1. Probability : theory and examples [2010]
- Book
- x, 428 p. : ill. ; 27 cm.
- 1. Measure theory-- 2. Laws of large numbers-- 3. Central limit theorems-- 4. Random walks-- 5. Martingales-- 6. Markov chains-- 7. Ergodic theorems-- 8. Brownian motion-- Appendix A. Measure theory details.
- (source: Nielsen Book Data)9780521765398 20160604
(source: Nielsen Book Data)9780521765398 20160604
- 1. Measure theory-- 2. Laws of large numbers-- 3. Central limit theorems-- 4. Random walks-- 5. Martingales-- 6. Markov chains-- 7. Ergodic theorems-- 8. Brownian motion-- Appendix A. Measure theory details.
- (source: Nielsen Book Data)9780521765398 20160604
(source: Nielsen Book Data)9780521765398 20160604
Cambridge Core Access limited to one user.
- Cambridge Core Access limited to one user.
- Safari Books Online
- Google Books (Full view)
Science Library (Li and Ma)
Science Library (Li and Ma) | Status |
---|---|
Stacks | |
QA273 .D865 2010 | Unknown On reserve at Li and Ma Science Library 2-hour loan |
STATS-310C-01
- Course
- STATS-310C-01 -- Theory of Probability
- Instructor(s)
- Dembo, Amir
2. Foundations of modern probability [2002]
- Book
- xvii, 638 p. ; 24 cm.
- Elements of measure theory-- processes, distributions, and independence-- random sequences, series, and sums-- characteristic functions and classical limit theorems-- conditioning and disintegration-- Martingales and optional times-- Markov property and discrete time chains-- random walk and renewal theory-- stationarity and ergodic theory-- Poisson and pure jump type Markov processes-- Gaussian processes and Brownian motion-- Skorohod embedding and invariance principles-- independent increment processes and null-arrays-- convergence of random processes, measures, and sets-- stochastic integrals and quadratic variation-- continuous martingales and Brownian motion-- Feller processes and semigroups-- SDEs and martingale problems-- local time, excursions, and additive functionals-- one-dimensional SDEs and diffusions-- connections with PDEs and potential theory-- predictability, compensation, and excessive functions-- semimartingales and stochastic integration.
- (source: Nielsen Book Data)9780387949574 20160528
(source: Nielsen Book Data)9780387949574 20160528
From the reviews of the first edition: "...Kallenberg's present book would have to qualify as the assimilation of probability par excellence. It is a great edifice of material, clearly and ingeniously presented, without any non-mathematical distractions. Readers wishing to venture into it may do so with confidence that they are in very capable hands." F.B. Knight, Mathematical ReviewsThis new edition contains four new chapters as well as numerous improvements throughout the text.
(source: Nielsen Book Data)9780387953137 20160528
- Elements of measure theory-- processes, distributions, and independence-- random sequences, series, and sums-- characteristic functions and classical limit theorems-- conditioning and disintegration-- Martingales and optional times-- Markov property and discrete time chains-- random walk and renewal theory-- stationarity and ergodic theory-- Poisson and pure jump type Markov processes-- Gaussian processes and Brownian motion-- Skorohod embedding and invariance principles-- independent increment processes and null-arrays-- convergence of random processes, measures, and sets-- stochastic integrals and quadratic variation-- continuous martingales and Brownian motion-- Feller processes and semigroups-- SDEs and martingale problems-- local time, excursions, and additive functionals-- one-dimensional SDEs and diffusions-- connections with PDEs and potential theory-- predictability, compensation, and excessive functions-- semimartingales and stochastic integration.
- (source: Nielsen Book Data)9780387949574 20160528
(source: Nielsen Book Data)9780387949574 20160528
From the reviews of the first edition: "...Kallenberg's present book would have to qualify as the assimilation of probability par excellence. It is a great edifice of material, clearly and ingeniously presented, without any non-mathematical distractions. Readers wishing to venture into it may do so with confidence that they are in very capable hands." F.B. Knight, Mathematical ReviewsThis new edition contains four new chapters as well as numerous improvements throughout the text.
(source: Nielsen Book Data)9780387953137 20160528
www.myilibrary.com MyiLibrary
- www.myilibrary.com MyiLibrary
- www.springerlink.com SpringerLink
- SpringerLink
- Google Books (Full view)
Science Library (Li and Ma)
Science Library (Li and Ma) | Status |
---|---|
Stacks | |
QA273 .K285 2002 | Unknown On reserve at Li and Ma Science Library 2-hour loan |
STATS-310C-01
- Course
- STATS-310C-01 -- Theory of Probability
- Instructor(s)
- Dembo, Amir
3. Brownian motion and stochastic calculus [1991]
- Book
- xxiii, 470 p. : ill. ; 24 cm.
- 1 Martingales, Stopping Times, and Filtrations.- 1.1. Stochastic Processes and ?-Fields.- 1.2. Stopping Times.- 1.3. Continuous-Time Martingales.- A. Fundamental inequalities.- B. Convergence results.- C. The optional sampling theorem.- 1.4. The Doob-Meyer Decomposition.- 1.5. Continuous, Square-Integrable Martingales.- 1.6. Solutions to Selected Problems.- 1.7. Notes.- 2 Brownian Motion.- 2.1. Introduction.- 2.2. First Construction of Brownian Motion.- A. The consistency theorem.- B. The Kolmogorov-?entsov theorem.- 2.3. Second Construction of Brownian Motion.- 2.4. The SpaceC[0, ?), Weak Convergence, and Wiener Measure.- A. Weak convergence.- B. Tightness.- C. Convergence of finite-dimensional distributions.- D. The invariance principle and the Wiener measure.- 2.5. The Markov Property.- A. Brownian motion in several dimensions.- B. Markov processes and Markov families.- C. Equivalent formulations of the Markov property.- 2.6. The Strong Markov Property and the Reflection Principle.- A. The reflection principle.- B. Strong Markov processes and families.- C. The strong Markov property for Brownian motion.- 2.7. Brownian Filtrations.- A. Right-continuity of the augmented filtration for a strong Markov process.- B. A "universal" filtration.- C. The Blumenthal zero-one law.- 2.8. Computations Based on Passage Times.- A. Brownian motion and its running maximum.- B. Brownian motion on a half-line.- C. Brownian motion on a finite interval.- D. Distributions involving last exit times.- 2.9. The Brownian Sample Paths.- A. Elementary properties.- B. The zero set and the quadratic variation.- C. Local maxima and points of increase.- D. Nowhere differentiability.- E. Law of the iterated logarithm.- F. Modulus of continuity.- 2.10. Solutions to Selected Problems.- 2.11. Notes.- 3 Stochastic Integration.- 3.1. Introduction.- 3.2. Construction of the Stochastic Integral.- A. Simple processes and approximations.- B. Construction and elementary properties of the integral.- C. A characterization of the integral.- D. Integration with respect to continuous, local martingales.- 3.3. The Change-of-Variable Formula.- A. The Ito rule.- B. Martingale characterization of Brownian motion.- C. Bessel processes, questions of recurrence.- D. Martingale moment inequalities.- E. Supplementary exercises.- 3.4. Representations of Continuous Martingales in Terms of Brownian Motion.- A. Continuous local martingales as stochastic integrals with respect to Brownian motion.- B. Continuous local martingales as time-changed Brownian motions.- C. A theorem of F. B. Knight.- D. Brownian martingales as stochastic integrals.- E. Brownian functionals as stochastic integrals.- 3.5. The Girsanov Theorem.- A. The basic result.- B. Proof and ramifications.- C. Brownian motion with drift.- D. The Novikov condition.- 3.6. Local Time and a Generalized Ito Rule for Brownian Motion.- A. Definition of local time and the Tanaka formula.- B. The Trotter existence theorem.- C. Reflected Brownian motion and the Skorohod equation.- D. A generalized Ito rule for convex functions.- E. The Engelbert-Schmidt zero-one law.- 3.7. Local Time for Continuous Semimartingales.- 3.8. Solutions to Selected Problems.- 3.9. Notes.- 4 Brownian Motion and Partial Differential Equations.- 4.1. Introduction.- 4.2. Harmonic Functions and the Dirichlet Problem.- A. The mean-value property.- B. The Dirichlet problem.- C. Conditions for regularity.- D. Integral formulas of Poisson.- E. Supplementary exercises.- 4.3. The One-Dimensional Heat Equation.- A. The Tychonoff uniqueness theorem.- B. Nonnegative solutions of the heat equation.- C. Boundary crossing probabilities for Brownian motion.- D. Mixed initial/boundary value problems.- 4.4. The Formulas of Feynman and Kac.- A. The multidimensional formula.- B. The one-dimensional formula.- 4.5. Solutions to selected problems.- 4.6. Notes.- 5 Stochastic Differential Equations.- 5.1. Introduction.- 5.2. Strong Solutions.- A. Definitions.- B. The Ito theory.- C. Comparison results and other refinements.- D. Approximations of stochastic differential equations.- E. Supplementary exercises.- 5.3. Weak Solutions.- A. Two notions of uniqueness.- B. Weak solutions by means of the Girsanov theorem.- C. A digression on regular conditional probabilities.- D. Results of Yamada and Watanabe on weak and strong solutions.- 5.4. The Martingale Problem of Stroock and Varadhan.- A. Some fundamental martingales.- B. Weak solutions and martingale problems.- C. Well-posedness and the strong Markov property.- D. Questions of existence.- E. Questions of uniqueness.- F. Supplementary exercises.- 5.5. A Study of the One-Dimensional Case.- A. The method of time change.- B. The method of removal of drift.- C. Feller's test for explosions.- D. Supplementary exercises.- 5.6. Linear Equations.- A. Gauss-Markov processes.- B. Brownian bridge.- C. The general, one-dimensional, linear equation.- D. Supplementary exercises.- 5.7. Connections with Partial Differential Equations.- A. The Dirichlet problem.- B. The Cauchy problem and a Feynman-Kac representation.- C. Supplementary exercises.- 5.8. Applications to Economics.- A. Portfolio and consumption processes.- B. Option pricing.- C. Optimal consumption and investment (general theory).- D. Optimal consumption and investment (constant coefficients).- 5.9. Solutions to Selected Problems.- 5.10. Notes.- 6 P. Levy's Theory of Brownian Local Time.- 6.1. Introduction.- 6.2. Alternate Representations of Brownian Local Time.- A. The process of passage times.- B. Poisson random measures.- C. Subordinators.- D. The process of passage times revisited.- E. The excursion and downcrossing representations of local time.- 6.3. Two Independent Reflected Brownian Motions.- A. The positive and negative parts of a Brownian motion.- B. The first formula of D. Williams.- C. The joint density of (W(t), L(t), ? +(t)).- 6.4. Elastic Brownian Motion.- A. The Feynman-Kac formulas for elastic Brownian motion.- B. The Ray-Knight description of local time.- C. The second formula of D. Williams.- 6.5. An Application: Transition Probabilities of Brownian Motion with Two-Valued Drift.- 6.6. Solutions to Selected Problems.- 6.7. Notes.
- (source: Nielsen Book Data)9780387976556 20160605
(source: Nielsen Book Data)9780387976556 20160605
- 1 Martingales, Stopping Times, and Filtrations.- 1.1. Stochastic Processes and ?-Fields.- 1.2. Stopping Times.- 1.3. Continuous-Time Martingales.- A. Fundamental inequalities.- B. Convergence results.- C. The optional sampling theorem.- 1.4. The Doob-Meyer Decomposition.- 1.5. Continuous, Square-Integrable Martingales.- 1.6. Solutions to Selected Problems.- 1.7. Notes.- 2 Brownian Motion.- 2.1. Introduction.- 2.2. First Construction of Brownian Motion.- A. The consistency theorem.- B. The Kolmogorov-?entsov theorem.- 2.3. Second Construction of Brownian Motion.- 2.4. The SpaceC[0, ?), Weak Convergence, and Wiener Measure.- A. Weak convergence.- B. Tightness.- C. Convergence of finite-dimensional distributions.- D. The invariance principle and the Wiener measure.- 2.5. The Markov Property.- A. Brownian motion in several dimensions.- B. Markov processes and Markov families.- C. Equivalent formulations of the Markov property.- 2.6. The Strong Markov Property and the Reflection Principle.- A. The reflection principle.- B. Strong Markov processes and families.- C. The strong Markov property for Brownian motion.- 2.7. Brownian Filtrations.- A. Right-continuity of the augmented filtration for a strong Markov process.- B. A "universal" filtration.- C. The Blumenthal zero-one law.- 2.8. Computations Based on Passage Times.- A. Brownian motion and its running maximum.- B. Brownian motion on a half-line.- C. Brownian motion on a finite interval.- D. Distributions involving last exit times.- 2.9. The Brownian Sample Paths.- A. Elementary properties.- B. The zero set and the quadratic variation.- C. Local maxima and points of increase.- D. Nowhere differentiability.- E. Law of the iterated logarithm.- F. Modulus of continuity.- 2.10. Solutions to Selected Problems.- 2.11. Notes.- 3 Stochastic Integration.- 3.1. Introduction.- 3.2. Construction of the Stochastic Integral.- A. Simple processes and approximations.- B. Construction and elementary properties of the integral.- C. A characterization of the integral.- D. Integration with respect to continuous, local martingales.- 3.3. The Change-of-Variable Formula.- A. The Ito rule.- B. Martingale characterization of Brownian motion.- C. Bessel processes, questions of recurrence.- D. Martingale moment inequalities.- E. Supplementary exercises.- 3.4. Representations of Continuous Martingales in Terms of Brownian Motion.- A. Continuous local martingales as stochastic integrals with respect to Brownian motion.- B. Continuous local martingales as time-changed Brownian motions.- C. A theorem of F. B. Knight.- D. Brownian martingales as stochastic integrals.- E. Brownian functionals as stochastic integrals.- 3.5. The Girsanov Theorem.- A. The basic result.- B. Proof and ramifications.- C. Brownian motion with drift.- D. The Novikov condition.- 3.6. Local Time and a Generalized Ito Rule for Brownian Motion.- A. Definition of local time and the Tanaka formula.- B. The Trotter existence theorem.- C. Reflected Brownian motion and the Skorohod equation.- D. A generalized Ito rule for convex functions.- E. The Engelbert-Schmidt zero-one law.- 3.7. Local Time for Continuous Semimartingales.- 3.8. Solutions to Selected Problems.- 3.9. Notes.- 4 Brownian Motion and Partial Differential Equations.- 4.1. Introduction.- 4.2. Harmonic Functions and the Dirichlet Problem.- A. The mean-value property.- B. The Dirichlet problem.- C. Conditions for regularity.- D. Integral formulas of Poisson.- E. Supplementary exercises.- 4.3. The One-Dimensional Heat Equation.- A. The Tychonoff uniqueness theorem.- B. Nonnegative solutions of the heat equation.- C. Boundary crossing probabilities for Brownian motion.- D. Mixed initial/boundary value problems.- 4.4. The Formulas of Feynman and Kac.- A. The multidimensional formula.- B. The one-dimensional formula.- 4.5. Solutions to selected problems.- 4.6. Notes.- 5 Stochastic Differential Equations.- 5.1. Introduction.- 5.2. Strong Solutions.- A. Definitions.- B. The Ito theory.- C. Comparison results and other refinements.- D. Approximations of stochastic differential equations.- E. Supplementary exercises.- 5.3. Weak Solutions.- A. Two notions of uniqueness.- B. Weak solutions by means of the Girsanov theorem.- C. A digression on regular conditional probabilities.- D. Results of Yamada and Watanabe on weak and strong solutions.- 5.4. The Martingale Problem of Stroock and Varadhan.- A. Some fundamental martingales.- B. Weak solutions and martingale problems.- C. Well-posedness and the strong Markov property.- D. Questions of existence.- E. Questions of uniqueness.- F. Supplementary exercises.- 5.5. A Study of the One-Dimensional Case.- A. The method of time change.- B. The method of removal of drift.- C. Feller's test for explosions.- D. Supplementary exercises.- 5.6. Linear Equations.- A. Gauss-Markov processes.- B. Brownian bridge.- C. The general, one-dimensional, linear equation.- D. Supplementary exercises.- 5.7. Connections with Partial Differential Equations.- A. The Dirichlet problem.- B. The Cauchy problem and a Feynman-Kac representation.- C. Supplementary exercises.- 5.8. Applications to Economics.- A. Portfolio and consumption processes.- B. Option pricing.- C. Optimal consumption and investment (general theory).- D. Optimal consumption and investment (constant coefficients).- 5.9. Solutions to Selected Problems.- 5.10. Notes.- 6 P. Levy's Theory of Brownian Local Time.- 6.1. Introduction.- 6.2. Alternate Representations of Brownian Local Time.- A. The process of passage times.- B. Poisson random measures.- C. Subordinators.- D. The process of passage times revisited.- E. The excursion and downcrossing representations of local time.- 6.3. Two Independent Reflected Brownian Motions.- A. The positive and negative parts of a Brownian motion.- B. The first formula of D. Williams.- C. The joint density of (W(t), L(t), ? +(t)).- 6.4. Elastic Brownian Motion.- A. The Feynman-Kac formulas for elastic Brownian motion.- B. The Ray-Knight description of local time.- C. The second formula of D. Williams.- 6.5. An Application: Transition Probabilities of Brownian Motion with Two-Valued Drift.- 6.6. Solutions to Selected Problems.- 6.7. Notes.
- (source: Nielsen Book Data)9780387976556 20160605
(source: Nielsen Book Data)9780387976556 20160605
Science Library (Li and Ma)
Science Library (Li and Ma) | Status |
---|---|
Stacks | |
QA274.75 .K37 1998 | Unknown On reserve at Li and Ma Science Library 2-hour loan |
STATS-310C-01
- Course
- STATS-310C-01 -- Theory of Probability
- Instructor(s)
- Dembo, Amir