1  3
Number of results to display per page
 Laub, Alan J., 1948
 Philadelphia : Society for Industrial and Applied Mathematics, [2005]
 Description
 Book — xiii, 157 pages : illustrations ; 26 cm
 Summary

 Preface
 1. Introduction and review
 2. Vector spaces
 3. Linear transformations
 4. Introduction to the MoorePenrose pseudoinverse
 5. Introduction to the singular value decomposition
 6. Linear equations
 7. Projections, inner product spaces, and norms
 8. Linear least squares problems
 9. Eigenvalues and eigenvectors
 10. Canonical forms
 11. Linear differential and difference equations
 12. Generalized eigenvalue problems
 13. Kronecker products Bibliography Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA188 .L38 2005  Unknown On reserve at Li and Ma Science Library 2hour loan 
MATH10401
 Course
 MATH10401  Applied Matrix Theory
 Instructor(s)
 Taylor, Christine
 Meyer, C. D. (Carl Dean)
 Philadelphia : Society for Industrial and Applied Mathematics, c2000.
 Description
 Book — xii, 718 p. : ill. ; 25 cm. + 1 computer optical disc (4 3/4 in.)
 Summary

 1. Linear equations
 2. Rectangular systems and echelon forms
 3. Matrix algebra
 4. Vector spaces
 5. Norms, inner products, and orthogonality
 6. Determinants
 7. Eigenvalues and eigenvectors
 8. PerronFrobenius theory.
(source: Nielsen Book Data)
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks


QA188 .M495 2000  Unknown On reserve at Li and Ma Science Library 2hour loan 
MATH10401
 Course
 MATH10401  Applied Matrix Theory
 Instructor(s)
 Taylor, Christine
3. Numerical linear algebra [1997]
 Trefethen, Lloyd N. (Lloyd Nicholas)
 Philadelphia : Society for Industrial and Applied Mathematics, 1997.
 Description
 Book — xii, 361 p. : ill. ; 26 cm.
 Summary

 Preface Part I. Fundamental:
 1. Matrixvector multiplication
 2. Orthogonal vectors and matrices
 3. Norms
 4. The singular value decomposition
 5. More on the SVD Part II. QR Factorization and Least Squares:
 6. Projectors
 7. QR factorization
 8. GramSchmidt orthogonalization
 9. MATLAB
 10. Householder triangularization
 11. Least squares problems Part III. Conditioning and Stability:
 12. Conditioning and condition numbers
 13. Floating point arithmetic
 14. Stability
 15. More on stability
 16. Stability of householder triangularization
 17. Stability of back substitution
 18. Conditioning of least squares problems
 19. Stability of least squares algorithms Part IV. Systems of Equations:
 20. Gaussian elimination
 21. Pivoting
 22. Stability of Gaussian elimination
 23. Cholesky factorization Part V. Eigenvalues:
 24. Eigenvalue problems
 25. Overview of Eigenvalue algorithms
 26. Reduction to Hessenberg or tridiagonal form
 27. Rayleigh quotient, inverse iteration
 28. QR algorithm without shifts
 29. QR algorithm with shifts
 30. Other Eigenvalue algorithms
 31. Computing the SVD Part VI. Iterative Methods:
 32. Overview of iterative methods
 33. The Arnoldi iteration
 34. How Arnoldi locates Eigenvalues
 35. GMRES
 36. The Lanczos iteration
 37. From Lanczos to Gauss quadrature
 38. Conjugate gradients
 39. Biorthogonalization methods
 40. Preconditioning Appendix Notes Bibliography Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Online
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA184 .T74 1997  Unknown On reserve at Li and Ma Science Library 2hour loan 
QA184 .T74 1997  Unknown On reserve at Li and Ma Science Library 2hour loan 
QA184 .T74 1997  Unknown On reserve at Li and Ma Science Library 2hour loan 
MATH10401
 Course
 MATH10401  Applied Matrix Theory
 Instructor(s)
 Taylor, Christine