1  20
Next
 Institute of Physics (Great Britain)
 London, E. Arnold [1951]
 Description
 Book — viii, 292 p. illus. 24 cm.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
627.01 .I59  Available 
 Institute of Physics (Great Britain)
 London, 1948.
 Description
 Book — x, 114 p. illus. 25 cm.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
620.8 .I59  Available 
 Institute of Physics (Great Britain). Stress Analysis Group.
 London : Applied Science Publishers, c1979.
 Description
 Book — xiii, 428 p. : ill. ; 23 cm.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
TA656 .I56 1979  Available 
 Institute of Physics (Great Britain). Stress Analysis Group.
 London : Applied Science Publishers, c1977.
 Description
 Book — xiii, 419 p. : ill. ; 23 cm.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
TA409 .I43 1977  Available 
 Institute of Physics (Great Britain). Stress Analysis Group.
 New York : Wiley, [1975]
 Description
 Book — ix, 485 p. : ill. ; 23 cm.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
TL243 .I48 1975  Available 
7. Selected papers on stress analysis [1961]
 Institute of Physics (Great Britain). Stress Analysis Group.
 London : Chapman and Hall ; New York : Reinhold ; 1961.
 Description
 Book — 114 p. : ill. ; 27 cm.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
624.21 .I59  Available 
 Institute of Physics (Great Britain). London and Home Counties Branch.
 London, Chapman and Hall; New York, Reinhold, 1959.
 Description
 Book — 108 p. illus., plans. 25 cm.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
NA6751 .I55 1957  Available 
 Institute of Physics (Great Britain). Electron Microscopy and Analysis Group. Conference (2003 : University of Oxford)
 Bristol : Institute of Physics, c2004.
 Description
 Book — xiv, 492 p. : ill. ; 25 cm.
 Summary

 Plenary Lectures Functional Materials and Biomaterials New Instrumentation Imaging Theory Theory of Microscopy and Spectroscopy Structural Materials Advances in Nanoanalysis Advances in Imaging Sample Preparation and Nanofabrication Surfaces and Interfaces Nanomaterials Author Index Subject Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
QH212 .E4 I47 2003  Available 
 Institution of Engineering and Technology Seminar on Antennas and Propagation for BodyCentric Wireless Communications (2007 : Institute of Physics, Great Britain)
 [Piscataway, N.J.] : IEEE Xplore, [2007]
 Description
 Book
 Pasha, Imad, author.
 Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2024]
 Description
 Book — 1 online resource (various pagings) : illustrations (some color).
 Summary

 1. Introduction
 1.1. How to use this book?
 1.2. Data availability
 part I. Unix and basic Python. 2. Essential Unix skills
 2.1. Operating systems
 2.2. Anatomy of the terminal
 2.3. Common UNIX commands
 2.4. Cancelling commands
 2.5. Tab complete
 2.6. Intermediate shell commands
 2.7. SSH and servers
 2.8. Profiles
 2.9. Summary
 3. Installing Python and the astronomy stack
 3.1. Prerequisites
 3.2. Python environments
 3.3. Editors
 3.4. Summary
 4. Introduction to Python
 4.1. Variables
 4.2. Importing external libraries
 4.3. Comments
 4.4. Data types
 4.5. Indexing
 4.6. Slicing
 4.7. Operations
 4.8. Reserved words
 4.9. Filtering and masking
 4.10. Conditional statements
 4.11. Loops and iterators
 4.12. Cancelling code execution
 4.13. Shell and shelllike commands in Python
 4.14. Interpreting error messages
 4.15. Handling exceptions
 4.16. Summary
 part II. Core research libraries. 5. Visualization with Matplotlib
 5.1. Introduction
 5.2. A simple plot
 5.3. Figures and axes
 5.4. Subplots
 5.5. Adjusting marker properties
 5.6. Adjusting ticks
 5.7. Adjusting fonts and fontsizes
 5.8. Multiple subplots
 5.9. Subplot mosaic
 5.10. Research example : displaying a best fit
 5.11. Errorbars
 5.12. Plotting ndimensional data
 5.13. Colorbars
 5.14. Summary
 6. Numpy
 6.1. Introduction
 6.2. The array
 6.3. Precision
 6.4. Key library functions
 6.5. Research example : an exoplanet transit
 6.6. Summary
 7. SciPy
 7.1. Introduction
 7.2. Numerical integration
 7.3. Optimization
 7.4. Statistics
 7.5. Summary
 8. Astropy and associated packages
 8.1. Introduction
 8.2. Units and constants
 8.3. Cosmological calculations
 8.4. Coordinates
 8.5. Astroquery
 8.6. Research example : automatic offsets
 8.7. Research example : handling astronomical images
 8.8. Summary
 part III. Intermediate applications and patterns. 9. Functions and functional programming
 9.1. Introduction
 9.2. Defining functions
 9.3. Writing documentation
 9.4. Checking function inputs
 9.5. Local scope and global scope
 9.6. Chaining functions together
 9.7. The concept of main()
 9.8. Keyword (optional) arguments
 9.9. Packing and unpacking function arguments
 9.10. Testing function outputs : unit testing
 9.11. Typehinting
 9.12. Summary
 10. Classes and object oriented programming
 10.1. Introduction
 10.2. Defining classes
 10.3. Setters and getters
 10.4. Representation
 10.5. Subclasses (and superclasses)
 10.6. Static methods
 10.7. Abstract base classes
 10.8. Summary
 11. Data science with astronomical catalogs
 11.1. Introduction
 11.2. Filetypes and reading in data
 11.3. Working with tabular data in pandas
 11.4. Research example : analysis with 3DHST
 11.5. Summary
 12. Vectorization and runtime improvements
 12.1. Introduction
 12.2. Identifying bottlenecks
 12.3. Fast array operations with Numpy
 12.4. Jax
 12.5. Summary
 13. Astronomical inference
 13.1. Introduction
 13.2. Fitting a line to data
 13.3. X 2 fitting
 13.4. Bayesian inference
 13.5. Summary
 14. Software development
 14.1. Introduction
 14.2. Why (and when) to make a Python package a Python package
 14.3. Organizing packages : modules and submodules
 14.4. Custom exceptions and warnings
 14.5. Installation and development
 14.6. Github and version control
 14.7. Summary
 15. Concluding remarks
 15.1. Concluding remarks.
 Pascalutsa, Vladimir, author.
 Second edition.  Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2024]
 Description
 Book — 1 online resource (various pagings) : illustrations (some color).
 Summary

 1. Introduction
 2. Some rules for sum rules
 2.1. Causality and analyticity
 2.2. Derivation of dispersion relations
 2.3. Crossing symmetry
 2.4. Unitarity
 2.5. Lowenergy theorems and sum rules
 2.6. Relaxing the convergence condition
 2.7. Divergencies, subtractions, and renormalization
 2.8. An approximate sum rule for the proton charge
 3. The KramersKronig relation
 3.1. Refraction in a relativistic medium
 3.2. The lowfrequency limit : the LorentzLorenz relation
 3.3. CMB refraction index
 4. Sum rules for Compton scattering
 4.1. Forward kinematics : helicity amplitudes for any spin
 4.2. Optical theorem : dispersion relation
 4.3. Lowenergy expansion and sum rules
 4.4. Empirical evaluations for the nucleon
 5. Virtual Compton scattering and quasireal sum rules
 5.1. VVCS and structure functions
 5.2. Elastic versus Born contributions
 5.3. The BurkhardtCottingham sum rule
 5.4. The Schwinger sum rule
 5.5. Generalized Baldin sum rules
 5.6. Longitudinal amplitude : to subtract or unsubtract?
 5.7. The BernabéuTarrach sum rule
 5.8. Validation in the parton model
 5.9. Further spindependent relations
 6. Sum rules for lightbylight scattering
 6.1. Compton scattering off a photon
 6.2. Symmetries, unitarity, and dispersion relations
 6.3. Effective field theorems
 6.4. The sum rules
 6.5. Perturbative verification
 6.6. Nonperturbative verification : bound state
 6.7. Implications for mesons
 6.8. Composite Higgs
 7. Virtual lightbylight scattering
 7.1. Forward scattering amplitudes
 7.2. Sum rules in perturbation theory
 8. Comptonscattering sum rules for vector bosons
 8.1. Electromagnetic moments : natural values
 8.2. Gauge symmetries and spin degrees of freedom
 8.3. Treelevel unitarity : GDH sum rule
 8.4. Forward VVCS and virtual LbL scattering
 9. Vacuum polarization and g  2 of the muon
 9.1. Vacuum polarization in QED
 9.2. Unitarity and sum rules
 9.3. Introduction to the muon anomaly
 9.4. Hadronic vacuum polarization in the muon anomaly
 9.5. Muon anomaly via the Schwinger sum rule
 10. Dispersion theory of hydrogenlike atoms
 10.1. Quantummechanical Coulomb problem
 10.2. Onephoton exchange in dispersive representation
 10.3. Vacuum polarization contributions to the Lamb shift
 10.4. Finitesize effects
 10.5. Twophoton exchange and polarizability effects
 10.6. Radiative corrections
 10.7. Proton selfenergy and the chargeradius definition.
 Fort, Hugo, author.
 Second Edition.  Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2024]
 Description
 Book — 1 online resource (various pagings) : illustrations (some color).
 Summary

 0. Introduction
 0.1. The goal of ecology : understanding the distribution and abundance of organisms from their interactions
 0.2. Mathematical models
 0.3. Community and population ecology modeling
 part I. Classical population and community ecology. 1. From growth equations for a single species to LotkaVolterra equations for two interacting species
 1.1. Summary
 1.2. From the Malthus to the logistic equation of growth for a single species
 1.3. General models for single species populations and analysis of local equilibrium stability
 1.4. The LotkaVolterra predatorprey equations
 1.5. The LotkaVolterra competition equations for a pair of species
 1.6. The LotkaVolterra equations for two mutualist species
 1.7. Worked example : Niche overlap and traits of nectarproducing plant species and nectar searching animal species
 1.8. Exercises
 A1. Extensive livestock farming : a quantitative management model in terms of a predatorprey dynamical system
 A1.1. Background information : the growing demand for quantitative livestock models
 A1.2. A predatorprey model for grassland livestock or PPGL
 A1.3. Model validation
 A1.4. Uses of PPGL by farmers : estimating gross margins in different productive scenarios
 A1.5. How can we improve our model?
 2. LotkaVolterra models for multispecies communities and their usefulness as quantitative predicting tools
 2.1. Summary
 2.2. Many interacting species : the LotkaVolterra generalized linear model
 2.3. The LotkaVolterra linear model for single trophic communities
 2.4. Food webs and trophic chains
 2.5. Quantifying the accuracy of the linear model for predicting species yields in single trophic communities
 2.6. Working with imperfect information
 2.7. Beyond equilibrium : testing the generalized linear model for predicting species trajectories
 2.8. Conclusion
 2.9. Exercises
 A2. Predicting optimal mixtures of perennial crops by combining modelling and experiments
 A2.1. Background information
 A2.2. Overview
 A2.3. Experimental design and data
 A2.4. Modelling
 A2.5. Metrics for overyielding and equitability
 A2.6. Model validation : theoretical versus experimental quantities
 A2.7. Predictions : results from simulation of not sown treatments
 A2.8. Using the model attempting to elucidate the relationship between yield and diversity
 A2.9. Possible extensions and some caveats
 A2.10. Bottom line
 part II. Ecophysics : methods from physics applied to ecology. 3. The maximum entropy method and the statistical mechanics of populations
 3.1. Summary
 3.2. Basics of statistical physics
 3.3. MaxEnt in terms of Shannon's information theory as a general inference approach
 3.4. The statistical mechanics of populations
 3.5. Neutral theories of ecology
 3.6. Conclusion
 3.7. Exercises
 A3. Combining the generalized LotkaVolterra model and MaxEnt method to predict changes of tree species composition in tropical forests
 A3.1. Background information
 A3.2. Overview
 A3.3. Data for Barro Colorado Island (BCI) 50 ha tropical Forest Dynamics Plot
 A3.4. Modeling
 A3.5. Model validation using time series forecasting analysis
 A3.6. Predictions
 A3.7. Extensions, improvements and caveats
 A3.8. Conclusion
 4. Catastrophic shifts in ecology, early warnings and the phenomenology of phase transitions
 4.1. Summary
 4.2. Catastrophes
 4.3. When does a catastrophic shift take place? Maxwell versus delay conventions
 4.4. Early warnings of catastrophic shifts
 4.5. Beyond the mean field approximation
 4.6. A comparison with the phenomenology of the liquidvapor phase transition
 4.7. Final comments
 A4. Modelling eutrophication, early warnings and remedial actions in a lake
 A4.1. Background information
 A4.2. Overview
 A4.3. Data for Lake Mendota
 A4.4. Modelling
 A4.5. Model validation
 A4.6. Usefulness of the early warnings
 A4.7. Extensions, improvements and caveats
 5. Stochastic processes in ecology and nonequilibrium statistical mechanics
 5.1. Summary
 5.2. Quasiequilibrium states, far from equilibrium states and the evolution toward equilibrium
 5.3. Random walk
 5.4. Markov chains
 5.5. Markovian simulation algorithms inspired in statistical physics
 5.6. Monte Carlo algorithms as an optimization tool : simulated annealing
 5.7. Exercises
 A5. Forecasting changes in land use/land cover (LULC)
 A5.1. Background information
 A5.2. Overview
 A5.3. Data for LULC in two regions of Uruguay
 A5.4. Modeling
 A5.5. Model validation
 A5.6. Usefulness of forecasting future LULC changes
 A5.7. Extensions, improvements and caveats
 Appendix I. Equilibrium stability
 Appendix II. Fermi problems or backoftheenvelope calculations.
 Torrielli, Alessandro, author.
 Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2024]
 Description
 Book — 1 online resource (various pagings) : illustrations (some color).
 Summary

 1. Introduction
 1.1. Prelude
 2. Invitation to integrable quantum field theories
 2.1. Classical integrability
 2.2. Exact Smatrices
 3. The sineGordon model
 3.1. A very special theory
 3.2. Classical aspects
 3.3. Quantum aspects
 3.4. Breather Smatrix, mixed Smatrix
 3.5. SineGordon and the XXZ spinchain
 3.6. The quantum group Uq(su(2))
 3.7. The quantum affine symmetry
 4. The Thirring model
 4.1. Fermions in the game
 4.2. A small snapshot of the 1 + 1dimensional particle world
 5. Duality between sineGordon and Thirring
 5.1. Coleman's argument
 5.2. Project
 5.3. Mandelstam's construction
 5.4. Bethe ansatz
 5.5. Form factors
 6. Remarks on the duality
 6.1. The paper by Klassen and Melzer
 6.2. Final remarks
 7. Supplement : the residue of the LeeYang model
 7.1. Pole analysis
 8. Supplement : Hopf algebra properties
 8.1. Building blocks
 8.2. Coproducts
 8.3. Rmatrix
 8.4. RTT relations
 9. Supplement : Yangians
 9.1. Drinfeld's first realisation
 9.2. Drinfeld's second realisation
 9.3. Universal Rmatrix of the Yangian of su(2)
 9.4. Principal chiral model
 9.5. More on the quantumclassical transition
 10. Supplement : the LiebLiniger model
 10.1. The classical theory
 10.2. Quantisation
 11. Supplement : massless integrability
 11.1. The limit to zero mass
 11.2. Massless flows
 11.3. Thermodynamic Bethe ansatz for a simple Smatrix
 12. Supplement : a toy model for the Bethe ansatz
 12.1. Setup
 12.2. Low N eigenstates.
 Xiao, Caide, author.
 Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2024]
 Description
 Book — 1 online resource (various pagings) : illustrations (some color).
 Summary

 1. Mathematical tools for computer vision
 1.1. Probability, entropy and KullbackLeibler divergence
 1.2. Using a gradient descent algorithm for linear regression
 1.3. Automatic gradient calculations and learning rate schedulers
 1.4. Dataset, dataloader, GPU and models saving
 1.5. Activation functions for nonlinear regressions
 2. Image classifications by convolutional neural networks
 2.1. Classification of hand written digits in the MNIST database
 2.2. Mathematical operations of a 2D convolution
 2.3. Using ResNet9 for CIFAR10 classification
 2.4. Transfer learning with ResNet for a dataset of Vegetable Images
 3. Image generation by GANs
 3.1. The GAN theory
 3.2. Applications of deep convolutional GANs
 3.3. Conditional deep convolutional GANs
 4. Image generation by WGANs with gradient penalty
 4.1. Using a WGAN or a WGANGP for generation of fake quadratic curves
 4.2. Using a WGANGP for Fashion MNIST
 4.3. WGANGP for CelebA dataset and Anime Face dataset
 4.4. Implementation of a cWGANGP for Rock Paper Scissors dataset
 5. Image generation by VAEs
 5.1. VAE and betaVAE
 5.2. Application of betaVAE for fake quadratic curves
 5.3. Application of betaVAE for the MNIST dataset
 5.4. Using VAEGAN for MNIST, Fashion MNIST &
 6. Image generation by infoGANs
 6.1. Using infoGAN to generate quadratic curves
 6.2. Implementation of infoGAN for the MNIST dataset
 6.3. infoGAN for fake Animeface dataset images
 6.4. Implementation of infoGAN to the rock paper scissors dataset
 7. Object detection by YOLOv1/YOLOv3 models
 7.1. Bounding boxes of Pascal VOC database for YOLOv1
 7.2. Encode VOC images with bounding boxes for YOLOv1
 7.3. ResNet18 model, IOU and a loss function
 7.4. Utility functions for model training
 7.5. Applications of YOLOv3 for realtime object detection
 8. YOLOv7, YOLOv8, YOLOv9 and YOLOWorld
 8.1. YOLOv7 for object detection for a custom dataset : MNIST4yolo
 8.2. YOLOv7 for instance segmentation
 8.3. Using YOLOv7 for human pose estimation (key point detection)
 8.4. Applications of YOLOv8, YOLOv9 and YOLOWorld Models
 9. UNets for image segmentation and diffusion models for image generation
 9.1. Retinal vessel segmentation by a UNet for DRIVE dataset
 9.2. Using an attention UNet diffusion model for quadratic curve generation
 9.3. Using a pretrained UNet from Hugging Face to generate images
 9.4. Generate photorealistic images from text prompts by stable diffusion
 10. Applications of vision transformers
 10.1. The architecture of a basic ViT model
 10.2. Hugging Face ViT for CIFAR10 image classification
 10.3. Zero shot image classification by OpenAI CLIP
 10.4. Zero shot object detection by Hugging Face's OWLViT
 10.5. RTDETR (a vision transformersbased realtime object detector)
 11. Knowledge distillation and its applications in DINO and SAM
 11.1. Knowledge distillation for neural network compression
 11.2. DINO : emerging properties in selfsupervised vision transformers
 11.3. DINOv2 for image retrieval, classification and feature visualization
 11.4. Segment anything model : SAM and FastSAM
 12. Applications of NeRF and 3D Gaussian splatting for synthesis of 3D scenes
 12.1. Using MiDaS for image depth estimation
 12.2. Neural Radiance Fields (NeRF) for synthesis of 3D scenes
 12.3. Introduce 3D Gaussian splatting by 2D Gaussian splatting.
 Siew, Ronian, author.
 Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2024]
 Description
 Book — 1 online resource (various pagings) : illustrations (some color).
 Summary

 1. Imaging
 1.1. An introduction to the real world
 1.2. Optical system design using Ansys Zemax OpticStudioª
 1.3. Practical concepts for optical system layout and analysis
 1.4. Practical lens design and aberration management
 1.5. Preparing drawings for optical fabrication
 2. Illumination
 2.1. The illumination problem
 2.2. Essential radiometry for illumination problems
 2.3. The concept of ray density in illumination design
 2.4. The concepts of global and local uniformity
 2.5. The concepts of étendue division and superposition
 2.6. 'Firstorder' illumination design
 2.7. How to design for uniform relative illumination
 2.8. Relative illumination in direction cosine space
 2.9. The phase space viewpoint of relative illumination
 2.10. Aplanatism and the relative illumination in the pupil
 2.11. Regions of uniformity in collimated light : the searchlight optical layout
 2.12. The specification of flashlights and searchlights based on the ANSI FL1 Standard
 2.13. Searchlights, critical illumination, and Köhler illumination : a comparison at equal flux and track length
 2.14. How to lay out light pipes for uniform illumination
 2.15. How to lay out fly's eye arrays for uniform illumination
 2.16. Fly's eye arrays that have negativefocallength lenslets
 2.17. Uniform oblique illumination
 2.18. Point spread function illumination
 2.19. A summary of the approaches used in illumination
 2.20. Tips on optimization and tolerancing in nonsequential ray tracing
 3. Optical system product development
 3.1. Lights at the ends of tunnels (not light pipes, but a personal story)
 3.2. An example of a complex optical system : virus detection using realtime quantitative PCR instruments
 3.3. Statistical principles for optical system product development
 3.4. The concept of the signaltonoise ratio
 3.5. The concept of the limit of detection
 3.6. Remarks concerning the tolerancing of complex optical systems in product development
 3.7. Monte Carlo tolerancing as a means to justify an alignment philosophy
 3.8. Some nuances of optical systems in product development
 3.9. Simple conceptual case studies
 3.10. Wrap up, README, and I wish you all the best!
 Appendix A. Further notes on imaging
 Appendix B. Further notes on illumination
 Appendix C. Further notes on optical system product development
 Appendix D. Notes on some advanced topics.
 Guha, Jyotirmoy, author.
 Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2024]
 Description
 Book — 1 online resource (various pagings) : illustrations (some color).
 Summary

 1. General properties of the nucleus
 2. Radioactivity
 3. Nuclear models
 4. Nuclear reaction
 5. Nuclear fission and fusion
 6. Deuteron problem
 7. Scattering
 8. Nature of nuclear force.
18. Phototransferred thermoluminescence [2024]
 Chithambo, Makaiko L., author.
 Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2024]
 Description
 Book — 1 online resource (various pagings) : illustrations (some color).
 Summary

 1. Introduction
 1.1. Phototransferred thermoluminescence
 1.2. Thermoluminescence
 1.3. Models of thermoluminescence
 1.4. Calculational methods
 1.5. Defects and disorder in solids
 1.6. Nonradiative transitions
 1.7. Overview
 2. Experimental methods
 2.1. Introduction
 2.2. Conventional thermoluminescence : BeO as an exemplar
 2.3. Preparatory measurements for PTTL
 2.4. Identification of donor and acceptor electron traps by pulse annealing
 2.5. Key steps for PTTL measurement
 3. Analytical methods
 3.1. Introduction
 3.2. Kinetics model
 3.3. Phenomenological model
 3.4. Vector fields
 3.5. Simulation
 3.6. Stability
 3.7. Quantifying the role of donor electron traps
 3.8. Influence of stimulation temperature on PTTL intensity
 3.9. Definition of PTTL
 3.10. Summary
 4. Synthetic materials
 4.1. Synthetic quartz
 4.2. Annealed synthetic quartz
 4.3. [alpha]Al2O3:C
 4.4. BeO
 4.5. Al2O3:Cr
 4.6. Al2O3:C,Mg
 4.7. Summary
 5. Natural materials
 5.1. Quartz
 5.2. Tanzanite
 5.3. CaF2
 5.4. Calcite
 6. Other materials of interest
 6.1. Fluorapatite
 6.2. Obsidian
 6.3. CaSO4: Mg
 6.4. KCl
 6.5. Microcline
 6.6. SrAl2O4:Eu2+,Dy3+
 6.7. Selected applications
 6.8. Summary.
 Zain, Samya, author.
 Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2024]
 Description
 Book — 1 online resource (various pagings) : illustrations (some color).
 Summary

 part I. Introduction. 1. Introduction
 1.1. The scientific method
 1.2. Units
 1.3. The International System of Units (SI units)
 1.4. A few important concepts
 1.5. A quick review of vector and scalar quantities
 1.6. Distance versus displacement
 1.7. Speed versus velocity
 1.8. Graphical representation of motion
 2. Sound, music, and noise
 2.1. What makes a sound either music or noise?
 2.2. Some history of the science of sound
 2.3. How does it all work?
 2.4. The properties of traveling waves
 2.5. What is sound?
 3. Music, history, and culture
 3.1. Music and life
 3.2. Historic eras of music
 3.3. Music and religion
 3.4. Classes of musical instruments
 part II. Sound production. 4. Tension and deformations in a string
 4.1. Energy and force
 4.2. Historic ideas about motion
 4.3. Newton's laws of dynamics
 4.4. Categories of forces
 4.5. Mass versus weight
 4.6. Tension
 5. Vibrating systems
 5.1. Simple harmonic motion
 5.2. Standing waves
 5.3. The reflection of waves
 5.4. Waves in stringed instruments
 5.5. Wave interaction : superposition and interference
 6. Damping and resonance in musical instruments
 6.1. Damping in oscillators
 6.2. Resonance
 6.3. Ways to drive a string at one of its resonances
 6.4. Understanding resonance
 6.5. Sympathetic vibrations
 6.6. Resonances in musical instruments
 part III. Sound propagation. 7. Sound propagation
 7.1. Traveling waves
 7.2. Periodic waves
 7.3. The speed of sound waves
 7.4. Sound absorption
 8. Factors that impact sound propagation
 8.1. Huygen's principle
 8.2. The refraction of waves
 8.3. Diffraction
 8.4. The Doppler effect
 part IV. Sound reception. 9. Sound power and sound intensity
 9.1. Power and pressure
 9.2. Sound waves
 9.3. The intensity of sound waves (I)
 9.4. Decibels
 9.5. The speed of sound versus particle velocity
 9.6. Sound power (W)
 9.7. Sound pressure level (dB SPL)
 9.8. Summary
 9.9. The sound power level (dB SWL)
 9.10. Loudness and loudness level
 10. The human factor
 10.1. The ranges of human hearing and sight
 10.2. Speech production in humans
 10.3. Auditory systems
 10.4. Critical bands
 10.5. Bone conduction
 11. Psychoacoustics
 11.1. Hearing in humans
 11.2. The effect of noise on humans
 11.3. Noise control
 12. The acoustics of rooms
 12.1. Sound propagation
 12.2. The precedence effect
 12.3. Room acoustics
 12.4. Problems in acoustical design
 12.5. The criteria for good acoustics
 12.6. Designing spaces
 12.7. Loudspeakers
 12.8. Outdoor sound systems
 part V. Of sound and music. 13. Musical tones, pitch, timbre, and vibrato
 13.1. Musical tones and pitch
 13.2. Pitch perception theories
 13.3. Vibrato
 13.4. The justnoticeable difference (JND)
 13.5. Timbre or tone quality
 14. A musician's graph paper and musical scales
 14.1. Logarithms
 14.2. The musical stave or staff
 14.3. Musical scales
 14.4. Musical intervals
 14.5. Various terms that are important to know
 part VI. Musical instruments. 15. Stringed instruments
 15.1. The history of stringed instruments
 15.2. The introduction of energy into a string instrument
 15.3. Tuning
 15.4. The guitar
 15.5. The piano
 15.6. Bowed stringed instruments
 16. Percussion instruments
 16.1. Rhythms in everyday life
 16.2. Various percussion instruments
 16.3. Vibrations in a bar
 16.4. Vibrations in plates and membranes
 16.5. Membranophones
 16.6. Bells
 17. Wind instruments
 17.1. Wind instruments
 17.2. The instruments of the woodwind family
 17.3. The pipe organ
 17.4. The instruments of the brass family
 17.5. The bagpipe
 part VII. Appendix. Appendix A. Review of mathematics
 Appendix B. Unit conversions
 Appendix C. Logarithms.
 Zain, Samya, author.
 Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2024]
 Description
 Book — 1 online resource (various pagings) : illustrations (some color).
 Summary

 part I. Introduction. 1. Introduction
 1.1. Activitytodo : review of mathematics
 1.2. Scientific method
 1.3. Units
 1.4. A few important concepts
 1.5. Review of vectors
 1.6. Speed versus velocity
 1.7. Graphical representation of motion
 2. Sound, music and noise
 2.1. What to know about sound, music or noise
 3. Music, History and Culture
 3.1. Activitytodo : create a timeline of musical eras
 3.2. Activitytodo : place the musical eras on the world map
 part II. Sound production. 4. Tension and deformations in a string
 4.1. What to know about energy and force
 4.2. Activitytodo : conservation of energyball drop
 4.3. Activitytodo : deformation in collisions
 4.4. Activitytodo : collision impact
 4.5. Activitytodo : mass versus weight
 4.6. Activitytodo : tension and deformation in rubber bands
 4.7. Activitytodo : calculate tension (T) in a guitar string
 5. Vibrating systems
 5.1. What to know about vibrating systems
 5.2. Activitytodo : waves on a string
 5.3. Activitytodo : standing waves Istring (or spring)
 5.4. Activitytodo : standing waves IInodes in water bottles
 5.5. Activitytodo : 'seeing' sound waves
 5.6. Activitytodo : SHMsimple pendulum. How does the period depend on the amplitude of the swing in a simple pendulum?
 5.7. Activitytodo : how does the period depend on the length of a simple pendulum
 5.8. Activitytodo : how does the period of a pendulum change with lengthII
 5.9. Activitytodo : reflection I : ball and wall
 5.10. Activitytodo : reflection II : pencil and mirror
 5.11. Activitytodo : reflection III : verify the laws of reflection using lasers
 5.12. Activitytodo : reflection IV : verify the laws of reflection using pins
 5.13. Activitytodo : reflection V : reflections of sound waves
 5.14. Activitytodo : understanding interference
 5.15. Activitytodo : beats
 6. Damping and resonance in musical instruments
 6.1. What to know about resonance and damping
 6.2. Activitytodo : 'seeing' simple harmonic motionmass attached to a spring
 6.3. Activitytodo : spring forcecalculate the period (T)
 6.4. Activitytodo : damped simple harmonic oscillator (SHO)
 6.5. Sympathetic vibration
 6.6. Activitytodo : Helmholtz resonator
 6.7. Activitytodo : singing rods
 part III. Sound propagation. 7. Sound propagation
 7.1. What to know about sound propagation
 8. Factors impacting sound propagation
 8.1. What to know about factors impacting sound propagation
 8.2. Refraction
 8.3. Diffraction
 8.4. Activitytodo : Doppler effect
 part IV. Sound reception. 9. Sound power and sound intensity
 9.1. Terms to know about sound intensity and relevant concepts
 9.2. Pressure, force, energy
 9.3. Stress and strain
 9.4. Sound pressure level, sound power level and sound intensity level
 9.5. Loudness and loudness level
 10. The human factor
 10.1. Terms to know about human hearing and sight and relevant concepts
 10.2. Hearing and sight
 10.3. Leftbrained versus rightbrained
 10.4. Activitytodo : critical bands
 11. Psychoacoustics
 11.1. Terms to know about human hearing and sight and relevant concepts
 11.2. Binaural hearing
 11.3. Activitytodo : echolocation
 11.4. Activitytodo : masking
 12. Acoustics of rooms
 12.1. Terms to know about room acoustics
 12.2. Sound propagation
 12.3. Acoustics of rooms
 12.4. Designing spaces
 part V. Of sound and music. 13. Musical tones, pitch, timbre and vibrato
 13.1. Terms to know about musical tones and pitch
 13.2. Musical tones and pitch
 13.3. Vibrato
 13.4. Activitytodo : just notable difference (JND) for soundfrequency JND
 14. A musician's graph paper and musical scales
 14.1. Terms to know about musical graph paper
 part VI. Musical instruments. 15. String instruments
 15.1. Terms to know about string instruments
 15.2. String instruments
 15.3. Activitytodo : make your own guitar
 15.4. Soundboards
 15.5. Activitytodo : singing wineglasses
 16. Percussion instruments
 16.1. Terms to know about percussion instruments
 16.2. Activitytodo : class activity : homemade xylophone (pipe)
 16.3. Activitytodo : class activity : bottle xylophone
 16.4. Activitytodo : class activity : make your own kazoo
 17. Wind instruments
 17.1. What to know about wind instruments.
Articles+
Journal articles, ebooks, & other eresources
Guides
Course and topicbased guides to collections, tools, and services.