- Book
- xiv, 319 pages : illustrations ; 23 cm
- Foreword xi Preface to the Student xiii Preface to the Instructor xv Acknowledgments xviii Part I Proofs 1 Chapter 1: The Truth of It All 1 2 The Forward-Backward Method 9 3 On Definitions and Mathematical Terminology 25 4 Quantifiers I: The Construction Method 41 5 Quantifiers II: The Choose Method 53 6 Quantifiers III: Specialization 69 7 Quantifiers IV: Nested Quantifiers 81 8 Nots of Nots Lead to Knots 93 9 The Contradiction Method 101 10 The Contrapositive Method 115 11 The Uniqueness Methods 125 12 Induction 133 13 The Either/Or Methods 145 14 The Max/Min Methods 155 15 Summary 163 Part II Other Mathematical Thinking Processes 16 Generalization 179 17 Creating Mathematical Definitions 197 18 Axiomatic Systems 219 Appendix A Examples of Proofs from Discrete Mathematics 237 Appendix B Examples of Proofs from Linear Algebra 251 Appendix C Examples of Proofs from Modern Algebra 269 Appendix D Examples of Proofs from Real Analysis 287 Solutions to Selected Exercises 305 Glossary 357 References 367 Index 369.
- (source: Nielsen Book Data)9781118164020 20160613
(source: Nielsen Book Data)9781118164020 20160613
- Foreword xi Preface to the Student xiii Preface to the Instructor xv Acknowledgments xviii Part I Proofs 1 Chapter 1: The Truth of It All 1 2 The Forward-Backward Method 9 3 On Definitions and Mathematical Terminology 25 4 Quantifiers I: The Construction Method 41 5 Quantifiers II: The Choose Method 53 6 Quantifiers III: Specialization 69 7 Quantifiers IV: Nested Quantifiers 81 8 Nots of Nots Lead to Knots 93 9 The Contradiction Method 101 10 The Contrapositive Method 115 11 The Uniqueness Methods 125 12 Induction 133 13 The Either/Or Methods 145 14 The Max/Min Methods 155 15 Summary 163 Part II Other Mathematical Thinking Processes 16 Generalization 179 17 Creating Mathematical Definitions 197 18 Axiomatic Systems 219 Appendix A Examples of Proofs from Discrete Mathematics 237 Appendix B Examples of Proofs from Linear Algebra 251 Appendix C Examples of Proofs from Modern Algebra 269 Appendix D Examples of Proofs from Real Analysis 287 Solutions to Selected Exercises 305 Glossary 357 References 367 Index 369.
- (source: Nielsen Book Data)9781118164020 20160613
(source: Nielsen Book Data)9781118164020 20160613
Engineering Library (Terman), Science Library (Li and Ma)
Engineering Library (Terman) | Status |
---|---|
On reserve: Ask at circulation desk | |
QA9 .S577 2014 | Unknown 2-hour loan |
Science Library (Li and Ma) | Status |
---|---|
Stacks | |
QA9 .S577 2014 | Unavailable Out for repair Request |
CS-103-01
- Course
- CS-103-01 -- Mathematical Foundations of Computing
- Instructor(s)
- Schwarz, Keith Wheelock
- Book
- xxii, 458 p. : ill ; 24 cm.
- 1. Regular languages
- 2. Context-free languages
- 3. The Church-Turing thesis
- 4. Decidability
- 5. Reducibility
- 6. Advanced topics in computability theory
- 7. Time complexity
- 8. Space complexity
- 9. Interactibility
- 10. Advanced topics in complexity theory.
- 1. Regular languages
- 2. Context-free languages
- 3. The Church-Turing thesis
- 4. Decidability
- 5. Reducibility
- 6. Advanced topics in computability theory
- 7. Time complexity
- 8. Space complexity
- 9. Interactibility
- 10. Advanced topics in complexity theory.
Engineering Library (Terman)
Engineering Library (Terman) | Status |
---|---|
On reserve: Ask at circulation desk | |
QA267 .S56 2013 | Unknown 2-hour loan |
Stacks | |
QA267 .S56 2013 | Unavailable Checked out - Overdue Request |
CS-103-01, CS-154-01
- Course
- CS-103-01 -- Mathematical Foundations of Computing
- Instructor(s)
- Schwarz, Keith Wheelock
- Course
- CS-154-01 -- Introduction to Automata and Complexity Theory
- Instructor(s)
- Reingold, Omer