1  4
Number of results to display per page
1. Matrix computations [2013]
 Golub, Gene H. (Gene Howard), 19322007.
 4th ed.  Baltimore : Johns Hopkins University Press, 2013.
 Description
 Book — xxi, 756 p. : ill. ; 26 cm.
 Summary

 Matrix multiplication problems
 Matrix analysis
 General linear systems
 Special linear systems
 Orthogonalization and least squares
 Parallel matrix computations
 The unsymmetric eigenvalue problem
 The symmetric eigenvalue problem
 Lanczos methods
 Iterative methods for linear systems
 Functions of matrices
 Special topics.
(source: Nielsen Book Data)9781421407944 20160615
 Online
Engineering Library (Terman)
Engineering Library (Terman)  Status 

On reserve: Ask at circulation desk  
QA188 .G65 2013  Unknown 4hour loan 
CME30201
 Course
 CME30201  Numerical Linear Algebra
 Instructor(s)
 Darve, Eric Felix
2. Direct methods for sparse linear systems [2006]
 Davis, Timothy A.
 Philadelphia : Society for Industrial and Applied Mathematics, c2006.
 Description
 Book — xii, 217 p. : ill. ; 26 cm.
 Summary

 Preface 1. Introduction 2. Basic algorithms 3. Solving triangular systems 4. Cholesky factorization 5. Orthogonal methods 6. LU factorization 7. Fillreducing orderings 8. Solving sparse linear systems 9. CSparse 10. Sparse matrices in MATLAB Appendix: Basics of the C programming language Bibliography Index.
 (source: Nielsen Book Data)9780898716139 20160528
(source: Nielsen Book Data)9780898716139 20160528
 Online
Engineering Library (Terman), eReserve
Engineering Library (Terman)  Status 

On reserve: Ask at circulation desk  
QA188 .D386 2006  Unknown 2day loan 
eReserve  Status 

Instructor's copy  
(no call number)  Unknown 
CME30201
 Course
 CME30201  Numerical Linear Algebra
 Instructor(s)
 Darve, Eric Felix
3. Applied numerical linear algebra [1997]
 Demmel, James W.
 Philadelphia : Society for Industrial and Applied Mathematics, c1997.
 Description
 Book — xi, 419 p. : ill. (some col.) ; 26 cm.
 Summary

 Preface 1. Introduction 2. Linear equation solving 3. Linear least squares problems 4. Nonsymmetric Eigenvalue problems 5. The symmetric Eigenproblem and singular value decomposition 6. Iterative methods for linear systems 7. Iterative methods for Eigenvalue problems Bibliography Index.
 (source: Nielsen Book Data)9780898713893 20160528
(source: Nielsen Book Data)9780898713893 20160528
 Online
Engineering Library (Terman), eReserve
Engineering Library (Terman)  Status 

On reserve: Ask at circulation desk  
QA184 .D455 1997  Unknown 2day loan 
eReserve  Status 

Instructor's copy  
(no call number)  Unknown 
CME30201
 Course
 CME30201  Numerical Linear Algebra
 Instructor(s)
 Darve, Eric Felix
4. Numerical linear algebra [1997]
 Trefethen, Lloyd N. (Lloyd Nicholas)
 Philadelphia : Society for Industrial and Applied Mathematics, 1997.
 Description
 Book — xii, 361 p. : ill. ; 26 cm.
 Summary

 Preface Part I. Fundamental: 1. Matrixvector multiplication 2. Orthogonal vectors and matrices 3. Norms 4. The singular value decomposition 5. More on the SVD Part II. QR Factorization and Least Squares: 6. Projectors 7. QR factorization 8. GramSchmidt orthogonalization 9. MATLAB 10. Householder triangularization 11. Least squares problems Part III. Conditioning and Stability: 12. Conditioning and condition numbers 13. Floating point arithmetic 14. Stability 15. More on stability 16. Stability of householder triangularization 17. Stability of back substitution 18. Conditioning of least squares problems 19. Stability of least squares algorithms Part IV. Systems of Equations: 20. Gaussian elimination 21. Pivoting 22. Stability of Gaussian elimination 23. Cholesky factorization Part V. Eigenvalues: 24. Eigenvalue problems 25. Overview of Eigenvalue algorithms 26. Reduction to Hessenberg or tridiagonal form 27. Rayleigh quotient, inverse iteration 28. QR algorithm without shifts 29. QR algorithm with shifts 30. Other Eigenvalue algorithms 31. Computing the SVD Part VI. Iterative Methods: 32. Overview of iterative methods 33. The Arnoldi iteration 34. How Arnoldi locates Eigenvalues 35. GMRES 36. The Lanczos iteration 37. From Lanczos to Gauss quadrature 38. Conjugate gradients 39. Biorthogonalization methods 40. Preconditioning Appendix Notes Bibliography Index.
 (source: Nielsen Book Data)9780898713619 20160528
(source: Nielsen Book Data)9780898713619 20160528
 Online
Engineering Library (Terman), Science Library (Li and Ma)
Engineering Library (Terman)  Status 

On reserve: Ask at circulation desk  
QA184 .T74 1997  Unknown 4hour loan 
Science Library (Li and Ma)  Status 

Stacks  
QA184 .T74 1997  Unknown On reserve at Li and Ma Science Library 2hour loan 
QA184 .T74 1997  Unknown On reserve at Li and Ma Science Library 2hour loan 
CME30201, MATH10401
 Course
 CME30201  Numerical Linear Algebra
 Instructor(s)
 Darve, Eric Felix
 Course
 MATH10401  Applied Matrix Theory
 Instructor(s)
 Taylor, Christine