherence and Interference 463
 Problems 472
 7.2 Random Waves and Waves in Randomly Inhomogeneous Media 477
 Problems 489
 7.3 Waves in Nonlinear and Active Media 490
 Problems 503
 7.4 Answers and Solutions 504
 8 Electromagnetic Oscillations in Finite Bodies 521
 8.1 Electromagnetic Waves in Waveguides 521
 Problems 524
 8.2 Electromagnetic Oscillations in Resonators 530
 Problems 531
 8.3 Answers and Solutions 536
 9 Interaction of Charged Particles with Equilibrium and Nonequilibrium Media 565
 9.1 Ionization and Radiation Energy Losses of Fast Particles in Media 565
 Problems 590
 9.2 Macroscopic Mechanisms of Radiation of Fast Particles in Media 591
 Problems 605
 9.3 Channeling and Radiation Emitted by Fast Particles in Crystals 609
 Problems 624
 9.4 Acceleration of Particles in Turbulent Plasma Media 624
 Problems 647
 9.5 Answers and Solutions 649
 Appendix: Turbulence and Its Description with the Aid of Correlation Tensors 681
 Bibliography 689
 Index 697.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Cambridge : Royal Society of Chemistry, 2018.
 Description
 Book — 1 online resource (316 pages).
 Summary

 NMR Consequences of the NucleusElectron Spin Interactions Intrinsic and Extrinsic Paramagnetic Probes Structural and Dynamic Characterization of Protein Domains Using Paramagnetic Data Treating Biomacromolecular Conformational Variability ProteinProtein Interactions SolidState NMR of Paramagnetic Proteins Relaxometry and Contrast Agents Dynamic Nuclear Polarization Paramagnetic NMR in Drug Discovery Small Paramagnetic Cosolute Molecules Subject Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Washington, DC : American Geophysical Union, 2017.
 Description
 Book — 1 online resource.
 Summary

 Contributors vii Preface xi Acknowledgments xiii Acronyms xv Part I: External Contributions to DawnDusk Asymmetries
 1 The Magnetosphere of the Earth under Sub Alfvenic Solar Wind Conditions as Observed on 24 and 25 May 2002Emmanuel Chane, Joachim Saur, Joachim Raeder, Fritz M Neubauer, Kristofor M Maynard, and Stefaan Poedts
 3
 2 Dayside Magnetosphere Response to Solar Wind Dynamic Pressure Changes: Propagation Geometry and SpeedBrian J Jackel and Konstantin Kabin
 15
 3 Magnetopause Plasma Parameters and Asymmetries in Solar Wind Magnetosphere CouplingBrian M Walsh
 29
 4 Large Scale Simulations of Solar Wind Ion Entry and Dayside Precipitation: Dawn Dusk AsymmetryJean Berchem, Robert L Richard, C Philippe Escoubet, Simon Wing, and Frederic Pitout
 41
 5 Dawn Dusk Asymmetries of the Earth s Dayside Magnetosheath in the Magnetosheath Interplanetary Medium Reference FrameA P Dimmock, K Nykyri, A Osmane, H Karimabadi, and T I Pulkkinen
 49
 6 DawnDusk Asymmetries at the Terrestrial Magnetopause: ObservationsStein Haaland, Hiroshi Hasegawa, Johan De Keyser, and Lukas Maes 73
 7 Magnetopause Thickness at the Dawn and Dusk FlanksJohan De Keyser, Lukas Maes, Romain Maggiolo, and Stein Haaland
 85
 8 On IMF ByInduced DawnDusk Asymmetries in Earthward Convective Fast FlowsTimo Pitkanen, Maria Hamrin, Tomas Karlsson, Hans Nilsson, and Anita Kullen
 95
 9 TimeDependence of DawnDusk Asymmetries in the Terrestrial Ionospheric Convection PatternAdrian Grocott
 107
 10 The Role of the Upper Atmosphere for DawnDusk Differences in the Coupled MagnetosphereIonosphereThermosphere SystemMatthias Forster, Eelco Doornbos, and Stein Haaland 125
 11 Surveys of 557 7/630
 0 nm Dayside Auroral Emissions inNyAlesund, Svalbard, and South Pole Station ZeJun Hu, HuiGen Yang, Yusuke Ebihara, HongQiao Hu, and BeiChen Zhang 143 Part II: Internal Contributions to DawnDusk Asymmetries
 12 Aspects of the Morning/Afternoon Asymmetry of Geomagnetic Fluctuations at Middle and Low FrequenciesUmberto Villante 157
 13 Premidnight Preponderance of Dispersionless Ion and Electron InjectionsChristine Gabrielse, Andrei Runov, Vassilis Angelopoulos, Emma Spanswick, and Drew L Turner 171
 14 DawnDusk Asymmetries in UltraLowFrequency WavesI Jonathan Rae
 187
 15 Spatial Structure and Asymmetries of Magnetospheric Currents Inferred from HighResolution Empirical Geomagnetic Field ModelsMikhail I Sitnov, Grant K Stephens, Nikolai A Tsyganenko, Aleksandr Y Ukhorskiy, Simon Wing, Haje Korth, and Brian J Anderson
 199
 16 A Review of DawnDusk Asymmetries Observed Using the TWINS Mission of OpportunityAmy M Keesee
 213
 17 DawnDusk Asymmetries of SolarWind Magnetosphere Coupling in the Earth s MidtailChihPing Wang, Xiaoyan Xing, T K M Nakamura, Larry R Lyons, and Vassilis Angelopoulos 223
 18 DawnDusk Asymmetries in Magnetotail TransientsAndrei Runov, S Kiehas, and S S Li 233
 19 DawnDusk Asymmetries in the NearEarth Plasma Sheet: Ion ObservationsElena A Kronberg, Kun Li, Elena E Grigorenko, Romain Maggiolo, Stein Haaland, Patrick W Daly, and Hao Luo 243
 20 DawnDusk Asymmetries in the Auroral Particle Precipitation and Their Modulations by SubstormsSimon Wing, Jay R Johnson, and Enrico Camporeale
 255
 21 DawnDusk Asymmetries of Ionospheric OutflowKun Li, Elena A Kronberg, Mats Andre, Patrick W Daly, Yong Wei, and Stein Haaland
 273
 22 Conjugate Aurora Location During a Strong IMF By StormWilliam Longley, Patricia Reiff, Antoun G Daou, and Marc Hairston 285
 23 DawnDusk Asymmetries in Auroral Morphology and ProcessesTomas Karlsson, Anita Kullen, and Goran Marklund
 295 Part III: Dawn Dusk Asymmetries in Other Planets
 24 DawnDusk Asymmetries in Jupiter s MagnetosphereBenjamin Palmaerts, Marissa F Vogt, Norbert Krupp, Denis Grodent, and Bertrand Bonfond 309
 25 Local Time Asymmetries in Saturn s MagnetosphereJames F Carbary, Donald G Mitchell, Abigail M Rymer, Norbert Krupp, Doug Hamilton, Stamatios M Krimigis, and Sarah V Badman 323
 26 DawnDusk Asymmetries in Mercury s MagnetosphereTorbjorn Sundberg 337 Index 349.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
7. Modern electrodynamics [2013]
 Zangwill, Andrew.
 Cambridge : Cambridge University Press, 2013.
 Description
 Book — xxi, 977 pages : illustrations ; 26 cm
 Summary

 1. Mathematical preliminaries
 2. The Maxwell equations
 3. Electrostatics
 4. Electric multipoles
 5. Conducting matter
 6. Dielectric matter
 7. Laplace's Equation
 8. Poisson's Equation
 9. Steady current
 10. Magnetostatics
 11. Magnetic multipoles
 12. Magnetic force and energy
 13. Magnetic matter
 14. Dynamic and quasistatic fields
 15. General electromagnetic fields
 16. Waves in vacuum
 17. Waves in simple matter
 18. Waves in dispersive matter
 19. Guided and confined waves
 20. Retardation and radiation
 21. Scattering and diffraction
 22. Special relativity
 23. Fields from moving charges
 24. Lagrangian and Hamiltonian methods Appendixes Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QC631 .Z36 2013  Unknown 
 Safonov, Vladimir, 1955
 Weinheim, Germany : WileyVCH Verlag GmbH & Co. KGaA, [2013]
 Description
 Book — 1 online resource (xiii, 190 p.) : ill.
 Summary

 Preface XI
 1 Harmonic Oscillators and the Universal Language of Science 1 1.1 Harmonic Oscillator 1 1.1.1 Complex Canonical Variables 3 1.2 Classical Rotation 4 1.2.1 Classical Spin and Magnetic Resonance 5 1.3 Collective Variables and Harmonic Oscillators in kspace 8 1.3.1 Chain of Masses and Springs 8 1.3.2 Chain of Magnetic Particles 9 1.4 Discussion 11
 2 Magnons in Ferromagnets and Antiferromagnets 13 2.1 Phenomenological Description 14 2.1.1 Magnons in a Ferromagnet 14 2.1.1.1 HolsteinPrimakoff Transformation 16 2.1.1.2 The Spectrum of Magnons 19 2.2 Microscopic Modeling 21 2.2.1 Magnons in a TwoSublattice Antiferromagnet 21 2.2.1.1 Hamiltonian 21 2.2.1.2 Spectrum of Magnons 25 2.2.2 MagnonMagnon Interactions 26 2.3 Nuclear Magnons 28 2.4 Magnetoelastic Waves, Quasi Phonons 30 2.5 Discussion 33
 3 Relaxation of Magnons 35 3.1 Master Equation 35 3.2 Relaxation of Bose Quasi Particles 37 3.2.1 Relaxation Process of Harmonic Oscillators 37 3.2.2 MagnonElectron Scattering 39 3.3 Relaxation via an Intermediate Damped Dynamic System 43 3.4 Ferromagnetic Resonance Linewidth 46 3.5 Magnons and Macroscopic Dynamic Equation 49 3.5.1 Linearized LandauLifshitz Equation 50 3.6 Relaxation of Coupled Oscillations 51 3.6.1 Example
 1: Nuclear Magnons 53 3.6.2 Example
 2: Magnetoelastic Oscillations 54 3.7 Discussion 57
 4 Microwave Pumping of Magnons 59 4.1 Linear Theory 60 4.1.1 Ferromagnetic Resonance 61 4.1.2 Threshold of Parametric Resonance 61 4.2 Parametric Resonance in a Resonator Cavity 63 4.3 Nonlinear SR Theory 67 4.4 Experimental Techniques 71 4.5 Experimental Results 73 4.5.1 Equivalent Circuit 74 4.5.2 SR Theory and Experiment 76 4.5.2.1 Modulation Response 79 4.6 Discussion 83
 5 Thermodynamic Description of Strongly Excited Magnon System 85 5.1 Principal Equations 86 5.1.1 Hamiltonian 86 5.1.2 Unitary Transformation 87 5.1.3 Bogoliubov Transformation 88 5.1.4 Effective Temperature Teff D 0 90 5.1.5 Effective Temperature Teff ff 0 91 5.1.5.1 Maximum of Entropy 93 5.2 Exact Solutions 94 5.2.1 The Effective Temperature 96 5.2.1.1 Instantaneous Switching 96 5.2.1.2 Adiabatic Switching 97 5.2.1.3 Thermodynamic Stability 97 5.2.2 Collective Oscillations 98 5.3 Magnon Pumping in a Resonator 100 5.4 Discussion 101
 6 BoseEinstein Condensation of Quasi Equilibrium Magnons 103 6.1 Bose Gas of Magnons 103 6.1.1 Ideal Bose Gas 103 6.1.2 Mathematical Analogy with BEC 105 6.2 Quasi EquilibriumMagnons 105 6.2.1 Ideal Gas of Quasi Equilibrium Magnons 107 6.2.2 Example: Isotropic Spectrum 107 6.2.3 Kinetic Equations 109 6.2.3.1 The Case of Teff D T 111 6.2.4 Magnon System with Bose Condensate 113 6.2.5 Magnetodipole Emission of Condensate 114 6.3 Frohlich Coherence 115 6.4 Discussion 118
 7 Magnons in an Ultrathin Film 119 7.1 Model 120 7.1.1 Magnetic Energy 121 7.2 Magnons 122 7.2.1 Magnon Interactions 124 7.2.2 Effective FourMagnon Interactions 125 7.3 Example 126 7.4 Discussion 129
 8 Collective Magnetic Dynamics in Nanoparticles 131 8.1 LongLived States in a Cluster of Coupled Nuclear Spins 134 8.2 Electronic Spins 136 8.3 SpinEcho Logic Operations 138 Appendix A Harmonic Oscillator in Quantum Mechanics 143 A.1 Operators of Creation and Annihilation 143 A.1.1 Uncertainty Principle 144 A.1.2 Coherent States and Uncertainties 145 Appendix B Dipolar Sums 147 Appendix C Unitary Transformations in Weakly Nonideal Bose Gases 151 C.1 OneComponent Bose Gas 152 C.1.1 ThreeBoson Annihilation 154 C.1.2 The Confluence and Decay Processes 155 C.2 TwoComponent Bose Gas 156 C.3 Concluding Remarks 158 Appendix D Magnetization Dynamic Equation 159 Appendix E A Parametric Pair SingleMode Realization 163 E.1 A SingleMode Representation 164 E.2 Example 166 Appendix F Small Signal Amplification and Preventive Alarm Near the Onset of a Dynamic Instability 167 Appendix G Noisy Pumping of Coherent Parametric Pairs 173 G.1 Experimental Procedure 174 G.2 Results and Discussion 175 G.2.1 Discussion 177 References 179 Index 189.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
This muchneeded book addresses the concepts, models, experiments and applications of magnons and spin wave in magnetic devices. It fills the gap in the current literature by providing the theoretical and technological framework needed to develop innovative magnetic devices, such as recording devices and sensors. Starting with a historical review of developments in the magnon concept, and including original experimental results, the author presents methods of magnon excitation, and several basic models to describe magnon gas. He includes experiments on BoseEinstein condensation of nonequilibrium magnons, as well as various applications of a magnon approach.
(source: Nielsen Book Data)
 Online

 dx.doi.org Wiley Online Library
 Google Books (Full view)
9. Twisted photons [electronic resource] : applications of light with orbital angular momentum [2011]
 Weinheim : WileyVCH Verlag, c2011.
 Description
 Book — 1 online resource (xliv, 243 p.)
 Summary

  The Orbital Angular Momentum of Light: An Introduction  Vortex Flow of Light: "Spin?? and "Orbital?? Flows in a Circularly Polarized Paraxial Beam  Helically Phased Beams, and Analogies with Polarization  Trapping and Rotation of Particles in Light Fields with Embedded Optical Vortices  Optical Torquesin Liquid Crystals  Driving Optical Micromachines with Orbital Angular Momentum  Rotational Optical Micromanipulation with Specific Shapes Built by Photopolymerization  Spiral Phase Contrast Microscopy  Applications of Electromagnetic OAM in Astrophysics and Space Physics Studies  Optical Vortex Cat States and their Utility for Creating Macroscopic Superpositions of Persistent Flows  Experimental Control of the Orbital Angular Momentum of Single and Entangled Photons  Rotating Atoms with Light.
 (source: Nielsen Book Data)
 Preface XI List of Contributors XV Color Plates XIX
 1 The Orbital Angular Momentum of Light: An Introduction 1 Les Allen and Miles Padgett 1.1 Introduction 1 1.2 The Phenomenology of Orbital Angular Momentum 4 References 9
 2 Vortex Flow of Light: "Spin" and "Orbital" Flows in a Circularly Polarized Paraxial Beam 13 Aleksandr Bekshaev and Mikhail Vasnetsov 2.1 Introduction 13 2.2 Spin and Orbital Flows: General Concepts 14 2.3 Transverse Energy Flows in Circularly Polarized Paraxial Beams 15 2.4 Orbital Rotation without Orbital Angular Momentum 21 2.5 Conclusion 22 References 23
 3 Helically Phased Beams, and Analogies with Polarization 25 Miles Padgett 3.1 Introduction 25 3.2 Representation of Helically Phased Beams 26 3.3 Exploiting the Analogous Representations of Spin and Orbital Angular Momentum 27 3.3.1 Rotational Doppler Shifts and Geometrical Phase 27 3.3.2 Mode Sorting using Geometric Phase 29 3.3.3 Entanglement of Spatial Modes 30 3.3.4 Photon Drag and the Mechanical Faraday Effect 32 3.4 Conclusions 33 References 34
 4 Trapping and Rotation of Particles in Light Fields with Embedded Optical Vortices 37 Michael Mazilu and Kishan Dholakia 4.1 Introduction 37 4.2 LaguerreGaussian Light Beams 38 4.3 Origin of Optical Torques and Forces 41 4.3.1 Intuitive Picture of Optical Forces 41 4.3.2 Angular Momentum within Geometric Optics 43 4.3.3 Paraxial Beams 44 4.3.4 Maxwell's Stress Tensor 45 4.3.5 Linear Momentum Transfer 49 4.3.6 Angular Momentum Transfer 50 4.3.7 Polarization Spin Momentum 50 4.4 Optical Vortex Fields for the Rotation of Trapped Particles 51 4.4.1 Studies of Rotation of Trapped Objects using Optical Vortex Fields 51 4.5 Optical Vortex Fields for Advanced Optical Manipulation 57 4.6 Conclusions 61 Acknowledgments 62 References 62
 5 Optical Torques in Liquid Crystals 67 Enrico Santamato and Bruno Piccirillo 5.1 The Optical Reorientation and the Photon Angular Momentum Flux 70 5.1.1 Dynamical Equations of Liquid Crystals 71 5.1.2 Angular Momentum Fluxes 73 5.2 Dynamical Effects Induced in Liquid Crystals by Photon SAM and OAM Transfer 78 5.2.1 Experiments on OAM Transfer in Liquid Crystals 81 5.2.1.1 Orbital Photon Angular Momentum Transfer with Unpolarized Light 83 5.2.1.2 Investigation of the Combined Effect of the Spin and Orbital Photon Angular Momentum Transfer with Linearly Polarized Light 83 5.2.1.3 Investigation of the Combined Effect of the Spin and Orbital Photon Angular Momentum Transfer with Circularly Polarized Light 85 5.3 Conclusions 89 References 90
 6 Driving Optical Micromachines with Orbital Angular Momentum 93 Vincent L.Y. Loke, Theodor Asavei, Simon Parkin, Norman R. Heckenberg, Halina RubinszteinDunlop, and Timo A. Nieminen 6.1 Introduction 93 6.2 Symmetry, Scattering, and Optically Driven Micromachines 93 6.3 Experimental Demonstration 96 6.3.1 A Preliminary Design 96 6.3.2 Fabrication 97 6.3.3 Optical Trapping and Rotation 97 6.3.4 Optical Measurement of Torque 98 6.3.5 Discussion 100 6.4 Computational Optimization of Design 102 6.4.1 Computational Modeling of Microrotors 102 6.4.2 Performance of a FourArmed Rotor 105 6.4.3 Discussion 111 6.5 Conclusion 113 References 113
 7 Rotational Optical Micromanipulation with Specific Shapes Built by Photopolymerization 117 Peter Galaja, Lorand Kelemen, Laszlo Oroszi, and Pal Ormos 7.1 Introduction 117 7.2 Microfabrication by Photopolymerization 118 7.2.1 Fabrication by Scanning a Single Focused Laser Beam 118 7.2.2 Parallel Photopolymerization using Diffractive Optics 120 7.3 LightDriven Rotors, Micromachines 121 7.3.1 Propeller 121 7.3.2 Propeller with Reversed Direction of Rotation 124 7.3.3 Complex Micromachines 126 7.4 Integrated Optical Motor 128 7.5 Angular Trapping of Flat Objects in Optical Tweezers Formed by Linearly Polarized Light 131 7.6 Torsional Manipulation of DNA 134 7.6.1 Direct Measurement of Torque 135 7.7 Conclusion 138 Acknowledgment 139 References 139
 8 Spiral Phase Contrast Microscopy 143 Christian Maurer, Stefan Bernet, and Monika RitschMarte 8.1 Phase Contrast Methods in Light Microscopy 143 8.2 Fourier Filtering in Optical Imaging 144 8.3 Spiral Phase Fourier Filtering 146 8.3.1 Isotropic Edge Enhancement 148 8.3.2 Pseudorelief Images 149 8.3.3 Spiral Fringe Metrology with SPC 150 8.4 Implementation and Performance 151 8.5 Conclusions 152 References 152
 9 Applications of Electromagnetic OAM in Astrophysics and Space Physics Studies 155 Bo Thide, Nicholas M. Elias II, Fabrizio Tamburini, Siavoush M. Mohammadi, and Jose T.Mendon¸ca 9.1 Introduction 155 9.2 Ubiquitous Astronomical POAM 156 9.3 Applications of POAM in Astronomy 158 9.3.1 SubRayleigh Resolution 159 9.3.2 Optical Vortices with Starlight 162 9.4 Applications of POAM in Space Physics 165 9.A. Appendix: Theoretical Foundations 169 9.A.1 Classical Field Picture 169 9.A.2 Photon Picture 170 References 175
 10 Optical Vortex Cat States and their Utility for Creating Macroscopic Superpositions of Persistent Flows 179 Ewan M. Wright 10.1 Introduction 179 10.2 Optical Vortex Cat States 181 10.2.1 Linear Fiber Propagation 181 10.2.2 Quantum Fiber Propagation 182 10.2.3 Optical Vortex Cat State via SelfPhase Modulation 184 10.2.4 PhotonicCrystal Fibers 186 10.2.5 Other Schemes 188 10.3 Macroscopic Superposition of Persistent Flows 189 10.3.1 Optical LightShift Potential 189 10.3.2 Ring Trap and Quantum Stirring 190 10.3.3 Matter Waves on a Ring 191 10.3.4 Macroscopic Superposition of Persistent Flows 192 10.3.5 Discussion 194 10.4 Summary and Conclusions 195 References 195
 11 Experimental Control of the Orbital Angular Momentum of Single and Entangled Photons 199 Gabriel MolinaTerriza and Anton Zeilinger 11.1 Introduction to the Photon OAM 199 11.2 Control of the OAM State of a Single Photon 201 11.3 Control of the OAM State of Multiple Photons 203 11.4 Applications in Quantum Information 207 11.5 Discussion 209 11.6 Conclusion 211 References 211
 12 Rotating Atoms with Light 213 Kristian Helmerson and William D. Phillips 12.1 Introduction 213 12.2 Orbital Angular Momentum of Light 213 12.3 The Mechanical Effects of Light 214 12.4 Rotating BoseEinstein Condensates 215 12.4.1 Experiment to Transfer Orbital Angular Momentum to a BEC ( = 0) 216 12.4.2 Efficiency of the OAM Transfer Process 218 12.5 Measuring the Rotational Motion of the Atoms 220 12.5.1 Interference of the Rotating State with a Nonrotating State 220 12.5.2 Interference of the Rotating State with a Counterrotating State 222 12.5.3 Observation of ForkLike Interference Structure 223 12.5.4 Measurement of the Doppler Shift of the Rotating Atoms 223 12.6 Generating Other Rotational States of Atoms 224 12.6.1 Vortices of Higher Charge 224 12.6.2 Rotational States of Multilevel Atomic Condensates 227 12.6.3 Matter wave Amplification of a Vortex State 228 12.7 Supercurrents 230 12.7.1 Generation of a Supercurrent in a BEC 230 12.8 Conclusion 231 Acknowledgments 232 References 232 Index 237.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online

 dx.doi.org Wiley Online Library
 Google Books (Full view)
 Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2008
 Description
 Book — 1 online resource (0:03:41 ) : digital, PDF file.
 Summary

Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in hightemperature superconductors — materials that carry electrical c
 Online
 Dvumernye kristally. English
 Li͡uksi͡utov, I. F. (Igorʹ Fridrikhovich)
 Boston : Academic Press, c1992.
 Description
 Book — 1 online resource (xiv, 423 p.) : ill.
 Summary

 Introduction. Order and Disorder in TwoDimensional Crystals. Experimental Methods. Atomic Structure of TwoDimensional Crystals (Experimental Data). Free TwoDimensional Crystals. Commensurate Crystals. Incommensurate Crystals at T=0. Thermodynamics of the TwoDimensional Incommensurate Crystal. Solitons as Fermions. Equilibrium Shape of a Crystal and the Roughening Transition. TwoDimensional Crystals and Surface Defects. From Two to Three Dimensions. Effects of Structure on Physical and Chemical Properties of TwoDimensional Systems. References. Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Reis, Mario, 1976
 1st ed.  Amsterdam : Academic Press, 2013.
 Description
 Book — 1 online resource.
 Summary

 1 Introduction
 2 Hamiltonian of an electron under an electromagneticfield
 3 Angular moments
 4 Thermodynamics
 5 Statistical mechanics
 6 Fermions gas
 7 Diamagnetism
 8 Paramagnetism
 9 Ferromagnetism
 9 Complements
 10 Magnetic Interactions
 11. Collective Magnetism
 12 Molecular Magnetism Appendixes
 A Mathematical descriptions of useful functions and exercises.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online

 www.sciencedirect.com ScienceDirect
 Google Books (Full view)
 Fang, TsangTse, 1955 author.
 Amsterdam, Netherlands ; Cambridge, MA, United States : Elsevier, [2018]
 Description
 Book — 1 online resource
 Summary

 Part I Structure of the Crystalline Materials
 1. The electron configuration of atoms
 2. Bonding within crystal structures
 3. The structures of crystalline crystals Part II Defects of Crystalline Materials
 4. Point defects in crystalline materials
 5. Line defects in crystalline solids
 6. Twodimensional (interfaces) and threedimensional (second phases) imperfections in solids.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Quan, Ronald, author.
 Version 1.0.  New York : McGrawHill Education, 2015.
 Description
 Book — 1 online resource. Digital: text file.
 Summary

 Part one. Beginning electronics. Introduction
 Components and schematics
 Construction techniques and simple test equipment
 Light emitters and receivers
 Diodes, rectifiers, and associated circuits
 Transistors, FETs, and vacuum tubes. Part two. Intermediatelevel electronics. Amplifiers and feedback
 Audio signals and circuits
 Oscillators. Part three. Advanced electronics
 Frequency modulation signals and circuits
 Video basics, including video signals
 Video circuits and systems
 High school mathematics with electronics
 Some basic circuit analysis techniques
 A review and analysis of what we have built so far
 Hacking, inventing, and designing
 Troubleshooting and final thoughts.
 Sharma, Pankaj, author.
 Singapore : Springer, [2019]
 Description
 Book — 1 online resource : color illustrations.
 Summary

 1. Overview.
 2. Fundamentals of Piezoceramics.
 3. Basics of FGM and FGPM.
 4. Fundamentals of DQ Method.
 5. Vibration Analysis of FGPM Beam.
 6. Vibration Analysis of FGPM annular plate.
 7. Summary and Conclusions.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
16. Principles of electron optics [electronic resource]. Volume one, Basic geometrical optics [2018]
 Hawkes, P. W.
 2nd ed.  London : Academic Press, c2018.
 Description
 Book — 1 online resource.
 Summary

 1. Introduction PART I  CLASSICAL MECHANICS
 2. Relativistic Kinematics
 3. Different Forms of Trajectory Equations
 4. Variational Principles
 5. Hamiltonian Optics PART II  CALCULATION OF STATIC FIELDS
 6. Basic Concepts and Equations
 7. Series Expansions
 8. BoundaryValue Problems
 9. Integral Equations
 10. The BoundaryElement Method
 11. The FiniteDifference Method (FDM)
 12. The FiniteElement Method (FEM)
 13. FieldInterpolation Techniques PART III  THE PARAXIAL APPROXIMATION
 14. Introduction
 15. Systems with an Axis of Rotational Symmetry
 16. Gaussian Optics of Rotationally Symmetric Systems: Asymptotic Image Formation
 17. Gaussian Optics of Rotationally Symmetric Systems: Real Cardinal Elements
 18. Electron Mirrors
 19. Quadrupole Lenses
 20. Cylindrical Lenses PART IV  ABERRATIONS
 21. Introduction
 22. Perturbation Theory: General Formalism
 23. The Relation Between Permitted Types of Aberration and System Symmetry
 24. The Geometrical Aberrations of Round Lenses
 25. Asymptotic Aberration Coefficients
 26. Chromatic Aberrations
 27. Aberration Matrices and the Aberrations of Lens Combinations
 28. The Aberrations of Mirrors and Cathode Lenses
 29. The Aberrations of Quadrupole Lenses and Octopoles
 30. The Aberrations of Cylindrical Lenses
 31. Parasitic Aberrations PART V  DEFLECTION SYSTEMS
 32. Paraxial Properties of Deflection Systems
 33. The Aberrations of Deflection Systems PART VI  COMPUTERAIDED ELECTRON OPTICS
 34. Numerical Calculation of Trajectories, Paraxial Properties and Aberrations.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Hawkes, P. W., author.
 Second edition.  London : Academic Press, an imprint of Elsevier, [2018].
 Description
 Book — 1 online resource.
 Summary

 PART VII  INSTRUMENTAL OPTICS
 35. Electrostatic Lenses
 36. Magnetic Lenses
 37. Electron Mirrors, Lowenergyelectron Microscopes and Photoemission Electron Microscopes, Cathode Lenses and Fieldemisssion Microscopy
 38. The Wien Filter
 39. Quadrupole Lenses
 40. Deflection Systems PART VIII  ABERRATION CORRECTION AND BEAM INTENSITY DISTRIBUTION (CAUSTICS)
 41. Aberration Correction
 42. Caustics and their Applications PART IX  ELECTRON GUNS
 43. General Features of Electron Guns
 44. Theory of Electron Emission
 45. Pointed Cathodes without Space Charge
 46. Space Charge Effects
 47. Brightness
 48. Emittance
 49. Gun optics
 50. Complete Electron Guns PART X  SYSTEMS WITH A CURVED OPTIC AXIS
 51. General Curvilinear Systems
 52. Magnetic Sector Fields
 53. Unified Theories of Ion Optical Systems.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
18. Elektřina a magnetismus [2017]
 Sedlák, Bedřich, author.
 [Place of publication not identified] : Univerzita Karlova, 2017.
 Description
 Book — 1 online resource.
19. Oxford handbook of small superconductors [2017]
 First edition.  New York, NY, United States of America : Oxford University Press, [2017]
 Description
 Book — 1 online resource (614 pages) : illustrations (some color)
 Summary

 Small Superconductors: Introduction
 LocalScale Spectroscopic Studies of Vortex Organization in Mesoscopic Superconductors
 MultiVortex States in Mesoscopic Superconductors
 Proximity Effect: A New Insight from In Situ Fabricated Hybrid Nanostructures
 Andreev Reflection and Related Studies in LowDimensional Superconducting Systems
 Topological Superconductors and Majorana Fermions
 Surface and Interface Conductivity
 Mesoscopic Effects in SuperconductorFerromagnet Hybrids
 Theoretical Study of THz Emission from HTS Cuprate
 Micromagnetic Measurements on Electrochemically Grown Mesoscopic Superconductors
 Growth and Characterization of HTSc Nanowires and Nanoribbons
 Mesoscopic Structures and Their Effects on HighTc Superconductivity
 Magnetic Flux Avalanches in Superconducting Films with Mesoscopic Artifical Patterns
 Superconducting Spintronics and Devices
 Barriers in Josephson Junctions: An Overview
 Hybrid Superconducting Devices Based on Quantum Wires
 Superconducting Nanodevices
 Superconducting Quantum Bits of Information: Coherence and Design Improvements
 NanoSQUIDs Applied to the Investigation of Small Magnet Systems.
 Online
20. Amorphous semiconductors [2016]
 Morigaki, Kazuo.
 [Place of publication not identified] : John Wiley & Sons, 2016.
 Description
 Book — 1 online resource
 Summary

 Series Preface xi Preface xiii
 1 Introduction 1 1.1 General Aspects of Amorphous Semiconductors 1 1.2 Chalcogenide Glasses 3 1.3 Applications of Amorphous Semiconductors 3 References 3
 2 Preparation Techniques 5 2.1 Growth of a Si:H Films 5 2.1.1 PECVD Technique 5 2.1.2 HWCVD Technique 6 2.2 Growth of Amorphous Chalcogenides 6 References 8
 3 Structural Properties of Amorphous Silicon and Amorphous Chalcogenides 11 3.1 General Aspects 11 3.1.1 Definitions of Crystalline and Noncrystalline 11 3.2 Optical Spectroscopy 12 3.2.1 Raman Scattering 12 3.2.2 Infrared Absorption 13 3.3 Neutron Diffraction 15 3.3.1 Diffraction Measurements on Amorphous Silicon 17 3.3.2 Diffraction Measurements on Hydrogenated Amorphous Silicon 18 3.3.3 Diffraction Measurements on Amorphous Germanium 19 3.3.4 Diffraction Measurements on Amorphous Selenium 19 3.4 Computer Simulations 20 3.4.1 Monte Carlo Type Methods for Structure Derivation 20 3.4.2 Atomic Interactions 21 3.4.3 a Si Models Constructed by Monte Carlo Simulation 25 3.4.4 Reverse Monte Carlo Methods 26 3.4.5 a Si Model Constructed by RMC Simulation 28 3.4.6 a Se Model Constructed by RMC Simulation 30 3.4.7 Molecular Dynamics Simulation 32 3.4.8 a Si Model Construction by Molecular Dynamics Simulation 34 3.4.9 a Si:H Model Construction by Molecular Dynamics Simulation 34 3.4.10 a Se Model Construction by Molecular Dynamics Simulation 35 3.4.11 Car and Parrinello Method 38 References 38
 4 Electronic Structure of Amorphous Semiconductors 43 4.1 Bonding Structures 43 4.1.1 Bonding Structures in Column IV Elements 44 4.1.2 Bonding Structures in Column VI Elements 45 4.2 Electronic Structure of Amorphous Semiconductors 46 4.3 Fermi Energy of Amorphous Semiconductors 47 4.4 Differences between Amorphous and Crystalline Semiconductors 49 4.5 Charge Distribution in Pure Amorphous Semiconductors 49 4.6 Density of States in Pure Amorphous Semiconductors 52 4.7 Dangling Bonds 54 4.8 Doping 57 References 58
 5 Electronic and Optical Properties of Amorphous Silicon 61 5.1 Introduction 61 5.2 Band Tails and Structural Defects 62 5.2.1 Introduction 62 5.2.2 Band Tails 62 5.2.3 Structural Defects 66 5.3 Recombination Processes 68 5.3.1 Introduction 68 5.3.2 Radiative Recombination 68 5.3.3 Nonradiative Recombination 70 5.3.4 Recombination Processes and Recombination Centers in a Si:H 72 5.3.5 Spin Dependent Recombination 73 5.4 Electrical Properties 74 5.4.1 DC Conduction 74 5.4.2 AC Conduction 80 5.4.3 Hall Effect 87 5.4.4 Thermoelectric Power 88 5.4.5 Doping Effect 89 5.5 Optical Properties 92 5.5.1 Fundamental Optical Absorption 92 5.5.2 Weak Absorption 94 5.5.3 Photoluminescence 96 5.5.4 Frequency Resolved Spectroscopy (FRS) 96 5.5.5 Photoconductivity 101 5.5.6 Dispersive Photoconduction 109 5.6 Electron Magnetic Resonance and Spin Dependent Properties 112 5.6.1 Introduction 112 5.6.2 Electron Magnetic Resonance 112 5.6.3 Spin Dependent Properties 128 5.7 Light Induced Phenomena and Light Induced Defect Creation 131 5.7.1 Introduction 131 5.7.2 Light Induced Phenomena 132 5.7.3 Light Induced Defect Creation 134 References 145
 6 Electronic and Optical Properties of Amorphous Chalcogenides 157 6.1 Historical Overview of Chalcogenide Glasses 157 6.1.1 Applications 157 6.1.2 Science 158 6.2 Basic Glass Science 159 6.2.1 Glass Formation 159 6.2.2 Glass Transition Temperature 160 6.2.3 Crystallization of Glasses 162 6.3 Electrical Properties 165 6.3.1 Electronic Transport 165 6.3.2 Ionic Transport 170 6.4 Optical Properties 175 6.4.1 Fundamental Optical Absorption 175 6.4.2 Urbach and Weak Absorption Tails 178 6.4.3 Photoluminescence 179 6.4.4 Photoconduction 183 6.5 The Nature of Defects, and Defect Spectroscopy 191 6.5.1 Electron Spin Resonance 196 6.5.2 Optical Absorption 197 6.5.3 Primary Photoconductivity 197 6.5.4 Secondary Photoconductivity 197 6.5.5 Electrophotography 199 6.5.6 Electronic Transport 199 6.6 Light Induced Effects in Chalcogenides 200 6.6.1 Electron Spin Resonance 200 6.6.2 Optical Absorption 202 6.6.3 Photoluminescence 203 6.6.4 Photoconductivity 205 6.6.5 Electronic Transport 206 6.6.6 Defect Creation Kinetics 207 6.6.7 Structure Related Properties 210 References 218
 7 Other Amorphous Material Systems 231 7.1 Amorphous Carbon and Related Materials 231 7.1.1 Basic Structure of a C (sp2 Hybrids) 232 7.1.2 Preparation Techniques 233 7.1.3 Brief Review of Structural Studies on Amorphous Carbon 233 7.1.4 Applications 234 7.2 Amorphous Oxide Semiconductors 235 7.2.1 Preparation Techniques 235 7.2.2 Optical Properties 236 7.2.3 Electronic Properties 237 7.2.4 Applications 239 7.3 Metal Containing Amorphous Chalcogenides 239 7.3.1 Preparation Techniques 240 7.3.2 Structure of Ag Chs and Related Physical Properties 240 7.3.3 Photodoping 241 7.3.4 Applications 242 References 242
 8 Applications 247 8.1 Devices Using a Si:H 247 8.1.1 Photovoltaics 247 8.1.2 Thin Film Transistors 248 8.2 Devices Using a Chs 249 8.2.1 Phase Change Materials 249 8.2.2 Direct X ray Image Sensors for Medical Use 257 8.2.3 High Gain Avalanche Rushing Amorphous Semiconductor Vidicon 258 8.2.4 Optical Fibers and Waveguides 260 References 261 Index 265.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
Articles+
Journal articles, ebooks, & other eresources
 Articles+ results include