1  7
Number of results to display per page
 Heinzel, Thomas.
 3rd rev. and enlarged ed.  Weinheim : WileyVCH, c2010.
 Description
 Book — xv, 439 p. : ill. ; 25 cm.
 Summary

 Introduction An Update of Solid State Physics Surfaces, Interfaces, and Layered Devices Experimental Techniques Important Quantities in Mesoscopic Transport Magnetotransport Properties of Quantum Films Quantum Wires and Quantum Point Contacts Modeling of Ballistic transport in mesoscopic structures Electronic Phase Coherence Single Electron Tunneling Quantum Dots Mesoscopic Superlattices Spintronics.
 (source: Nielsen Book Data)
(source: Nielsen Book Data) 9783527409327 20160605
 Online
Engineering Library (Terman)
Engineering Library (Terman)  Status 

On reserve: Ask at circulation desk  
QC176.8 .M46 H45 2010  Unknown 1day loan 
PHYSICS27501
 Course
 PHYSICS27501  Electrons in nanostructures
 Instructor(s)
 GoldhaberGordon, David
 Heinzel, Thomas.
 2nd completely rev. and enl. ed.  Weinheim [Germany] : WileyVCH, c2007.
 Description
 Book — xv, 395 p. : ill. ; 24 cm.
 Summary

 Preface.
 1 Introduction. 1.1 Preliminary remarks. 1.2 Mesoscopic transport. 1.2.1 Ballistic transport. 1.2.2 The quantum Hall effect and Shubnikovde Haas oscillations. 1.2.3 Size quantization. 1.2.4 Phase coherence. 1.2.5 Singleelectron tunneling and quantum dots. 1.2.6 Superlattices. 1.2.7 Spintronics. 1.2.8 Samples, experimental techniques, and technological relevance.
 2 An update of solid state physics. 2.1 Crystal structures. 2.2 Electronic energy bands. 2.3 Occupation of energy bands. 2.3.1 The electronic density of states. 2.3.2 Occupation probability and chemical potential. 2.3.3 Intrinsic carrier concentration. 2.3.4 Bloch waves and localized electrons. 2.4 Envelope wave functions. 2.5 Doping. 2.6 Diffusive transport and the Boltzmann equation. 2.6.1 The Boltzmann equation. 2.6.2 The conductance predicted by the simplified Boltzmann equation. 2.6.3 The magnetoresistivity tensor. 2.6.4 Diffusion currents. 2.7 Scattering mechanisms. 2.8 Screening.
 3 Surfaces, interfaces, and layered devices. 3.1 Electronic surface states. 3.1.1 Surface states in one dimension. 3.1.2 Surfaces of threedimensional crystals. 3.1.3 Band bending and Fermi level pinning. 3.2 Semiconductormetal interfaces. 3.2.1 Band alignment and Schottky barriers. 3.2.1.1 The Schottky model. 3.2.1.2 The Schottky diode. 3.2.2 Ohmic contacts. 3.3 Semiconductor heterointerfaces. 3.4 Field effect transistors and quantum wells. 3.4.1 The silicon metaloxidesemiconductor field effect transistor. 3.4.1.1 The MOSFET and digital electronics. 3.4.2 The Ga[Al]As high electron mobility transistor. 3.4.3 Other types of layered devices. 3.4.3.1 The AlSbInAsAlSb quantum well. 3.4.3.2 Hole gas in SiSi1 xGexSi quantum wells. 3.4.3.3 Organic FETs. 3.4.4 Quantum confined carriers in comparison to bulk carriers.
 4 Experimental techniques. 4.1 Sample preparation. 4.1.1 Single crystal growth. 4.1.2 Growth of layered structures. 4.1.2.1 Metal organic chemical vapor deposition (MOCVD). 4.1.2.2 Molecular beam epitaxy (MBE). 4.1.3 Lateral patterning. 4.1.3.1 Defining patterns in resists. 4.1.3.2 Direct writing methods. 4.1.3.3 Etching. 4.1.4 Metallization. 4.1.5 Bonding. 4.2 Elements of cryogenics. 4.2.1 Properties of liquid helium. 4.2.1.1 Some properties of pure 4He. 4.2.1.2 Some properties of pure 3He. 4.2.1.3 The 3He/4He mixture. 4.2.2 Helium cryostats. 4.2.2.1 4He cryostats. 4.2.2.2 3He cryostats. 4.2.2.3 3He/4He dilution refrigerators. 4.3 Electronic measurements on nanostructures. 4.3.1 Sample holders. 4.3.2 Application and detection of electronic signals. 4.3.2.1 General considerations. 4.3.2.2 Voltage and current sources. 4.3.2.3 Signal detectors. 4.3.2.4 Some important measurement setups.
 5 Important quantities in mesoscopic transport. 5.1 Fermi wavelength. 5.2 Elastic scattering times and lengths. 5.3 Diffusion constant. 5.4 Dephasing time and phase coherence length. 5.5 Electronelectron scattering time. 5.6 Thermal length. 5.7 Localization length. 5.8 Interaction parameter (or gas parameter). 5.9 Magnetic length and magnetic time.
 6 Magnetotransport properties of quantum films. 6.1 Landau quantization. 6.1.1 Twodimensional electron gases in perpendicular magnetic fields. 6.1.2 The chemical potential in strong magnetic fields. 6.2 The quantum Hall effect. 6.2.1 Phenomenology. 6.2.2 Toward an explanation of the integer quantum Hall effect. 6.2.3 The quantum Hall effect and three dimensions. 6.3 Elementary analysis of Shubnikovde Haas oscillations. 6.4 Some examples of magnetotransport experiments. 6.4.1 Quasitwodimensional electron gases. 6.4.2 Mapping of the probability density. 6.4.3 Displacement of the quantum Hall plateaux. 6.5 Parallel magnetic fields.
 7 Quantum wires and quantum point contacts. 7.1 Diffusive quantum wires. 7.1.1 Basic properties. 7.1.2 Boundary scattering. 7.2 Ballistic quantum wires. 7.2.1 Phenomenology. 7.2.2 Conductance quantization in QPCs. 7.2.3 Magnetic field effects. 7.2.4 The "0.7 structure". 7.2.5 Fourprobe measurements on ballistic quantum wires. 7.3 The LandauerButtiker formalism. 7.3.1 Edge states. 7.3.2 Edge channels. 7.4 Further examples of quantum wires. 7.4.1 Conductance quantization in conventional metals. 7.4.2 Molecular wires. 7.4.2.1 Carbon nanotubes. 7.5 Quantum point contact circuits. 7.5.1 NonOhmic behavior of QPCs in series. 7.5.2 QPCs in parallel. 7.6 Semiclassical limit: conductance of ballistic 2D systems. 7.7 Concluding remarks.
 8 Electronic phase coherence. 8.1 The AharonovBohm effect in mesoscopic conductors. 8.2 Weak localization. 8.3 Universal conductance fluctuations. 8.4 Phase coherence in ballistic 2DEGs. 8.5 Resonant tunneling and smatrices.
 9 Singleelectron tunneling. 9.1 The principle of Coulomb blockade. 9.2 Basic singleelectron tunneling circuits. 9.2.1 Coulomb blockade at the double barrier. 9.2.2 Currentvoltage characteristics: The Coulomb staircase. 9.2.3 The SET transistor. 9.3 SET circuits with many islands: The singleelectron pump.
 10 Quantum dots. 10.1 Phenomenology of quantum dots. 10.2 The constant interaction model. 10.2.1 Quantum dots in intermediate magnetic fields. 10.2.2 Quantum rings. 10.3 Beyond the constant interaction model. 10.3.1 Hund's rules in quantum dots. 10.3.2 Quantum dots in strong magnetic fields. 10.3.3 The distribution of nearestneighbor spacings. 10.4 Shape of conductance resonances and IV characteristics. 10.5 Other types of quantum dots. 10.5.1 Metal grains. 10.5.2 Molecular quantum dots. 10.6 Quantum dots and quantum computation.
 11 Mesoscopic superlattices. 11.1 Onedimensional superlattices. 11.2 Twodimensional superlattices. 11.2.1 Semiclassical effects. 11.2.2 Quantum effects.
 12 Spintronics. 12.1 Ferromagnetic sandwich structures. 12.1.1 Tunneling magnetoresistance (TMR) and giant magnetoresistance (GMR). 12.1.2 Spin injection into a nonmagnetic conductor. 12.2 The DattaDas spin field effect transistor. 12.2.1 Concept of the DattaDas transistor. 12.2.2 Spin injection in semiconductors. 12.2.2.1 Interface tunnel barriers. 12.2.2.2 Ferromagnetic semiconductors. 12.2.3 Gateinduced spin rotation: The Rashba effect. 12.2.4 Spin relaxation and spin dephasing. A SI and cgs units. B Correlation and convolution. B.1 Fourier transformation. B.2 Convolutions. B.3 Correlation functions. C Capacitance matrix and electrostatic energy. D The transfer Hamiltonian. E Solutions to selected exercises. References. Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data) 9783527406388 20160528
 Online

 dx.doi.org Wiley Online Library
 Google Books (Full view)
Engineering Library (Terman), eReserve
Engineering Library (Terman)  Status 

On reserve: Ask at circulation desk  
QC176.8 .M46 H45 2007  Unknown 1day loan 
eReserve  Status 

Instructor's copy  
(no call number)  Unknown 
PHYSICS27501
 Course
 PHYSICS27501  Electrons in nanostructures
 Instructor(s)
 GoldhaberGordon, David
 Heinzel, Thomas.
 Weinheim : WileyVCH, 2003.
 Description
 Book — 337 p. : ill. ; 24 cm.
 Summary

 1. Introduction. 1.1 Preliminary remarks. 1.2 Mesoscopic transport. 1.2.1 Ballistic transport. 1.2.2 The quantum Hall effect and Shubnikov
 de Haas oscillations. 1.2.3 Size quantization. 1.2.4 Phase coherence. 1.2.5 Single electron tunnelling and quantum dots. 1.2.6 Superlattices. 1.2.7 Samples and experimental techniques.
 2 An Update of Solid State Physics. 2.1 Crystal structures. 2.2 Electronic energy bands. 2.3 Occupation of energy bands. 2.3.1 The electronic density of states. 2.3.2 Occupation probability and chemical potential. 2.3.3 Intrinsic carrier concentration. 2.4 Envelope wave functions. 2.5 Doping. 2.6 Diffusive transport and the Boltzmann equation. 2.6.1 The Boltzmann equation. 2.6.2 The conductance predicted by the simplified Boltzmann equation. 2.6.3 The magnetoresistivity tensor. 2.7 Scattering mechanisms. 2.8 Screening.
 3 Surfaces, Interfaces, and Layered Devices. 3.1 Electronic surface states. 3.1.1 Surface states in one dimension. 3.1.2 Surfaces of 3dimensional crystals. 3.1.3 Band bending and Fermi level pinning. 3.2 Semiconductormetal interfaces. 3.2.1 Band alignment and Schottky barriers. 3.2.2 Ohmic contacts. 3.3 Semiconductor heterointerfaces. 3.4 Field effect transistors and quantum wells. 3.4.1 The silicon metaloxidesemiconductor FET (SiMOSFET). 3.4.2 The Ga[Al]As high electron mobility transistor (GaAsHEMT). 3.4.3 Other types of layered devices. 3.4.4 Quantum confined carriers in comparison to bulk carriers.
 4 Experimental Techniques. 4.1 Sample fabrication. 4.1.1 Single crystal growth. 4.1.2 Growth of layered structures. 4.1.3 Lateral patterning. 4.1.4 Metallization. 4.1.5 Bonding. 4.2 Elements of cryogenics. 4.2.1 Properties of liquid helium. 4.2.2 Helium cryostats. 4.3 Electronic measurements on nanostructures. 4.3.1 Sample holders. 4.3.2 Application and detection of electronic signals.
 5 Important Quantities in Mesoscopic Transport.
 6 Magnetotransport Properties of Quantum Films. 6.1 Landau quantization. 6.1.1 2DEGs in perpendicular magnetic fields. 6.1.2 The chemical potential in strong magnetic fields. 6.2 The quantum Hall effect. 6.2.1 Phenomenology. 6.2.2 Origin of the integer quantum Hall effect. 6.2.3 The quantum Hall effect and three dimensions. 6.3 Elementary analysis of Shubnikovde Haas oscillations. 6.4 Some examples of magnetotransport experiments. 6.4.1 Quasitwodimensional electron gases. 6.4.2 Mapping of the probability density. 6.4.3 Displacement of the quantum Hall plateaux. 6.5 Parallel magnetic fields.
 7 QuantumWires and Quantum Point Contacts. 7.1 Diffusive quantum wires. 7.1.1 Basic properties. 7.1.2 Boundary scattering. 7.2 Ballistic quantum wires. 7.2.1 Phenomenology. 7.2.2 Conductance quantization in QPCs. 7.2.3 Magnetic field effects. 7.2.4 The "0.7 structure". 7.2.5 Fourprobe measurements on ballistic quantum wires. 7.3 The LandauerB uttiker formalism. 7.3.1 Edge states. 7.3.2 Edge channels. 7.4 Further examples of quantum wires. 7.4.1 Conductance quantization in conventional metals. 7.4.2 Carbon nanotubes. 7.5 Quantum point contact circuits. 7.5.1 Nonohmic behavior of collinear QPCs. 7.5.2 QPCs in parallel. 7.6 Concluding remarks.
 8. Electronic Phase Coherence. 8.1 The AharonovBohm effect in mesoscopic conductors. 8.2 Weak localization. 8.3 Universal conductance fluctuations. 8.4 Phase coherence in ballistic 2DEGs. 8.5 Resonant tunnelling and S
 matrices.
 9 Singe Electron Tunnelling. 9.1 The principle of Coulomb blockade. 9.2 Basic single electron tunnelling circuits. 9.2.1 Coulomb blockade at the double barrier. 9.2.2 Currentvoltage characteristics: the Coulomb staircase. 9.2.3 The SET transistor. 9.3 SET circuits with many islands the single electron pump.
 10 Quantum Dots. 10.1 Phenomenology of quantum dots. 10.2 The constant interaction model. 10.3 Beyond the constant interaction model. 10.4 Shape of conductance resonances and currentvoltage characteristics. 10.5 Other types of quantum dots.
 11 Mesoscopic Superlattices. 11.1 Onedimensional superlattices. 11.2 Twodimensional superlattices. A SI and cgs Units. Appendices. B Correlation and Convolution. B.1 Fourier transformation. B.2 Convolutions. B.3 Correlation functions. C Capacitance Matrix and Electrostatic Energy. D The Transfer Hamiltonian. E Solutions to Selected Exercises. References. Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data) 9783527403752 20160527
 Online
Engineering Library (Terman)
Engineering Library (Terman)  Status 

On reserve: Ask at circulation desk  
QC176.8 .M46 H45 2003  Unknown 1day loan 
QC176.8 .M46 H45 2003  Unknown 1day loan 
PHYSICS27501
 Course
 PHYSICS27501  Electrons in nanostructures
 Instructor(s)
 GoldhaberGordon, David
4. Introduction to mesoscopic physics [2002]
 Imry, Yoseph.
 2nd ed.  Oxford ; New York : Oxford University Press, 2002.
 Description
 Book — xiii, 236 p. : ill. ; 25 cm.
 Summary

 Preface Preface to the second edition List of symbols
 1. Introduction and a brief review of experimental systems
 2. Quantum transport, Anderson Localization
 3. Dephasing by coupling with the environment, application to Coulomb electronelectron interactions in metals
 4. Mesoscopic effects in equilibrium and static properties
 5. Quantum interference effects in transport properties, the Landauer formulation and applications
 6. The Quantum Hall Effect
 7. Mesoscopics with superconductivity
 8. Noise in mesoscopic systems
 9. Concluding remarks A. The Kubo, linear response, formulation B. The KuboGreenwood Conductivity and the EdwardsThouless Relationships C. The AharonovBohm Effect and the ByersYang and Bloch Theorem D. Derivation of matrix elements in the diffusion regime E. Careful treatment of dephasing in 2D conductors at low temperatures F. Anomalies in the density of states (DOS) G. Quasiclassical theory of spectral correlations H. Details of the fourterminal formulation I. Universality of the conductance fluctuations in terms of the universal correlation of transmission eigenvalues J. The conductance of ballistic 'point contacts'.
 (source: Nielsen Book Data)
(source: Nielsen Book Data) 9780198507383 20160528
 Online
Engineering Library (Terman)
Engineering Library (Terman)  Status 

On reserve: Ask at circulation desk  
QC176.8 .M46 I47 2002  Unknown 1day loan 
QC176.8 .M46 I47 2002  Unknown 1day loan 
PHYSICS27501
 Course
 PHYSICS27501  Electrons in nanostructures
 Instructor(s)
 GoldhaberGordon, David
 Davies, J. H. (John H.)
 Cambridge, U.K. ; New York, NY, USA : Cambridge University Press, 1998.
 Description
 Book — xviii, 438 p. : ill. ; 26 cm.
 Summary

 Preface Introduction
 1. Foundations
 2. Electrons and phonons in crystals
 3. Heterostructures
 4. Quantum wells and lowdimensional systems
 5. Tunnelling transport
 6. Electric and magnetic fields
 7. Approximate methods
 8. Scattering rates: the Golden Rule
 9. The twodimensional electron gas
 10. Optical properties of quantum wells
 Appendix 1. Table of physical constants
 Appendix 2. Properties of important semiconductors
 Appendix 3. Properties of GaAsAlAs alloys at room temperature
 Appendix 4. Hermite's equation: harmonic oscillator
 Appendix 5. Airy functions: triangular well
 Appendix 6. KramersKronig relations and response functions Bibliography.
 (source: Nielsen Book Data)
(source: Nielsen Book Data) 9780521484916 20160528
Engineering Library (Terman), SAL3 (offcampus storage), eReserve
Engineering Library (Terman)  Status 

On reserve: Ask at circulation desk  
QC611.8 .L68 D39 1998  Unknown 1day loan 
SAL3 (offcampus storage)  Status 

Stacks  Request 
QC611.8 .L68 D39 1998  Available 
eReserve  Status 

Instructor's copy  
(no call number)  Unknown 
PHYSICS27501
 Course
 PHYSICS27501  Electrons in nanostructures
 Instructor(s)
 GoldhaberGordon, David
 Datta, Supriyo, 1954
 Cambridge ; New York : Cambridge University Press, 1995.
 Description
 Book — 377 p.
 Summary

 1. Preliminary concepts
 2. Conductance from transmission
 3. Transmission function, Smatrix and Green's functions
 4. Quantum Hall effect
 5. Localisation and fluctuations
 6. Doublebarrier tunnelling
 7. Optical analogies
 8. Nonequilibrium Green's function formalism.
 (source: Nielsen Book Data)
(source: Nielsen Book Data) 9780521416047 20160528
Engineering Library (Terman), eReserve
Engineering Library (Terman)  Status 

On reserve: Ask at circulation desk  
QC611.6 .E45 D38 1995  Unknown 1day loan 
QC611.6 .E45 D38 1995  Unknown 1day loan 
eReserve  Status 

Instructor's copy  
(no call number)  Unknown 
PHYSICS27501
 Course
 PHYSICS27501  Electrons in nanostructures
 Instructor(s)
 GoldhaberGordon, David
 New York, Academic Press, 1955
 Description
 Journal/Periodical — v. diagrs. 24 cm.
SAL3 (offcampus storage), eReserve
SAL3 (offcampus storage)  Status 

Stacks

Request 
539.1 .S686 V.60 2006  Available 
539.1 .S686 V.59 2004  Available 
539.1 .S686 V.58 2004  Available 
539.1 .S686 V.57 2002  Available 
539.1 .S686 V.56 2001  Available 
539.1 .S686 V.55 2000  Available 
539.1 .S686 V.54 2000  Available 
539.1 .S686 V.53 1999  Available 
539.1 .S686 V.52 1999  Available 
539.1 .S686 V.51 1997  Available 
539.1 .S686 V.50 1996  Available 
539.1 .S686 V.49 1995  Available 
539.1 .S686 V.48 1994  Available 
539.1 .S686 V.47 1994  Available 
539.1 .S686 V.46 1992  Available 
539.1 .S686 V.16 1964  Available 
539.1 .S686 V.15 1963  Available 
539.1 .S686 V.14 1963  Available 
539.1 .S686 V.13 1962  Available 
539.1 .S686 V.12 1961  Available 
539.1 .S686 V.11 1960 INDEX:110  Available 
539.1 .S686 V.10 1960  Available 
539.1 .S686 V.9 1959  Available 
539.1 .S686 V.8 1959  Available 
539.1 .S686 V.7 1958  Available 
539.1 .S686 V.6 SUPPL  Available 
539.1 .S686 V.6 1958  Available 
539.1 .S686 V.5 SUPPL  Available 
539.1 .S686 V.5 1957  Available 
539.1 .S686 V.4 SUPPL  Available 
539.1 .S686 V.4 1957  Available 
539.1 .S686 V.3 SUPPL  Available 
539.1 .S686 V.3 1956  Available 
539.1 .S686 V.2 SUPPL  Available 
539.1 .S686 V.2 1956  Available 
539.1 .S686 V.1 SUPPL  Available 
539.1 .S686 V.1 1955  Available 
QC173 .S477 V.45 1991  Available 
QC173 .S477 V.44 1991  Available 
QC173 .S477 V.43 1990  Available 
QC173 .S477 V.42 1989  Available 
QC173 .S477 V.41 1988  Available 
QC173 .S477 V.40 1987  Available 
QC173 .S477 V.39 1986  Available 
QC173 .S477 V.38 1984  Available 
QC173 .S477 V.37 1982  Available 
QC173 .S477 V.36 1981  Available 
QC173 .S477 V.35 1980  Available 
QC173 .S477 V.34 1979  Available 
QC173 .S477 V.33 1978  Available 
QC173 .S477 V.32 1977  Available 
QC173 .S477 V.31 1976  Available 
QC173 .S477 V.30 1975  Available 
QC173 .S477 V.29 1974  Available 
QC173 .S477 V.28 1973  Available 
QC173 .S477 V.27 1972  Available 
QC173 .S477 V.26 1971  Available 
QC173 .S477 V.25 1970  Available 
QC173 .S477 V.24 1970  Available 
QC173 .S477 V.23 1969  Available 
QC173 .S477 V.22 1968  Available 
QC173 .S477 V.21 1968  Available 
QC173 .S477 V.20 1967  Available 
QC173 .S477 V.19 1966  Available 
QC173 .S477 V.18 1966  Available 
QC173 .S477 V.17 1965  Available 
eReserve  Status 

Instructor's copy  
(no call number)  Unknown 
PHYSICS27501
 Course
 PHYSICS27501  Electrons in nanostructures
 Instructor(s)
 GoldhaberGordon, David