1 - 20
Next
Number of results to display per page
- Helszajn, J. (Joseph) author.
- First edition. - Hoboken, New Jersey : John Wiley & Sons, Inc., [2019] [Piscataqay, New Jersey] : IEEE Xplore, [2018]
- Description
- Book — 1 online resource (352 pages).
- Summary
-
- Preface xiii
- Acknowledgments xv
- List of Contributors xvii
- 1 Microwave Switching Using Junction Circulators 1
- Joseph Helszajn
- 1.1 Microwave Switching Using Circulators 1
- 1.2 The Operation of the Switched Junction Circulator 1
- 1.3 The Turnstile Circulator 4
- 1.4 Externally and Internally Latched Junction Circulators 7
- 1.5 Standing Wave Solution of Resonators with Threefold Symmetry 7
- 1.6 Magnetic Circuit Using Major Hysteresis Loop 8
- 1.7 Display of Hysteresis Loop 9
- 1.8 Switching Coefficient of Magnetization 11
- 1.9 Magnetostatic Problem 13
- 1.10 Multiwire Magnetostatic Problem 14
- 1.11 Shape Factor of Cylindrical Resonator 15
- Bibliography 16
- 2 The Operation of Nonreciprocal Microwave Faraday Rotation Devices and Circulators 19
- Joseph Helszajn
- 2.1 Introduction 19
- 2.2 Faraday Rotation 20
- 2.3 Magnetic Variables of Faraday Rotation Devices 25
- 2.4 The Gyrator Network 27
- 2.5 Faraday Rotation Isolator 29
- 2.6 Four-port Faraday Rotation Circulator 30
- 2.7 Nonreciprocal Faraday Rotation-type Phase Shifter 31
- 2.8 Coupled Wave Theory of Faraday Rotation
- Section 32
- 2.9 The Partially Ferrite-filled Circular Waveguide 33
- Bibliography 34
- 3 Circular Polarization in Parallel Plate Waveguides 37
- Joseph Helszajn
- 3.1 Circular Polarization in Rectangular Waveguide 37
- 3.2 Circular Polarization in Dielectric Loaded Parallel Plate Waveguide with Open Sidewalls 40
- Bibliography 47
- 4 Reciprocal Quarter-wave Plates in Circular Waveguides 49
- Joseph Helszajn
- 4.1 Quarter-wave Plate 50
- 4.2 Coupled Mode Theory of Quarter-wave Plate 53
- 4.3 Effective Waveguide Model of Quarter-wave Plate 58
- 4.4 Phase Constants of Quarter-wave Plate Using the Cavity Method 59
- 4.5 Variable Rotor Power Divider 62
- Bibliography 63
- 5 Nonreciprocal Ferrite Quarter-wave Plates 65
- Joseph Helszajn
- 5.1 Introduction 65
- 5.2 Birefringence 65
- 5.3 Nonreciprocal Quarter-wave Plate Using the Birefringence Effect 67.
- 5.4 Circulator Representation of Nonreciprocal Quarter-wave Plates 71
- 5.5 Coupled and Normal Modes in Magnetized Ferrite Medium 72
- 5.6 Variable Phase-shifters Employing Birefringent, Faraday Rotation, and Dielectric Half-wave Plates 73
- 5.7 Circulators and Switches Using Nonreciprocal Quarter-wave Plates 76
- 5.8 Nonreciprocal Circular Polarizer Using Elliptical Gyromagnetic Waveguide 77
- Bibliography 79
- 6 Ridge, Coaxial, and Stripline Phase-shifters 81
- Joseph Helszajn
- 6.1 Differential Phase-shift, Phase Deviation, and Figure of Merit of Ferrite Phase-shifter 82
- 6.2 Coaxial Differential Phase-shifter 82
- 6.3 Ridge Waveguide Differential Phase-shifter 88
- 6.4 The Stripline Edge Mode Phase-shifter 90
- 6.5 Latched Quasi-TEM Phase-shifters 91
- Bibliography 92
- 7 Finite Element Adjustment of the Rectangular Waveguide-latched Differential Phase-shifter 95
- Joseph Helszajn and Mark McKay
- 7.1 Introduction 95
- 7.2 FE Discretization of Rectangular Waveguide Phase-shifters 97
- 7.3 LS Modes Limit Waveguide Bandwidths 98
- 7.4 Cutoff Numbers and Split Phase Constants of a Twin Slab Ferrite Phase-shifter 99
- 7.5 The Waveguide Toroidal Phase-shifter 102
- 7.6 Industrial Practice 103
- 7.7 Magnetic Circuits Using Major and Minor Hysteresis Loops 103
- 7.8 Construction of Latching Circuits 106
- 7.9 Temperature Compensation Using Composite Circuits 107
- Bibliography 109
- 8 Edge Mode Phase-shifter 111
- Joseph Helszajn and Henry Downs
- 8.1 Edge Mode Effect 112
- 8.2 Edge Mode Characteristic Equation 115
- 8.3 Fields and Power in Edge Mode Devices 115
- 8.4 Circular Polarization and the Edge Mode Effect 118
- 8.5 Edge Mode Phase-shifter 120
- 8.6 Edge Mode Isolators, Phase-shifters, and Circulators 123
- Bibliography 124
- 9 The Two-port On/Off H-plane Waveguide Turnstile Gyromagnetic Switch 127
- Joseph Helszajn, Mark McKay, Alicia Casanueva, and Angel Mediavilla Sá nchez
- 9.1 Introduction 127
- 9.2 Two-port H-plane Turnstile On/Off Switch 127.
- 9.3 Even and Odd Eigenvectors of E-plane Waveguide Tee Junction 129
- 9.4 Eigenvalue Adjustment of Turnstile Plane Switch 130
- 9.5 Eigen-networks 132
- 9.6 Numerical Adjustments of Passbands 133
- 9.7 An Off/On H-plane Switch 134
- Bibliography 136
- 10 Off/On and On/Off Two-port E-plane Waveguide Switches Using Turnstile Resonators 137
- Joseph Helszajn, Mark McKay, and John Sharp
- 10.1 Introduction 137
- 10.2 The Shunt E-plane Tee Junction 138
- 10.3 Operation of Off/On and On/Off E-plane Switches 140
- 10.4 Even and Odd Eigenvector of H-plane Waveguide Tee Junction 141
- 10.5 Phenomenological Description of Two-port Off/On and On/Off Switches 142
- 10.6 Eigenvalue Diagrams of Small- and Large-gap E-plane Waveguide Tee Junction 144
- 10.7 Eigenvalue Diagrams of E-plane Waveguide Tee Junction 145
- 10.8 Eigen-networks of E-plane Tee Junction 146
- 10.9 Eigenvalue Algorithm 147
- 10.10 Pass and Stop Bands in Demagnetized E-plane Waveguide Tee Junction 148
- Bibliography 150
- 11 Operation of Two-port On/Off and Off/On Planar Switches Using the Mutual Energy-Finite Element Method 153
- Joseph Helszajn and David J. Lynch
- 11.1 Introduction 153
- 11.2 Impedance and Admittance Matrices from Mutual Energy Consideration 154
- 11.3 Impedance and Admittance Matrices for Reciprocal Planar Circuits 157
- 11.4 Immittance Matrices of n-Port Planar Circuits Using Finite Elements 160
- 11.5 Frequency Response of Two-port Planar Circuits Using the Mutual Energy-Finite Element Method 161
- 11.6 Stripline Switch Using Puck/Plug Half-spaces 166
- Bibliography 169
- 12 Standing Wave Solutions and Cutoff Numbers of Planar WYE and Equilateral Triangle Resonators 171
- Joseph Helszajn
- 12.1 Introduction 171
- 12.2 Cutoff Space of WYE Resonator 172
- 12.3 Standing Wave Circulation Solution of WYE Resonator 174
- 12.4 Resonant Frequencies of Quasi-wye Magnetized Resonators 175
- 12.5 The Gyromagnetic Cutoff Space 179
- 12.6 TM Field Patterns of Triangular Planar Resonator 180.
- 12.7 TM1,0, − 1 Field Components of Triangular Planar Resonator 182
- 12.8 Circulation Solutions 182
- Bibliography 184
- 13 The Turnstile Junction Circulator: First Circulation Condition 185
- Joseph Helszajn
- 13.1 Introduction 185
- 13.2 The Four-port Turnstile Junction Circulator 186
- 13.3 The Turnstile Junction Circulator 188
- 13.4 Scattering Matrix 190
- 13.5 Frequencies of Cavity Resonators 193
- 13.6 Effective Dielectric Constant of Open Dielectric Waveguide 193
- 13.7 The Open Dielectric Cavity Resonator 196
- 13.8 The In-phase Mode 198
- 13.9 First Circulation Condition 200
- Bibliography 200
- 14 The Turnstile Junction Circulator: Second Circulation Condition 203
- Joseph Helszajn and Mark McKay
- 14.1 Introduction 203
- 14.2 Complex Gyrator of Turnstile Circulator 204
- 14.3 Susceptance Slope Parameter, Gyrator Conductance, and Quality Factor 207
- 14.4 Propagation in Gyromagnetic Waveguides 208
- 14.5 Eigen-network of Turnstile Circulator 209
- 14.6 The Quality Factor of the Turnstile Circulator 211
- 14.7 Susceptance Slope Parameter of Turnstile Junction 213
- Bibliography 213
- 15 A Finite-Element Algorithm for the Adjustment of the First Circulation Condition of the H-plane Turnstile Waveguide Circulator 217
- Joseph Helszajn
- 15.1 Introduction 217
- 15.2 Bandpass Frequency of a Turnstile Junction 219
- 15.3 In-phase and Counterrotating Modes of Turnstile Junction 221
- 15.4 Reference Plane 222
- 15.5 FE Algorithm 222
- 15.6 FE Adjustment 224
- 15.7 The Reentrant Turnstile Junction in Standard WR75 Waveguide 230
- 15.8 Susceptance Slope Parameter of Degree-1 Junction 230
- 15.9 Split Frequencies of Gyromagnetic Resonators 233
- References 236
- 16 The E-plane Waveguide Wye Junction: First Circulation Conditions 239
- Joseph Helszajn and Marco Caplin
- 16.1 Introduction 239
- 16.2 Scattering Matrix of Reciprocal E-plane Three-port Y-junction 240
- 16.3 Reflection Eigenvalue Diagrams of Three-port Junction Circulator 242.
- 16.4 Eigen-networks 244
- 16.5 Pass Band and Stop Band Characteristic Planes 246
- 16.6 The Dicke Eigenvalue Solution 247
- 16.7 Stop Band Characteristic Plane 248
- 16.8 The E-plane Geometry 249
- 16.9 First Circulation Condition 251
- 16.10 Calculations of Eigenvalues 253
- Bibliography 254
- 17 Adjustment of Prism Turnstile Resonators Latched by Wire Loops 257
- Joseph Helszajn and William D’ Orazio
- 17.1 Introduction 257
- 17.2 The Prism Resonator 258
- 17.3 Split Frequency of Cavity Resonator with Up or Down Magnetization 260
- 17.4 Quality Factor of Gyromagnetic Resonator with Up and Down Magnetization 261
- 17.5 Shape Factor of Tri-toroidal Resonator 262
- 17.6 Squareness Ratio 264
- 17.7 The Complex Gyrator Circuit of the Three-port Junction Circulator 265
- 17.8 The Alternate Line Transformer 266
- 17.9 Effective Complex Gyrator Circuit 267
- Bibliography 267
- 18 Numerical Adjustment of Waveguide Ferrite Switches Using Tri-toroidal Resonators 269
- Joseph Helszajn and Mark McKay
- 18.1 Introduction 269
- 18.2 The Tri-toroidal Resonator 270
- 18.3 The Wire Carrying Slot Geometry 272
- 18.4 The Magnetostatic Problem 273
- 18.5 Quality Factor of Junction Circulators with Up and Down Magnetization 274
- 18.6 Split Frequencies of Planar and Cavity Gyromagnetic Resonators 275
- 18.7 The Split Frequencies of Prism Resonator with Up and Down Magnetization 276
- 18.8 Exact Calculation of Split Frequencies in Tri-toroidal Cavity 277
- 18.9 Calculation and Experiment 278
- 18.10 Tri-toroidal Composite Prism Resonator 279
- 18.11 Tri-toroidal Wye Resonator with Up and Down Magnetization 280
- Bibliography 282
- 19 The Waveguide H-plane Tee Junction Circulator Using a Composite Gyromagnetic Resonator 285
- Joseph Helszajn
- 19.1 Introduction 285
- 19.2 Eigenvalue Problem of the H-plane Reciprocal Tee Junction 286
- 19.3 Electrically Symmetric H-plane Junction at the Altman Planes 289
- 19.4 Characteristic Planes 290
- 19.5 The Septum-loaded H-plane Waveguide 292.
- 19.6 The Waveguide Tee Junction Using a Dielectric Post Resonator: First Circulation Condition 294
- 19.7 The Waveguide Tee Junction Circulator Using a Gyromagnetic Post Resonator: Second Circulation Condition 296
- 19.8 Composite Dielectric Resonator 297
- Bibliography 299
- 20 0 , 90 , and 180 Passive Power Dividers 301
- Joseph Helszajn and Mark McKay
- 20.1 Introduction 301
- 20.2 Wilkinson Power Divider 302
- 20.3 Even and Odd Mode Adjustment of the Wilkinson Power Divider 302
- 20.4 Scattering Matrix of 90 Directional Coupler 305
- 20.5 Even and Odd Mode Theory of Directional Couplers 309
- 20.6 Power Divider Using 90 Hybrids 311
- 20.7 Variable Power Dividers 313
- 20.8 180 Waveguide Hybrid Network 314
- Bibliography 318
- Index 321 --.
(source: Nielsen Book Data)
- Helszajn, J. (Joseph), author.
- First edition. - Hoboken, NJ : John Wiley & Sons, Inc., [2019]
- Description
- Book — 1 online resource
- Summary
-
Discusses the fundamental principles of the design and development of microwave satellite switches utilized in military, commercial, space, and terrestrial communication This book deals with important RF/microwave components such as switches and phase shifters, which are relevant to many RF/microwave applications. It provides the reader with fundamental principles of the operation of some basic ferrite control devices and explains their system uses. This in-depth exploration begins by reviewing traditional nonreciprocal components, such as circulators, and then proceeds to discuss the most recent advances. This sequential approach connects theoretical and scientific characteristics of the devices listed in the title with practical understanding and implementation in the real world. Microwave Polarizers, Power Dividers, Phase Shifters, Circulators and Switches covers the full scope of the subject matter and serves as both an educational text and resource for practitioners. Among the many topics discussed are microwave switching, circular polarization, planar wye and equilateral triangle resonators, and many others. Translates concepts and ideas fundamental to scientific knowledge into a more visual description Describes a wide array of devices including waveguides, shifters, and circulators Covers the use of finite element algorithms in design Microwave Polarizers, Power Dividers, Phase Shifters, Circulators and Switches is an ideal reference for all practitioners and graduate students involved in this niche field.
(source: Nielsen Book Data)
3. Design of microwave active devices [2014]
- London, UK : ISTE, Ltd. ; Hoboken, NJ : Wiley, 2014.
- Description
- Book — 1 online resource.
- Summary
-
- Chapter 1. Amplification in Linear Mode 1 Jean-Luc GAUTIER and Sebastien QUINTANEL 1.1. Principles of microwave amplification 1 1.1.1. Characteristics of an amplifier in linear mode 2 1.1.2. Review on active two-port networks in linear mode 5 1.1.3. Basic structure of an amplifier 10 1.1.4. Reciprocal and lossless impedance matching networks 11 1.1.5. Design methodology 12 1.2. Narrowband amplifiers with maximum gain 13 1.2.1. Transistor test 13 1.2.2. Stabilization circuits 15 1.2.3. Polarization circuits 18 1.2.4. Polarization circuits and stability 21 1.2.5. Impedance matching circuits 23 1.2.6. The multistage amplifier: inter-stage matching 27 1.2.7. Design example 28 1.3. Low-noise narrowband amplifier 29 1.3.1. Review of the noise characteristics of a transistor 29 1.3.2. Minimum noise factor amplifier 31 1.3.3. Noise factor-gain matching compromise 33 1.3.4. Multistage amplifier and noise factor 35 1.3.5. Balanced low-noise amplifier 36 1.4. Specific configurations for transistors 39 1.4.1. Common-grid and common-drain configurations 40 1.4.2. Cascade and cascode configurations 43 1.5. Wideband amplification 48 1.5.1. Reactive wideband matching 49 1.5.2. Selective mismatching 58 1.5.3. Resistive matching 60 1.5.4. Feedback amplifier 67 1.5.5. Active matching amplifier 74 1.5.6. Distributed amplifier 76 1.6. Differential amplifier 82 1.6.1. Four-port network with a plane of symmetry 83 1.6.2. Differential amplifier 84 1.7. Bibliography 89
- Chapter 2. Power Amplification 93 Jean-Luc GAUTIER, Myriam ARIAUDO and Cedric DUPERRIER 2.1. Characteristics of power amplifiers 93 2.1.1. Gain, output power and efficiency 94 2.1.2. Gain compression 95 2.1.3. AM/AM and AM/PM conversion 98 2.1.4. Third-order intermodulation 98 2.1.5. Adjacent channel power ratio (ACPR) and noise power ratio (NPR) 103 2.2. Analysis of the operation of a power amplifier 107 2.2.1. Principle of operation 107 2.2.2. Dynamic load line 109 2.2.3. Conditions for optimum power 111 2.2.4. Small-signal and large-signal matching 114 2.2.5. Determination of optimal load conditions 116 2.3. Classes of operation 123 2.3.1. Sinusoidal classes 123 2.3.2. High-efficiency classes F and F inverse 134 2.3.3. D and E commutation classes 137 2.4. Architectures of power amplifiers 140 2.4.1. Cascade structure 140 2.4.2. Combination of power 141 2.4.3. Tree structure 142 2.5. Design example of an amplifier in class B 144 2.6. Linearization and efficiency improvement 148 2.6.1. Power amplification and non-constant envelope signals 148 2.6.2. Linearization and efficiency improvement techniques 150 2.7. Bibliography 156
- Chapter 3. Frequency Transposition 159 Jean-Luc GAUTIER 3.1. Operating principles 159 3.1.1. Up-converter and down-converter mixers 160 3.1.2. Using a nonlinear element 163 3.1.3. Parametric operation and pump signal 164 3.1.4. Conversion matrix 166 3.2. Mixer characteristics 168 3.2.1. Conversion gain 168 3.2.2. Gain compression and intermodulation 169 3.2.3. Port isolation 174 3.2.4. Noise factors 175 3.3. Simple mixer operation 180 3.3.1. Parasitic frequencies 180 3.3.2. Filtering issues 182 3.4. Balanced mixer topologies 183 3.4.1. Single-balanced mixers 183 3.4.2. Double-balanced mixer 187 3.4.3. Image frequency rejection mixers 189 3.4.4. SSB mixer 192 3.5. Topology of passive and active mixers 193 3.5.1. Passive mixers 194 3.5.2. Active mixers 206 3.6. Frequency multipliers 212 3.7. Bibliography 213
- Chapter 4. Oscillators 217 Jean-Luc GAUTIER 4.1. Operating principles 217 4.1.1. Two-port network feedback-type oscillators 218 4.1.2. Negative-resistance one-port network-type oscillators 222 4.2. Analysis of one-port circuit-type oscillators 225 4.2.1. Van Der Pol oscillator 225 4.2.2. Quasi-static analysis of a one-port circuit-type oscillator 233 4.2.3. Oscillation stability 239 4.2.4. Oscillator synchronization 243 4.2.5. Noise oscillator analysis 248 4.3. Oscillator characteristics 254 4.3.1. Output power and efficiency 255 4.3.2. Oscillation frequency and tuning 256 4.3.3. External quality factor 256 4.3.4. Spectral purity and harmonic distortion 256 4.3.5. Pulling and pushing factors 257 4.3.6. Frequency stability 257 4.3.7. Amplitude and phase-modulation noise 258 4.4. Impedance with a negative resistive component 260 4.4.1. Analytical determination 261 4.4.2. Graphical determination: mapping 263 4.4.3. Worked example of negative real part impedance determination 266 4.5. Fixed-frequency oscillators 270 4.5.1. Oscillator with localized or distributed-parameter circuit 271 4.5.2. Dielectric-resonator oscillator 272 4.6. Electronically tunable oscillators 279 4.6.1. Limitations of the negative real part component 279 4.6.2. Varactor-diode-tuned oscillators (VCO) 281 4.6.3. YIG-resonator tuned oscillators 286 4.7. Bibliography 290
- Chapter 5. Control Functions 293 Jean-Luc GAUTIER 5.1. Semiconductor components for control functions 293 5.1.1. Varactor diode 293 5.1.2. PIN diode 294 5.1.3. Cold transistor 295 5.2. Variable attenuators 296 5.2.1. Basic cell 297 5.2.2. Matched attenuation cells 298 5.3. Variable phase shifters 301 5.3.1. Reflection phase shifters 301 5.3.2. Transmission phase shifters 302 5.3.3. Combination vector phase shifters 305 5.4. Switches 306 5.4.1. Single-pole single-throw (SPST) switch 306 5.4.2. Single-pole multiple-throw (SPnT) switch 312 5.5. Bibliography 313
- Appendix 1. Lossless Two-Port Network: Mismatching 315
- Appendix 2. Noise in a Balanced Amplifier 317
- Appendix 3. Specific Topologies with Transistors 323
- Appendix 4. Wideband Impedance Matching: Reactive Two-Port Networks 331
- Appendix 5. Wideband Impedance Matching: Dissipative Two-Port Networks 341
- Appendix 6. Wideband Amplification: Parallel Resistive Feedback 349
- Appendix 7. Graphical Method 353
- Appendix 8. Distributed Amplifier 359
- Appendix 9. Differential Amplifier 369
- Appendix 10. Third-order Intermodulation 373 List of Authors 377 Index 379.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
4. Microwave engineering [2014]
- Das, Sushrut, author.
- New Delhi, India : Oxford University Press, 2014.
- Description
- Book — 1 online resource (xxii, 965 pages) : illustrations.
- Summary
-
- 1 INTRODUCTION 1
- 2 TRANSMISSION LINE THEORY 9
- 3 TRANSMISSION LINE MATCHING NETWORKS, CONNECTORS, AND ADAPTERS 91
- 4 PLANAR TRANSMISSION LINES 152
- 5 WAVEGUIDES AND FINLINES 202
- 6 MICROWAVE RESONATORS 292
- 7 MICROWAVE NETWORK REPRESENTATIONS 336
- 8 MICROWAVE POWER DIVIDERS AND COUPLERS 359
- 9 MICROWAVE FILTERS 409
- 10 MICROWAVE NON-RECIPROCAL DEVICES 471
- 11 MICROWAVE LINEAR BEAM TUBES 497
- 12 MICROWAVE CROSSED-FIELD TUBES 557
- 13 MICROWAVE SOLID-STATE DIODES 590
- 14 MICROWAVE SOLID-STATE TRANSISTORS AND MASERS 663
- 15 ACTIVE MICROWAVE CIRCUITS AND MONOLITHIC MICROWAVE INTEGRATED CIRCUIT 696
- 16 MICROWAVE PROPAGATION AND COMMUNICATION SYSTEMS 758
- 17 RADAR AND OTHER APPLICATIONS OF MICROWAVE 788
- 18 MICROWAVE ANTENNAS 845
- 19 MICROWAVE MEASUREMENTS 892
- 20 MICROWAVE RADIATION HAZARDS 938.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Online
- Collin, Robert E.
- 2nd ed. - New York : IEEE Press, c2001.
- Description
- Book — 1 online resource (xix, 924 p.) : ill.
- Summary
-
- Preface. 1 Introduction. 1.1 Microwave Frequencies. 1.2 Microwave Applications. 1.3 Microwave Circuit Elements and Analysis. 2 Electromagnetic Theory. 2.1 Maxwella s Equations. 2.2 Constitutive Relations. 2.3 Static Fields. 2.4 Wave Equation. 2.5 Energy and Power. 2.6 Boundary Conditions. 2.7 Plane Waves. 2.8 Reflection from a Dielectric Interface. 2.9 Reflection from a Conducting Plane. 2.10 Potential Theory. 2.11 Derivation of Solution for Vector Potential. 2.12 Lorentz Reciprocity Theorem. 3 Transmission Lines and Waveguides.
- Part 1 Waves on Transmission Lines. 3.1 Waves on An Ideal Transmission Line. 3.2 Terminated Transmission Line: Resistive Load. 3.3 Capacitive Termination. 3.4 Steady--State Sinusoidal Waves. 3.5 Waves on a Lossy Transmission Line. 3.6 Terminated Transmission Line: Sinusoidal Waves.
- Part 2 Field Analysis of Transmission Lines. 3.7 Classification of Wave Solutions. 3.8 Transmission Lines (Field Analysis). 3.9 Transmission--Line Parameters. 3.10 Inhomogeneously Filled Parallel--Plate Transmission Line. 3.11 Planar Transmission Lines. 3.12 Microstrip Transmission Line. 3.13 Coupled Microstrip Lines. 3.14 Strip Transmission Lines. 3.15 Coupled Strip Lines. 3.16 Coplanar Transmission Lines.
- Part 3 Rectangular and Circular Waveguides. 3.17 Rectangular Waveguide. 3.18 Circular Waveguides. 3.19 Wave Velocities. 3.20 Ridge Waveguide. 3.21 Fin Line. 4 Circuit Theory for Waveguiding Systems. 4.1 Equivalent Voltages and Currents. 4.2 Impedance Description of Waveguide Elements and Circuits. 4.3 Fostera s Reactance Theorem. 4.4 Even and Odd Properties of Zin. 4.5 iV--Port Circuits. 4.6 Two--Port Junctions. 4.7 Scattering--Matrix Formulation. 4.8 Scattering Matrix for a Two--Port Junction. 4.9 Transmission--Matrix Representation. 4.10 Signal Flow Graphs. 4.11 Generalized Scattering Matrix for Power Waves. 4.12 Excitation of Waveguides. 4.13 Waveguide Coupling by Apertures. 5 Impedance Transformation and Matching. 5.1 Smith Chart. 5.2 Impedance Matching with Reactive Elements. 5.3 Double--Stub Matching Network. 5.4 Triple--Stub Tuner. 5.5 Impedance Matching with Lumped Elements. 5.6 Design of Complex Impedance Terminations. 5.7 Invariant Property of Impedance Mismatch Factor. 5.8 Waveguide Reactive Elements. 5.9 Quarter--Wave Transformers. 5.10 Theory of Small Reflections. 5.11 Approximate Theory for Multisection Quarter--Wave Transformers. 5.12 Binomial Transformer. 5.13 Chebyshev Transformer. 5.14 Chebyshev Transformer (Exact Results). 5.15 Filter Design Based on Quarter--Wave--Transformer Prototype Circuit. 5.16 Tapered Transmission Lines. 5.17 Synthesis of Transmission--Line Tapers. 5.18 Chebyshev Taper. 5.19 Exact Equation for the Reflection Coefficient. 6 Passive Microwave Devices. 6.1 Terminations. 6.2 Attenuators. 6.3 Phase Shifters. 6.4 Directional Couplers. 6.5 Hybrid Junctions. 6.6 Power Dividers. 6.7 Microwave Propagation in Ferrites. 6.8 Faraday Rotation. 6.9 Microwave Devices Employing Faraday Rotation. 6.10 Circulators. 6.11 Other Ferrite Devices. 7 Electromagnetic Resonators. 7.1 Resonant Circuits. 7.2 Transmission--Line Resonant Circuits. 7.3 Microstrip Resonators. 7.4 Microwave Cavities. 7.5 Dielectric Resonators. 7.6 Equivalent Circuits for Cavities. 7.7 Field Expansion in a General Cavity. 7.8 Oscillations in a Source--Free Cavity. 7.9 Excitation of Cavities. 7.10 Cavity Perturbation Theory. 8 Periodic Structures and Filters. 8.1 Capacitively Loaded Transmission--Line--Circuit Analysis. 8.2 Wave Analysis of Periodic Structures. 8.3 Periodic Structures Composed of Unsymmetrical Two--Port Networks. 8.4 Terminated Periodic Structures. 8.5 Matching of Periodic Structures. 8.6 k0--beta Diagram. 8.7 Group Velocity and Energy Flow. 8.8 Floqueta s Theorem and Spatial Harmonics. 8.9 Periodic Structures for Traveling--Wave Tubes. 8.10 Sheath Helix. 8.11 Some General Properties of a Helix. 8.12 Introduction to Microwave Filters. 8.13 Image--Parameter Method of Filter Design. 8.14 Filter Design by Insertion--Loss Method. 8.15 Specification of Power Loss Ratio. 8.16 Some Low--Pass--Filter Designs. 8.17 Frequency Transformations. 8.18 Impedance and Admittance Inverters. 8.19 A Microstrip Half--Wave Filter. 8.20 Microstrip Parallel Coupled Filter. 8.21 Quarter--Wave--Coupled Cavity Filters. 8.22 Direct--Coupled Cavity Filters. 8.23 Other Types of Filters. 9 Microwave Tubes. 9.1 Introduction. 9.2 Electron Beams with dc Conditions. 9.3 Space--Charge Waves on Beams with Confined Flow. 9.4 Space--Charge Waves on Unfocused Beams. 9.5 Ac Power Relations. 9.6 Velocity Modulation. 9.7 Two--Cavity Klystron. 9.8 Reflex Klystron. 9.9 Magnetron. 9.10 O--Type Traveling--Wave Tube. 9.11 M--Type Traveling--Wave Tube. 9.12 Gyrotrons. 9.13 Other Types of Microwave Tubes. 10 Solid--State Amplifiers. 10.1 Bipolar Transistors. 10.2 Field--Effect Transistors. 10.3 Circle--Mapping Properties of Bilinear Transformations. 10.4 Microwave Amplifier Design Using Sij Parameters. 10.5 Amplifier Power Gain. 10.6 Amplifier Stability Criteria. 10.7 Constant Power--Gain Circles. 10.8 Basic Noise Theory. 10.9 Low--Noise Amplifier Design. 10.10 Constant Mismatch Circles. 10.11 Microwave Amplifier Design. 10.12 Other Aspects of Microwave Amplifier Design. 11 Parametric Amplifiers. 11.1 p--n Junction Diodes. 11.2 Manley--Rowe Relations. 11.3 Linearized Equations for Parametric Amplifiers. 11.4 Parametric Up--Converter. 11.5 Negative--Resistance Parametric Amplifier. 11.6 Noise Properties of Parametric Amplifiers. 12 Oscillators and Mixers. 12.1 Gunn Oscillators. 12.2 IMPATT Diodes. 12.3 Transistor Oscillators. 12.4 Three--Port Description of a Transistor. 12.5 Oscillator Circuits. 12.6 Oscillator Design. 12.7 Mixers. 12.8 Mixer Noise Figure. 12.9 Balanced Mixers. 12.10 Other Types of Mixers. 12.11 Mixer Analysis Using Harmonic Balancing. Appendixes. I Useful Relations from Vector Analysis. I.1 Vector Algebra. I.2 Vector Operations in Common Coordinate Systems. I.3 Vector Identities. I.4 Greena s Identities. II Bessel Functions. II.1 Ordinary Bessel Functions. II.2 Modified Bessel Functions. III Conformal Mapping Techniques. III.1 Conformal Mapping. III.2 Elliptic Sine Function III.3 Capacitance between Two Parallel Strips. III.4 Strip Transmission Line. III.5 Conductor Loss. III.6 Conductor Losses for a Microstrip Transmission Line. III.7 Attenuation for a Coplanar Line. IV Physical Constants and Other Data. IV.1 Physical Constants. IV.2 Conductivities of Materials. IV.3 Dielectric Constants of Materials. IV.4 Skin Depth in Copper. Index.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- New York : IEEE Press, c2001.
- Description
- Book — xxix, 485 p. : ill. ; 26 cm.
- Summary
-
- Foreword by Dr. Delores Etter. Preface. Acknowledgments. List of Contributors. List of Acronyms and Abbreviations. Introduction. HPM Sources: The DOD Perspective. Gigawatt--Class Sources. Pulse Shortening. Relativistic Cerenkov Devices. Gyrotron Oscillators and Amplifiers. Active Plasma Loading of HPM Devices. Beam Transport and RF Control. Cathodes and Electron Guns. Windows and RF Breakdown. Computational Techniques. Alternative Approaches and Future Challenges. Index. About the Editors.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
TK7876 .H52 2001 | Available |
7. Microwave electronic devices [1994]
- Roer, Theo G. van de.
- 1st ed. - London ; New York : Chapman & Hall, 1994.
- Description
- Book — xiii, 340 p. : ill. ; 24 cm.
- Summary
-
- History-- Vacuum tubes-- Semiconductor materials-- Carrier transport and noise in devices-- Diodes-- Transistors-- Transmission lines and microwave circuits-- Detection, modulation and frequency conversion-- Amplifiers-- Oscillators-- Monolithic microwave integrated circuits.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
TK7876 .R63 1994 | Available |
8. Understanding microwaves [1993]
- Scott, Allan W.
- New York : Wiley, c1993.
- Description
- Book — xii, 545 p. : ill. ; 25 cm.
- Summary
-
- MICROWAVE FUNDAMENTALS. A Survey of Microwave Systems and Devices. Microwave Fields. Microwave Power----dB and dBm. Insertion Loss, Gain, and Return Loss. Matching with the Smith Chart. MICROWAVE DEVICES. Microwave Transmission Lines. Microwave Signal Control Components. Microwave Semiconductor Amplifiers. Microwave Oscillators. Low--Noise Receivers. Microwave Integrated Circuits. Microwave Tubes. Microwave Antennas. MICROWAVE SYSTEMS. Introduction to Microwave Systems. Microwave Relay. Satellite Communications. Radar Systems. Electronic Warfare Systems. Navigation and Other Microwave Systems. Exercise Answers. Index.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
TK7876 .S36 1993 | Available |
9. Microwave engineering [1988]
- Rizzi, Peter A., 1930-
- Englewood Cliffs, N.J. : Prentice Hall, c1988.
- Description
- Book — xvi, 572 p. : ill. ; 24 cm.
- Summary
-
A comprehensive introduction to microwave devices and circuits. Includes both physical and mathematical descriptions and many practical illustrations.
(source: Nielsen Book Data)
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
TK7876 .R59 1988 | Available |
10. Evanescent mode microwave components [1987]
- Craven, George F.
- Boston : Artech House, c1987.
- Description
- Book — xiv, 165 p. : ill. ; 24 cm.
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
TK7876 .C73 1987 | Available |
11. Microwave components and systems [1987]
- Sander, K. F. (Kenneth Frederick)
- Wokingham, England ; Reading, Mass. : Addison-Wesley, 1987.
- Description
- Book — xviii, 388 p. : ill. ; 24 cm.
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
TK7876 .S26 1987 | Available |
12. Microwave technology [1986]
- Roddy, D.
- Reston, Va. : Reston Pub. Co., c1986.
- Description
- Book — xiv, 606 p. : ill. ; 25 cm.
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
TK7874 .R62 1986 | Available |
- Simons, Rainee, 1949-
- [Washington, DC] : National Aeronautics and Space Administration ; [Springfield, Va. : For sale by the National Technical Information Service, 1986]
- Description
- Book — 1 v.
- Online
Green Library
Green Library | Status |
---|---|
Find it US Federal Documents | Request (opens in new tab) |
NAS 1.15:88823 | Unknown |
14. Microwave receivers and related components [1983]
- Tsui, James, 1935-
- Los Altos, Calif. : Peninsula Pub., 1985.
- Description
- Book — viii, 530 p. : ill. ; 23 cm.
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
TK7876 .T78 1985 | Available |
- Saunders, Alan, 1919-
- Cleveland, Ohio : Lewis Research Center, [1984]
- Description
- Book — 1 v. : ill. ; 28 cm.
- Online
Green Library
Green Library | Status |
---|---|
Find it US Federal Documents | Request (opens in new tab) |
NAS 1.15:83775 | Unknown |
16. Microwave receivers and related components [1983]
- Tsui, James, 1935-
- [Wright-Patterson Air Force Base, Ohio?] : Avionics Laboratory, Air Force Wright Aeronautical Laboratories, [1983?]
- Description
- Book — viii, 530 p. : ill. ; 24 cm.
Green Library
Green Library | Status |
---|---|
Find it US Federal Documents | Request (opens in new tab) |
D 301.2:M 58/2 | Unknown |
17. Microwave devices [1982]
- Coleman, James T.
- Reston, Va. : Reston Pub. Co., c1982.
- Description
- Book — xiii, 207 p. : ill. ; 24 cm.
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
TK7876 .C64 1982 | Available |
18. Microwave engineering and applications [1981]
- Gandhi, Om P., 1935-
- New York : Pergamon Press, c1981.
- Description
- Book — xvi, 543 p. : ill. ; 25 cm.
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
TK7876 .G36 1981 | Available |
- Dunsmore, Joel P., author.
- Second edition. - Hoboken, NJ : John Wiley & Sons, 2020.
- Description
- Book — 1 online resource (xxiv, 806 pages) : illustrations (some color)
- Summary
-
- Foreword to the Second Edition xvii
- Foreword to the First Edition xix
- Preface to the Second Edition xxi
- Preface to the First Edition xxiii
- Acknowledgments for the Second Edition xxv
- Acknowledgments from the First Edition xxvii
- 1 Introduction to Microwave Measurements 1
- 1.1 Modern Measurement Process 2
- 1.2 A Practical Measurement Focus 3
- 1.3 Definition of Microwave Parameters 3
- 1.3.1 S-Parameter Primer 4
- 1.3.2 Phase Response of Networks 11
- 1.4 Power Parameters 13
- 1.4.1 Incident and Reflected Power 13
- 1.4.2 Available Power 13
- 1.4.3 Delivered Power 14
- 1.4.4 Power Available from a Network 14
- 1.4.5 Available Gain 15
- 1.5 Noise Figure and Noise Parameters 15
- 1.5.1 Noise Temperature 16
- 1.5.2 Effective or Excess Input Noise Temperature 17
- 1.5.3 Excess Noise Power and Operating Temperature 17
- 1.5.4 Noise Power Density 17
- 1.5.5 Noise Parameters 18
- 1.6 Distortion Parameters 19
- 1.6.1 Harmonics 19
- 1.6.2 Second-Order Intercept 19
- 1.6.3 Two-Tone Intermodulation Distortion 20
- 1.6.4 Adjacent Channel Power and Adjacent Channel Level Ratio 23
- 1.6.5 Noise Power Ratio (NPR) 24
- 1.6.6 Error Vector Magnitude (EVM) 25
- 1.7 Characteristics of Microwave Components 26
- 1.8 Passive Microwave Components 27
- 1.8.1 Cables, Connectors, and Transmission Lines 27
- 1.8.2 Connectors 31
- 1.8.3 Non-coaxial Transmission Lines 44
- 1.9 Filters 47
- 1.10 Directional Couplers 49
- 1.11 Circulators and Isolators 51
- 1.12 Antennas 52
- 1.13 PC Board Components 53
- 1.13.1 SMT Resistors 53
- 1.13.2 SMT Capacitors 56
- 1.13.3 SMT Inductors 57
- 1.13.4 PC Board Vias 57
- 1.14 Active Microwave Components 58
- 1.14.1 Linear and Non-linear 58
- 1.14.2 Amplifiers: System, Low-Noise, High Power 58
- 1.14.3 Mixers and Frequency Converters 59
- 1.14.4 Frequency Multiplier and Limiters and Dividers 61
- 1.14.5 Oscillators 62
- 1.15 Measurement Instrumentation 63
- 1.15.1 Power Meters 63
- 1.15.2 Signal Sources 64.
- 1.15.3 Spectrum Analyzers 65
- 1.15.4 Vector Signal Analyzers 66
- 1.15.5 Noise Figure Analyzers 67
- 1.15.6 Network Analyzers 67
- References 70
- 2 VNA Measurement Systems 71
- 2.1 Introduction 71
- 2.2 VNA Block Diagrams 72
- 2.2.1 VNA Source 73
- 2.2.2 Understanding Source-Match 76
- 2.2.3 VNA Test Set 82
- 2.2.4 Directional Devices 85
- 2.2.5 VNA Receivers 91
- 2.2.6 IF and Data Processing 95
- 2.2.7 Multiport VNAs 97
- 2.2.8 High-Power Test Systems 104
- 2.2.9 VNA with mm-Wave Extenders 105
- 2.3 VNA Measurement of Linear Microwave Parameters 107
- 2.3.1 Measurement Limitations of the VNA 107
- 2.3.2 Limitations Due to External Components 111
- 2.4 Measurements Derived from S-Parameters 112
- 2.4.1 The Smith Chart 112
- 2.4.2 Transforming S-Parameters to Other Impedances 117
- 2.4.3 Concatenating Circuits and T-Parameters 118
- 2.5 Modeling Circuits Using Y and Z Conversion 120
- 2.5.1 Reflection Conversion 120
- 2.5.2 Transmission Conversion 120
- 2.6 Other Linear Parameters 121
- 2.6.1 Z-Parameters, or Open-Circuit Impedance Parameters 122
- 2.6.2 Y-Parameters, or Short-Circuit Admittance Parameters 123
- 2.6.3 ABCD Parameters 124
- 2.6.4 H-Parameters or Hybrid Parameters 125
- 2.6.5 Complex Conversions and Non-equal Reference Impedances 126
- References 126
- 3 Calibration and Vector Error Correction 127
- 3.1 Introduction 127
- 3.1.1 Error Correction and Linear Measurement Methods for S-Parameters 128
- 3.1.2 Power Measurements with a VNA 131
- 3.2 Basic Error Correction for S-Parameters: Cal-Application 134
- 3.2.1 12-Term Error Model 134
- 3.2.2 1-Port Error Model 136
- 3.2.3 8-Term Error Model 136
- 3.3 Determining Error Terms: Cal-Acquisition for 12-Term Models 139
- 3.3.1 1-Port Error Terms 139
- 3.3.2 1-Port Standards 141
- 3.3.3 2-Port Error Terms 148
- 3.3.4 12-Term to 11-Term Error Model 153
- 3.4 Determining Error Terms: Cal-Acquisition for 8-Term Models 153
- 3.4.1 TRL Standards and Raw Measurements 153.
- 3.4.2 Special Cases for TRL Calibration 157
- 3.4.3 Unknown Thru or SOLR (Reciprocal Thru Calibration) 158
- 3.4.4 Applications of Unknown Thru Calibrations 159
- 3.4.5 QSOLT Calibration 161
- 3.4.6 Electronic Calibration (ECalâ#x84; ¢) or Automatic Calibration 162
- 3.5 Waveguide Calibrations 166
- 3.6 Calibration for Source Power 167
- 3.6.1 Calibrating Source Power for Source Frequency Response 168
- 3.6.2 Calibration for Power Sensor Mismatch 169
- 3.6.3 Calibration for Source Power Linearity 171
- 3.7 Calibration for Receiver Power 173
- 3.7.1 Some Historical Perspective 173
- 3.7.2 Modern Receiver Power Calibration 173
- 3.7.3 Response Correction for the Transmission Test Receiver 178
- 3.7.4 Power Waves vs. Actual Waves 181
- 3.8 Calibrating Multiple Channels Simultaneously: Cal All 182
- 3.9 Multiport Calibration Strategies 186
- 3.9.1 N x 2-Port Calibrations: Switching Test Sets 186
- 3.9.2 N-port Calibration: True Multiport 188
- 3.10 Automatic In-Situ Calibrations: CalPod 191
- 3.10.1 CalPod Initialization and Recorrection 192
- 3.10.2 CalPod-as-Ecal 194
- 3.11 Devolved Calibrations 194
- 3.11.1 Response Calibrations 195
- 3.11.2 Enhanced Response Calibration 196
- 3.12 Determining Residual Errors 199
- 3.12.1 Reflection Errors 199
- 3.12.2 Using Airlines to Determine Residual Errors 199
- 3.13 Computing Measurement Uncertainties 210
- 3.13.1 Uncertainty in Reflection Measurements 210
- 3.13.2 Uncertainty in Source Power 211
- 3.13.3 Uncertainty in Measuring Power (Receiver Uncertainty) 212
- 3.14 S21 or Transmission Uncertainty 212
- 3.14.1 General Uncertainty Equation for S21 214
- 3.14.2 Dynamic Uncertainty Computation 215
- 3.15 Errors in Phase 218
- 3.16 Practical Calibration Limitations 219
- 3.16.1 Cable Flexure 220
- 3.16.2 Changing Power after Calibration 221
- 3.16.3 Compensating for Changes in Step Attenuators 223
- 3.16.4 Connector Repeatability 225
- 3.16.5 Noise Effects 226
- 3.16.6 Drift: Short-Term and Long-Term 227.
- 3.16.7 Interpolation of Error Terms 229
- 3.16.8 Calibration Quality: Electronic vs. Mechanical Kits 231
- Reference 232
- 4 Time-Domain Transforms 235
- 4.1 Introduction 235
- 4.2 The Fourier Transform 236
- 4.2.1 The Continuous Fourier Transform 236
- 4.2.2 Even and Odd Functions and the Fourier Transform 236
- 4.2.3 Modulation (Shift) Theorem 237
- 4.3 The Discrete Fourier Transform 238
- 4.3.1 Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) 238
- 4.3.2 Discrete Fourier Transforms 240
- 4.4 Fourier Transform (Analytic) vs. VNA Time Domain Transform 240
- 4.4.1 Defining the Fourier Transform 241
- 4.4.2 Effects of Discrete Sampling 242
- 4.4.3 Effects of Truncated Frequency 244
- 4.4.4 Windowing to Reduce Effects of Truncation 246
- 4.4.5 Scaling and Renormalization 248
- 4.5 Low-Pass Transforms 248
- 4.5.1 Low-Pass Impulse Mode 248
- 4.5.2 DC Extrapolation 249
- 4.5.3 Low-Pass Step Mode 249
- 4.5.4 Band-Pass Mode 251
- 4.6 Time-Domain Gating 252
- 4.6.1 Gating Loss and Renormalization 253
- 4.7 Examples of Time-Domain Transforms of Various Networks 256
- 4.7.1 Time-Domain Response of Changes in Line Impedance 256
- 4.7.2 Time-Domain Response of Discrete Discontinuities 257
- 4.7.3 Time-Domain Responses of Various Circuits 257
- 4.8 The Effects of Masking and Gating on Measurement Accuracy 259
- 4.8.1 Compensation for Changes in Line Impedance 259
- 4.8.2 Compensation for Discrete Discontinuities 260
- 4.8.3 Time-Domain Gating 260
- 4.8.4 Estimating an Uncertainty Due to Masking 265
- 4.9 Time-Domain Transmission Using VNA 265
- 4.10 Conclusions 269
- References 269
- 5 Measuring Linear Passive Devices 271
- 5.1 Transmission Lines, Cables, and Connectors 271
- 5.1.1 Calibration for Low Loss Devices with Connectors 271
- 5.1.2 Measuring Electrically Long Devices 273
- 5.1.3 Attenuation Measurements 278
- 5.1.4 Return Loss Measurements 295
- 5.1.5 Cable Length and Delay 305
- 5.2 Filters and Filter Measurements 306.
- 5.2.1 Filter Classes and Difficulties 306
- 5.2.2 Duplexer and Diplexers 307
- 5.2.3 Measuring Tunable High-Performance Filters 308
- 5.2.4 Measuring Transmission Response 310
- 5.2.5 High Speed vs. Dynamic Range 315
- 5.2.6 Extremely High Dynamic Range Measurements 317
- 5.2.7 Calibration Considerations 326
- 5.3 Multiport Devices 327
- 5.3.1 Differential Cables and Lines 328
- 5.3.2 Couplers 328
- 5.3.3 Hybrids, Splitters, and Dividers 331
- 5.3.4 Circulators and Isolators 334
- 5.4 Resonators 336
- 5.4.1 Resonator Responses on a Smith Chart 336
- 5.5 Antenna Measurements 338
- 5.6 Conclusions 340
- References 341
- 6 Measuring Amplifiers 343
- 6.1 Amplifiers as a Linear Devices 343
- 6.1.1 Pretesting an Amplifier 344
- 6.1.2 Optimizing VNA Settings for Calibration 346
- 6.1.3 Calibration for Amplifier Measurements 347
- 6.1.4 Amplifier Measurements 351
- 6.1.5 Analysis of Amplifier Measurements 357
- 6.1.6 Saving Amplifier Measurement Results 367
- 6.2 Gain Compression Measurements 372
- 6.2.1 Compression Definitions 372
- 6.2.2 AM-to-PM or Phase Compression 376
- 6.2.3 Swept Frequency Gain and Phase Compression 377
- 6.2.4 Gain Compression Application, Smart Sweep, and Safe-Sweep Mode 378
- 6.3 Measuring High-Gain Amplifiers 384
- 6.3.1 Setup for High-Gain Amplifiers 386
- 6.3.2 Calibration Considerations 386
- 6.4 Measuring High-Power Amplifiers 389
- 6.4.1 Configurations for Generating High Drive Power 389
- 6.4.2 Configurations for Receiving High-Power 391
- 6.4.3 Power Calibration and Pre/Post Leveling 393
- 6.5 Making Pulsed-RF Measurements 394
- 6.5.1 Wideband vs. Narrowband Measurements 395
- 6.5.2 Pulse Profile Measurements 398
- 6.5.3 Pulse-to-Pulse Measurements 401
- 6.5.4 DC Measurements for Pulsed RF Stimulus 401
- 6.6 Distortion Measurements 403
- 6.6.1 Harmonic Measurements on Amplifiers 404
- 6.7 Measuring Doherty Amplifiers 410
- 6.8 X-Parameters, Load-Pull Measurements, Active Loads, and Hot S-Parameters 413.
- 6.8.1 Non-linear Responses and X-Parameters 414
- 6.8.2 Load-Pull, Source-Pull, and Load Contours 417
- 6.8.3 Hot S-Parameters and True Hot-S22 421
- 6.9 Conclusions on Amplifier Measurements 433
- References 434
- 7 Mixer and Frequency Converter Measurements 435
- 7.1 Mixer Characteristics 435
- 7.1.1 Small Signal Model of Mixers 438
- 7.1.2 Reciprocity in Mixers 442
- 7.1.3 Scalar and Vector Responses 444
- 7.2 Mixers vs. Frequency Converters 445
- 7.2.1 Frequency Converter Design 446
- 7.2.2 Multiple Conversions and Spur Avoidance 446
- 7.3 Mixers as a 12-Port Device 448
- 7.3.1 Mixer Conversion Terms 448
- 7.4 Mixer Measurements: Frequency Response 451
- 7.4.1 Introduction 451
- 7.4.2 Amplitude Response 452
- 7.4.3 Phase Response 456
- 7.4.4 Group Delay and Modulation Methods 466
- 7.4.5 Swept LO Measurements 469
- 7.5 Calibration for Mixer Measurements 476
- 7.5.1 Calibrating for Power 476
- 7.5.2 Calibrating for Phase 479
- 7.5.3 Determining the Phase and Delay of a Reciprocal Calibration Mixer 482
- 7.6 Mixers Measurements vs. Drive Power 493
- 7.6.1 Mixer Measurements vs. LO Drive 493
- 7.6.2 Mixer Measurements vs. RF Drive Level 497
- 7.7 TOI and Mixers 501
- 7.7.1 IMD vs. LO Drive Power 502
- 7.7.2 IMD vs. RF Power 502
- 7.7.3 IMD vs. Frequency Response 505
- 7.8 Noise Figure in Mixers and Converters 507
- 7.9 Special Cases 507
- 7.9.1 Mixers with RF or LO Multipliers 507
- 7.9.2 Segmented Sweeps 509
- 7.9.3 Measuring Higher-Order Products 509
- 7.9.4 Mixers with an Embedded LO 515
- 7.9.5 High-Gain and High-Power Converters 517
- 7.10 I/Q Converters and Modulators 518
- 7.11 Conclusions on Mixer Measurements 530
- References 531
- 8 Spectrum Analysis: Distortion and Modulation Measurements 533
- 8.1 Spectrum Analysis in Vector Network Analyzers 534
- 8.1.1 Spectrum Analysis Fundamentals 534
- 8.1.2 SA Block Diagrams: Image Rejection: Hardware vs. Software 539
- 8.1.3 Attributes of Repetitive Signals and Spectrum Measurements 546.
- 8.1.4 Coherent Spectrum Analysis 559
- 8.1.5 Calibration of SA Results 568
- 8.1.6 Two-Tone Measurements, IMD, and TOI Definition 571
- 8.1.7 Measurement Techniques for Two-Tone TOI 574
- 8.1.8 Swept IMD 576
- 8.1.9 Optimizing Results 579
- 8.1.10 Error Correction 582
- 8.2 Distortion Measurement of Complex Modulated Signals 583
- 8.2.1 Adjacent Power Measurements 584
- 8.2.2 Noise Power Ratio (NPR) Measurements 587
- 8.2.3 NPR Signal Quality and Correction 592
- 8.2.4 EVM Derived from Distortion Measurements 596
- 8.3 Measurements of Spurious Signals with VNA Spectrum Analyzer 605
- 8.3.1 Spurious at Predictable Frequencies 605
- 8.3.2 Multiport Mixer Spurious Measurements 607
- 8.3.3 Spurious Oscillations 608
- 8.4 Measurements of Pulsed Signals and Time-Gated Spectrum Analysis 611
- 8.4.1 Understanding Pulsed Spectrum 611
- 8.4.2 Time-Gated Spectrum Analysis 612
- 8.5 Summary 615
- Reference 615
- 9 Measuring Noise Figure and Noise Power 617
- 9.1 Noise-Figure Measurements for Amplifiers 617
- 9.1.1 Definition of Noise Figure 618
- 9.1.2 Noise-Power Measurements 619
- 9.1.3 Computing Noise Figure from Noise Powers 623
- 9.1.4 Computing DUT Noise Figure from Y-Factor Measurements 624
- 9.1.5 Cold-Source Methods 626
- 9.1.6 Noise Parameters 628
- 9.1.7 Noise Parameter Measurement Results 634
- 9.1.8 Error Correction in Noise Figure Measurements 637
- 9.2 Active Antenna Noise-Figure Measurements (G/T) 638
- 9.3 Noise Figure in Mixers and Converters 642
- 9.3.1 Y-Factor Measurements on Mixers 642
- 9.3.2 Cold-Source Measurements on Mixers 644
- 9.4 Other Noise-Related Measurements 650
- 9.4.1 Noise Power Measurements with a VNA Spectrum Analyzer 650
- 9.4.2 Noise-Power Measurements 650
- 9.4.3 Noise Figure Measurements Using Spectrum Analysis 653
- 9.4.4 Carrier-to-Noise Measurements 654
- 9.5 Uncertainty, Verification, and Improvement of Noise-Figure Measurements 655
- 9.5.1 Uncertainty of Noise-Figure Measurements 655
- 9.5.2 Existing Methodologies 656.
- 9.5.3 Techniques for Improving Noise-Figure Measurements 665
- 9.6 Summary: Noise and Noise-Figure Measurements 668
- References 668
- 10 VNA Balanced Measurements 669
- 10.1 Differential and Balanced S-Parameters 669
- 10.2 3-Port Balanced Devices 674
- 10.3 Measurement Examples for Mixed-Mode Devices 675
- 10.3.1 Passive Differential Devices: Balanced Transmission Lines 675
- 10.3.2 Differential Amplifier Measurements 680
- 10.3.3 Differential Amplifiers and Non-linear Operation 682
- 10.4 True-Mode VNA for Non-linear Testing 689
- 10.4.1 True-Mode Instruments 689
- 10.4.2 True-Mode Measurements 692
- 10.4.3 Determining the Phase Skew of a Differential Device 698
- 10.4.4 Differential Harmonic Measurements 700
- 10.5 Differential Testing Using Baluns, Hybrids, and Transformers 708
- 10.5.1 Transformers vs. Hybrids 708
- 10.5.2 Using Hybrids and Baluns with a 2-Port VNA 711
- 10.6 Distortion Measurements of Differential Devices 714
- 10.6.1 Comparing Single-Ended IMD Measurement to True-Mode Measurements 715
- 10.6.2 Differential IMD without Baluns 718
- 10.7 Noise Figure Measurements on Differential Devices 723
- 10.7.2 Measurement Setup 725
- 10.8 Conclusions on Differential Device Measurement 731
- References 732
- 11 Advanced Measurement Techniques 733
- 11.1 Creating Your Own Cal-Kits 733
- 11.1.1 PC Board Example 734
- 11.1.2 Evaluating PC Board Fixtures 735
- 11.2 Fixturing and De-embedding 750
- 11.2.1 De-embedding Mathematics 751
- 11.3 Determining S-Parameters for Fixtures 753
- 11.3.1 Fixture Characterization Using 1-Port Calibrations 753
- 11.4 Automatic Port Extensions (APE) 759
- 11.5 AFR: Fixture Removal Using Time Domain 764
- 11.5.1 2-Port AFR 764
- 11.5.2 Fixture-Enhanced AFR 768
- 11.5.3 1-Port AFR 770
- 11.6 Embedding Port-Matching Elements 772
- 11.7 Impedance Transformations 774
- 11.8 De-embedding High-Loss Devices 775
- 11.9 Understanding System Stability 778
- 11.9.1 Determining Cable Transmission Stability 778.
- 11.9.2 Determining Cable Mismatch Stability 778
- 11.9.3 Reflection Tracking Stability 781
- 11.10 Some Final Comments on Advanced Techniques and Measurements 782
- References 783
- Appendix A Physical Constants 785
- Appendix B Common RF and Microwave Connectors 787
- Appendix C Common Waveguides 789
- Appendix D Some Definitions for Calibration Kit Opens and Shorts 791
- Appendix E Frequency, Wavelength, and Period 795
- Index 797.
(source: Nielsen Book Data)
- Turlington, Thomas R.
- Boston : Artech House, c2000.
- Description
- Book — xvii, 368 p. : ill. ; 24 cm. + 1 computer disk (3 1/2 in.).
- Summary
-
- Common Curve Fitting Techniques. A New Approach to Curve Fitting. Modeling Transistor Devices. Modeling the Non Linear Class A Amplifier. Class AB Amplifiers. Adding Frequency as a Behavioral Model Variable. Adding Temperature as a Variable. Accounting for Parameter Variability. Obtaining Optimum Performance from Cascaded Amplifier Stages. The Sum of All Models. Odds and Ends. Appendices. Index.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks
|
Request (opens in new tab) |
TK7876 .T87 2000 | Available |
Articles+
Journal articles, e-books, & other e-resources
Guides
Course- and topic-based guides to collections, tools, and services.