1  20
Next
Number of results to display per page
1. Matrix positivity [2020]
 Johnson, Charles R., author.
 Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2020
 Description
 Book — 1 online resource
 Summary

 Background
 1. Positivity classes
 2. Semipositive matrices
 3. Pmatrices
 4. Inverse Mmatrices
 5. Copositive matrices.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Kollár, János.
 Cambridge : Cambridge University Press, 2013.
 Description
 Book — 1 online resource (382 pages)
 Summary

 Preface Introduction
 1. Preliminaries
 2. Canonical and log canonical singularities
 3. Examples
 4. Adjunction and residues
 5. Semilogcanonical pairs
 6. Du Bois property
 7. Log centers and depth
 8. Survey of further results and applications
 9. Finite equivalence relations
 10. Appendices References Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
3. Assouad dimension and fractal geometry [2021]
 Fraser, Jonathan M., 1987 author.
 Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2021
 Description
 Book — 1 online resource
 Summary

 Part I. Theory:
 1. Fractal geometry and dimension theory
 2. The Assouad dimension
 3. Some variations on the Assouad dimension
 4. Dimensions of measures
 5. Weak tangents and microsets Part II. Examples:
 6. Iterated function systems
 7. Selfsimilar sets
 8. Selfaffine sets
 9. Further examples: attractors and limit sets
 10. Geometric constructions
 11. Two famous problems in geometric measure theory
 12. Conformal dimension Part III. Applications:
 13. Applications in embedding theory
 14. Applications in number theory
 15. Applications in probability theory
 16. Applications in functional analysis
 17. Future directions References List of notation Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Wendl, Chris, author.
 Cambridge ; New York, NY : Cambridge University Press, 2020
 Description
 Book — 1 online resource
 Summary

 Introduction
 1. Closed holomorphic curves in symplectic 4manifolds
 2. Intersections, ruled surfaces and contact boundaries
 3. Asymptotics of punctured holomorphic curves
 4. Intersection theory for punctured holomorphic curves
 5. Symplectic fillings of planar contact 3manifolds Appendix A. Properties of pseudoholomorphic curves Appendix B. Local positivity of intersections Appendix C. A quick survey of Siefring's intersection theory References Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Wendl, Chris, author.
 Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2020
 Description
 Book — viii, 185 pages : illustrations ; 24 cm
 Summary

 Introduction
 1. Closed holomorphic curves in symplectic 4manifolds
 2. Intersections, ruled surfaces and contact boundaries
 3. Asymptotics of punctured holomorphic curves
 4. Intersection theory for punctured holomorphic curves
 5. Symplectic fillings of planar contact 3manifolds Appendix A. Properties of pseudoholomorphic curves Appendix B. Local positivity of intersections Appendix C. A quick survey of Siefring's intersection theory References Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA613.659 .W46 2020  Unavailable Ask at circulation desk 
 Agler, Jim, author.
 Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2020
 Description
 Book — xv, 375 pages ; 24 cm
 Summary

 Part I. Commutative Theory:
 1. The origins of operatortheoretic approaches to function theory
 2. Operator analysis on D: model formulas, lurking Isometries, and positivity arguments
 3. Further development of models on the disc
 4. Operator analysis on D2
 5. CaratheodoryJulia theory on the disc and the bidisc
 6. Herglotz and Nevanlinna representations in several variables
 7. Model theory on the symmetrized bidisc
 8. Spectral sets: three case studies
 9. Calcular norms
 10. Operator monotone functions Part II. NonCommutative Theory:
 11. Motivation for noncommutative functions
 12. Basic properties of noncommutative functions
 13. Montel theorems
 14. Free holomorphic functions
 15. The implicit function theorem
 16. Noncommutative functional calculus Notation.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA329 .A384 2020  Unknown 
 Agler, Jim, author.
 Cambridge ; New York, NY : Cambridge University Press, 2020
 Description
 Book — 1 online resource
 Summary

 Part I. Commutative Theory:
 1. The origins of operatortheoretic approaches to function theory
 2. Operator analysis on D: model formulas, lurking Isometries, and positivity arguments
 3. Further development of models on the disc
 4. Operator analysis on D2
 5. CaratheodoryJulia theory on the disc and the bidisc
 6. Herglotz and Nevanlinna representations in several variables
 7. Model theory on the symmetrized bidisc
 8. Spectral sets: three case studies
 9. Calcular norms
 10. Operator monotone functions Part II. NonCommutative Theory:
 11. Motivation for noncommutative functions
 12. Basic properties of noncommutative functions
 13. Montel theorems
 14. Free holomorphic functions
 15. The implicit function theorem
 16. Noncommutative functional calculus Notation.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Dodson, Benjamin, 1983 author.
 Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2019.
 Description
 Book — xii, 242 pages ; 24 cm.
 Summary

 A first look at the masscritical problem
 The cubic NLS in dimensions three and four
 The energycritical problem in higher dimensions
 Masscritical NLS problem in higher dimensions
 Lowdimensional wellposedness results.
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QC174.26 .W28 D63 2019  Unknown 
 Meckes, Elizabeth S., author.
 Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2019.
 Description
 Book — xi, 212 pages : illustrations ; 24 cm.
 Summary

 1. Haar measure on the classical compact matrix groups
 2. Distribution of the entries
 3. Eigenvalue distributions: exact formulas
 4. Eigenvalue distributions: asymptotics
 5. Concentration of measure
 6. Geometric applications of measure concentration
 7. Characteristic polynomials and the zeta function.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA196.5 .M43 2019  Unknown 
10. Slenderness. Volume 1, Abelian categories [2019]
 Dimitric, Radoslav (Radoslav Milan), author.
 Cambridge : Cambridge University Press, 2019.
 Description
 Book — xii, 317 pages ; 24 cm.
 Summary

 Introduction
 1. Topological rings and modules and their completions
 2. Inverse limits
 3. The idea of slenderness
 4. Objects of type / \coprod
 5. Concrete examples. Slender rings
 6. More examples of slender objects Appendix. Ordered sets and measurable cardinals References Notation index Name Index Subject index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA611.28 .D56 2019  Unknown 
 Corvaja, Pietro, author.
 Cambridge, United Kingdom : Cambridge University Press, 2018.
 Description
 Book — x, 198 pages : illustrations ; 24 cm.
 Summary

 Notations and conventions Introduction
 1. Diophantine approximation and Diophantine equations
 2. Schmidt's subspace theorem and Sunit equations
 3. Integral points on curves and other varieties
 4. Diophantine equations with linear recurrences
 5. Some applications of the subspace theorem in transcendental number theory References Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA242 .C67 2018  Unknown 
12. Eigenvalues, multiplicities and graphs [2018]
 Johnson, Charles R., author.
 Cambridge, United Kingdom ; New York : Cambridge University Press, 2018.
 Description
 Book — xxii, 291 pages : illustrations ; 24 cm.
 Summary

 Background
 1. Introduction
 2. ParterWiener, etc. theory
 3. Maximum multiplicity for trees, I
 4. Multiple eigenvalues and structure
 5. Maximum multiplicity, II
 6. The minimum number of distinct eigenvalues
 7. Construction techniques
 8. Multiplicity lists for generalized stars
 9. Double generalized stars
 10. Linear trees
 11. Nontrees
 12. Geometric multiplicities for general matrices over a field.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA193 .J64 2018  Unknown 
13. The Mathieu groups [2018]
 Ivanov, A. A. (Aleksandr Anatolievich), 1958 author.
 Cambridge, United Kingdom : Cambridge University Press, 2018.
 Description
 Book — xi, 171 pages : illustrations ; 24 cm.
 Summary

 1. The Mathieu group M24 as we knew it
 2. Amalgam method
 3. L4(2) in two incarnations and L3(4)
 4. From L5(2) to the Mathieu amalgam
 5. M24 as universal completion
 6. Maximal subgroups
 7. 45representation of M24
 8. The Held group
 9. Inevitability of Mathieu groups
 10. Locally projective graphs and amalgams Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA171 .I93 2018  Unknown 
14. Fourier integrals in classical analysis [2017]
 Sogge, Christopher D. (Christopher Donald), 1960 author.
 Second edition.  Cambridge, United Kingdom ; New York, NY, USA ; Delhi, India ; Singapore : Cambridge University Press, 2017.
 Description
 Book — xiv, 334 pages : illustrations ; 24 cm.
 Summary

 Background
 1. Stationary phase
 2. Nonhomogeneous oscillatory integral operators
 3. Pseudodifferential operators
 4. The halfwave operator and functions of pseudodifferential operators
 5. Lp estimates of Eigenfunctions
 6. Fourier integral operators
 7. Propagation of singularities and refined estimates
 8. Local smoothing of fourier integral operators
 9. Kakeya type maximal operators Appendix. Lagrangian subspaces of T*Rn References Index of Notation Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA404 .S64 2017  Unknown 
15. Nonhomogeneous random walks : Lyapunov function methods for nearcritical stochastic systems [2017]
 Menʹshikov, M. V. (Mikhail Vasilʹevich), author.
 Cambridge, United Kingdom : Cambridge University Press, 2017.
 Description
 Book — xviii, 363 pages : illustrations ; 24 cm.
 Summary

 1. Introduction
 2. Semimartingale approach and Markov chains
 3. Lamperti's problem
 4. Manydimensional random walks
 5. Heavy tails
 6. Further applications
 7. Markov chains in continuous time Glossary of named assumptions Bibliography Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA274.73 .M46 2017  Unknown 
 Benson, D. J. (David J.), 1955 author.
 Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, [2017]
 Description
 Book — xvii, 328 pages : illustrations ; 24 cm.
 Summary

 Preface Introduction
 1. Modular representations and elementary abelian groups
 2. Cyclic groups of order p
 3. Background from algebraic geometry
 4. Jordan type
 5. Modules of constant Jordan type
 6. Vector bundles on projective space
 7. Chern classes
 8. Modules of constant Jordan type and vector bundles
 9. Examples
 10. Restrictions coming from Chern numbers
 11. Orlov's correspondence
 12. Phenomenology of modules over elementary abelian pgroups A. Modules for Z/p B. Problems References Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA180 .B46 2017  Unknown 
17. Auxiliary polynomials in number theory [2016]
 Masser, David William, 1948 author.
 Cambridge, United Kingdom : Cambridge University Press, 2016.
 Description
 Book — xviii, 348 pages ; 24 cm.
 Summary

 Introduction
 1. Prologue
 2. Irrationality I
 3. Irrationality II  Mahler's method
 4. Diophantine equations  Runge's method
 5. Irreducibility
 6. Elliptic curves  Stepanov's method
 7. Exponential sums
 8. Irrationality measures I  Mahler
 9. Integervalued entire functions I  Polya
 10. Integervalued entire functions II  Gramain
 11. Transcendence I  Mahler
 12. Irrationality measures II  Thue
 13. Transcendence II  HermiteLindemann
 14. Heights
 15. Equidistribution  Bilu
 16. Height lower bounds  Dobrowolski
 17. Height upper bounds
 18. Counting  BombieriPila
 19. Transcendence III  GelfondSchneiderLang
 20. Elliptic functions
 21. Modular functions
 22. Algebraic independence Appendix: Neron's square root References Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA241 .M395 2016  Unknown 
18. Probability on real Lie algebras [2016]
 Franz, Uwe author.
 New York, NY : Cambridge University Press, 2016.
 Description
 Book — xix, 281 pages : illustrations ; 24 cm.
 Summary

 Introduction
 1. Boson fock space
 2. Real Lie algebras
 3. Basic probability distributions on Lie algebras
 4. Noncommutative random variables
 5. Noncommutative stochastic integration
 6. Random variables on real Lie algebras
 7. Weyl calcuus on real Lie algebras
 8. Levy processes on real Lie algebras
 9. A guide to the Malliavin calculus
 10. Noncommutative Girsanov theorem
 11. Noncommutative integration by parts
 12. Smoothness of densities on real Lie algebras Appendix Exercise solutions.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA252.3 .F72 2016  Unknown 
 Benson, David J., author.
 Cambridge : Cambridge University Press, 2016.
 Description
 Book — 1 online resource (348 pages) : digital, PDF file(s).
 Summary

 Preface Introduction
 1. Modular representations and elementary abelian groups
 2. Cyclic groups of order p
 3. Background from algebraic geometry
 4. Jordan type
 5. Modules of constant Jordan type
 6. Vector bundles on projective space
 7. Chern classes
 8. Modules of constant Jordan type and vector bundles
 9. Examples
 10. Restrictions coming from Chern numbers
 11. Orlov's correspondence
 12. Phenomenology of modules over elementary abelian pgroups A. Modules for Z/p B. Problems References Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
20. Ridge functions [2015]
 Pinkus, Allan, 1946 author.
 Cambridge, United Kingdom : Cambridge University Press, 2015.
 Description
 Book — x, 207 pages : illustrations ; 24 cm.
 Summary

 Preface Glossary of selected symbols
 1. Introduction
 2. Smoothness
 3. Uniqueness
 4. Identifying functions and directions
 5. Polynomial ridge functions
 6. Density and representation
 7. Closure
 8. Existence and characterization of best approximations
 9. Approximation algorithms
 10. Integral representations
 11. Interpolation at points
 12. Interpolation on lines References Supplemental references Author index Subject index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  Request (opens in new tab) 
QA323 .P56 2015  Unknown 
Articles+
Journal articles, ebooks, & other eresources
Guides
Course and topicbased guides to collections, tools, and services.