1. Matrix computations [2013]
- Book
- xxi, 756 p. : ill. ; 26 cm.
- Matrix multiplication problems
- Matrix analysis
- General linear systems
- Special linear systems
- Orthogonalization and least squares
- Parallel matrix computations
- The unsymmetric eigenvalue problem
- The symmetric eigenvalue problem
- Lanczos methods
- Iterative methods for linear systems
- Functions of matrices
- Special topics.
(source: Nielsen Book Data)9781421407944 20160615
- Matrix multiplication problems
- Matrix analysis
- General linear systems
- Special linear systems
- Orthogonalization and least squares
- Parallel matrix computations
- The unsymmetric eigenvalue problem
- The symmetric eigenvalue problem
- Lanczos methods
- Iterative methods for linear systems
- Functions of matrices
- Special topics.
(source: Nielsen Book Data)9781421407944 20160615
Engineering Library (Terman)
Engineering Library (Terman) | Status |
---|---|
On reserve: Ask at circulation desk | |
QA188 .G65 2013 | Unknown 4-hour loan |
CME-302-01
- Course
- CME-302-01 -- Numerical Linear Algebra
- Instructor(s)
- Darve, Eric Felix
2. Direct methods for sparse linear systems [2006]
- Book
- xii, 217 p. : ill. ; 26 cm.
- Preface-- 1. Introduction-- 2. Basic algorithms-- 3. Solving triangular systems-- 4. Cholesky factorization-- 5. Orthogonal methods-- 6. LU factorization-- 7. Fill-reducing orderings-- 8. Solving sparse linear systems-- 9. CSparse-- 10. Sparse matrices in MATLAB-- Appendix: Basics of the C programming language-- Bibliography-- Index.
- (source: Nielsen Book Data)9780898716139 20160528
(source: Nielsen Book Data)9780898716139 20160528
- Preface-- 1. Introduction-- 2. Basic algorithms-- 3. Solving triangular systems-- 4. Cholesky factorization-- 5. Orthogonal methods-- 6. LU factorization-- 7. Fill-reducing orderings-- 8. Solving sparse linear systems-- 9. CSparse-- 10. Sparse matrices in MATLAB-- Appendix: Basics of the C programming language-- Bibliography-- Index.
- (source: Nielsen Book Data)9780898716139 20160528
(source: Nielsen Book Data)9780898716139 20160528
Engineering Library (Terman), eReserve
Engineering Library (Terman) | Status |
---|---|
On reserve: Ask at circulation desk | |
QA188 .D386 2006 | Unknown 2-day loan |
eReserve | Status |
---|---|
Instructor's copy | |
(no call number) | Unknown |
CME-302-01
- Course
- CME-302-01 -- Numerical Linear Algebra
- Instructor(s)
- Darve, Eric Felix
3. Applied numerical linear algebra [1997]
- Book
- xi, 419 p. : ill. (some col.) ; 26 cm.
- Preface-- 1. Introduction-- 2. Linear equation solving-- 3. Linear least squares problems-- 4. Nonsymmetric Eigenvalue problems-- 5. The symmetric Eigenproblem and singular value decomposition-- 6. Iterative methods for linear systems-- 7. Iterative methods for Eigenvalue problems-- Bibliography-- Index.
- (source: Nielsen Book Data)9780898713893 20160528
(source: Nielsen Book Data)9780898713893 20160528
- Preface-- 1. Introduction-- 2. Linear equation solving-- 3. Linear least squares problems-- 4. Nonsymmetric Eigenvalue problems-- 5. The symmetric Eigenproblem and singular value decomposition-- 6. Iterative methods for linear systems-- 7. Iterative methods for Eigenvalue problems-- Bibliography-- Index.
- (source: Nielsen Book Data)9780898713893 20160528
(source: Nielsen Book Data)9780898713893 20160528
Engineering Library (Terman), eReserve
Engineering Library (Terman) | Status |
---|---|
On reserve: Ask at circulation desk | |
QA184 .D455 1997 | Unknown 2-day loan |
eReserve | Status |
---|---|
Instructor's copy | |
(no call number) | Unknown |
CME-302-01
- Course
- CME-302-01 -- Numerical Linear Algebra
- Instructor(s)
- Darve, Eric Felix
4. Numerical linear algebra [1997]
- Book
- xii, 361 p. : ill. ; 26 cm.
- Preface-- Part I. Fundamental: 1. Matrix-vector multiplication-- 2. Orthogonal vectors and matrices-- 3. Norms-- 4. The singular value decomposition-- 5. More on the SVD-- Part II. QR Factorization and Least Squares: 6. Projectors-- 7. QR factorization-- 8. Gram-Schmidt orthogonalization-- 9. MATLAB-- 10. Householder triangularization-- 11. Least squares problems-- Part III. Conditioning and Stability: 12. Conditioning and condition numbers-- 13. Floating point arithmetic-- 14. Stability-- 15. More on stability-- 16. Stability of householder triangularization-- 17. Stability of back substitution-- 18. Conditioning of least squares problems-- 19. Stability of least squares algorithms-- Part IV. Systems of Equations: 20. Gaussian elimination-- 21. Pivoting-- 22. Stability of Gaussian elimination-- 23. Cholesky factorization-- Part V. Eigenvalues: 24. Eigenvalue problems-- 25. Overview of Eigenvalue algorithms-- 26. Reduction to Hessenberg or tridiagonal form-- 27. Rayleigh quotient, inverse iteration-- 28. QR algorithm without shifts-- 29. QR algorithm with shifts-- 30. Other Eigenvalue algorithms-- 31. Computing the SVD-- Part VI. Iterative Methods: 32. Overview of iterative methods-- 33. The Arnoldi iteration-- 34. How Arnoldi locates Eigenvalues-- 35. GMRES-- 36. The Lanczos iteration-- 37. From Lanczos to Gauss quadrature-- 38. Conjugate gradients-- 39. Biorthogonalization methods-- 40. Preconditioning-- Appendix-- Notes-- Bibliography-- Index.
- (source: Nielsen Book Data)9780898713619 20160528
(source: Nielsen Book Data)9780898713619 20160528
- Preface-- Part I. Fundamental: 1. Matrix-vector multiplication-- 2. Orthogonal vectors and matrices-- 3. Norms-- 4. The singular value decomposition-- 5. More on the SVD-- Part II. QR Factorization and Least Squares: 6. Projectors-- 7. QR factorization-- 8. Gram-Schmidt orthogonalization-- 9. MATLAB-- 10. Householder triangularization-- 11. Least squares problems-- Part III. Conditioning and Stability: 12. Conditioning and condition numbers-- 13. Floating point arithmetic-- 14. Stability-- 15. More on stability-- 16. Stability of householder triangularization-- 17. Stability of back substitution-- 18. Conditioning of least squares problems-- 19. Stability of least squares algorithms-- Part IV. Systems of Equations: 20. Gaussian elimination-- 21. Pivoting-- 22. Stability of Gaussian elimination-- 23. Cholesky factorization-- Part V. Eigenvalues: 24. Eigenvalue problems-- 25. Overview of Eigenvalue algorithms-- 26. Reduction to Hessenberg or tridiagonal form-- 27. Rayleigh quotient, inverse iteration-- 28. QR algorithm without shifts-- 29. QR algorithm with shifts-- 30. Other Eigenvalue algorithms-- 31. Computing the SVD-- Part VI. Iterative Methods: 32. Overview of iterative methods-- 33. The Arnoldi iteration-- 34. How Arnoldi locates Eigenvalues-- 35. GMRES-- 36. The Lanczos iteration-- 37. From Lanczos to Gauss quadrature-- 38. Conjugate gradients-- 39. Biorthogonalization methods-- 40. Preconditioning-- Appendix-- Notes-- Bibliography-- Index.
- (source: Nielsen Book Data)9780898713619 20160528
(source: Nielsen Book Data)9780898713619 20160528
Engineering Library (Terman)
Engineering Library (Terman) | Status |
---|---|
On reserve: Ask at circulation desk | |
QA184 .T74 1997 | Unknown 4-hour loan |
QA184 .T74 1997 | Unknown 4-hour loan |
QA184 .T74 1997 | Unknown 4-hour loan |
CME-302-01
- Course
- CME-302-01 -- Numerical Linear Algebra
- Instructor(s)
- Darve, Eric Felix