%{search_type} search results

2 catalog results

RSS feed for this result
Book
x, 281 pages : illustrations ; 27 cm.
  • * Introduction* Where do PDE come from* First order scalar semilinear equations* First order scalar quasilinear equations* Distributions and weak derivatives* Second order constant coefficient PDE: Types and d'Alembert's solution of the wave equation* Properties of solutions of second order PDE: Propagation, energy estimates and the maximum principle* The Fourier transform: Basic properties, the inversion formula and the heat equation* The Fourier transform: Tempered distributions, the wave equation and Laplace's equation* PDE and boundaries* Duhamel's principle* Separation of variables* Inner product spaces, symmetric operators, orthogonality* Convergence of the Fourier series and the Poisson formula on disks* Bessel functions* The method of stationary phase* Solvability via duality* Variational problems* Bibliography* Index.
  • (source: Nielsen Book Data)9781470418816 20160619
This text on partial differential equations is intended for readers who want to understand the theoretical underpinnings of modern PDEs in settings that are important for the applications without using extensive analytic tools required by most advanced texts. The assumed mathematical background is at the level of multivariable calculus and basic metric space material, but the latter is recalled as relevant as the text progresses. The key goal of this book is to be mathematically complete without overwhelming the reader, and to develop PDE theory in a manner that reflects how researchers would think about the material. A concrete example is that distribution theory and the concept of weak solutions are introduced early because while these ideas take some time for the students to get used to, they are fundamentally easy and, on the other hand, play a central role in the field. Then, Hilbert spaces that are quite important in the later development are introduced via completions which give essentially all the features one wants without the overhead of measure theory. There is additional material provided for readers who would like to learn more than the core material, and there are numerous exercises to help solidify one's understanding. The text should be suitable for advanced undergraduates or for beginning graduate students including those in engineering or the sciences.
(source: Nielsen Book Data)9781470418816 20160619
Science Library (Li and Ma)
MATH-173-01
Book
xvii, 662 p. : ill. ; 26 cm.
  • Introduction Part I: Representation formulas for solutions: Four important linear partial differential equations Nonlinear first-order PDE Other ways to represent solutions Part II: Theory for linear partial differential equations: Sobolev spaces Second-order elliptic equations Linear evolution equations Part III: Theory for nonlinear partial differential equations: The calculus of variations Nonvariational techniques Hamilton-Jacobi equations Systems of conservation laws Appendices Bibliography Index.
  • (source: Nielsen Book Data)9780821807729 20160528
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between functional analytic insights and calculus-type estimates within the context of Sobolev spaces. Treatment of all topics is complete and self-contained. The book's wide scope and clear exposition make it a suitable text for a graduate course in PDEs.
(source: Nielsen Book Data)9780821807729 20160528
Science Library (Li and Ma)
MATH-173-01