Search results

RSS feed for this result

5 results

Book
1 online resource.
  • Preface xi Acknowledgments xiii 1. Overview of Membrane Science and Technology 1 1.1 Introduction 1 1.2 Historical Development of Membranes 1 1.3 Types of Membranes 4 1.3.1 Isotropic Membranes 4 1.3.2 Anisotropic Membranes 6 1.3.3 Ceramic, Metal, and Liquid Membranes 6 1.4 Membrane Processes 6 References 13 2. Membrane Transport Theory 15 2.1 Introduction 15 2.2 The Solution-Diffusion Model 18 2.2.1 Molecular Dynamics Simulations 18 2.2.2 Concentration and Pressure Gradients in Membranes 22 2.2.3 Application of the Solution-Diffusion Model to Specific Processes 27 2.2.4 A Unified View 50 2.3 Structure-Permeability Relationships in Solution-Diffusion Membranes 53 2.3.1 Diffusion Coefficients 55 2.3.2 Sorption Coefficients in Polymers 64 2.4 Pore-Flow Membranes 72 2.4.1 Permeation in Ultrafiltration and Microfiltration Membranes 73 2.4.2 Knudsen Diffusion and Surface Diffusion in Microporous Membranes 79 2.4.3 Polymers with Intrinsic Microporosity (PIMs) 86 2.4.4 The Transition Region 89 2.5 Conclusions and Future Directions 90 References 92 3. Membranes and Modules 97 3.1 Introduction 97 3.2 Isotropic Membranes 98 3.2.1 Isotropic Nonporous Membranes 98 3.2.2 Isotropic Microporous Membranes 100 3.3 Anisotropic Membranes 102 3.3.1 Phase separation membranes 104 3.3.2 Interfacial Polymerization Membranes 121 3.3.3 Solution-Coated Composite Membranes 125 3.3.4 Other Anisotropic Membranes 128 3.3.5 Repairing Membrane Defects 132 3.4 Metal, Ceramic, Zeolite, Carbon, and Glass Membranes 134 3.4.1 Metal Membranes 134 3.4.2 Ceramic Membranes 135 3.4.3 Zeolite Membranes 139 3.4.4 Mixed-Matrix Membranes 141 3.4.5 Carbon Membranes 145 3.4.6 Microporous Glass Membranes 148 3.5 Liquid Membranes 148 3.6 Hollow Fiber Membranes 148 3.7 Membrane Modules 154 3.7.1 Plate-and-Frame Modules 155 3.7.2 Tubular Modules 157 3.7.3 Spiral-Wound Modules 158 3.7.4 Hollow Fiber Modules 162 3.7.5 Other Module Types 165 3.8 Module Selection 167 3.9 Conclusions and Future Directions 169 References 170 4. Concentration Polarization 179 4.1 Introduction 179 4.2 Boundary Layer Film Model 182 4.3 Determination of the Peclet Number 191 4.4 Concentration Polarization in Liquid Separation Processes 193 4.5 Concentration Polarization in Gas Separation Processes 196 4.6 Cross-Flow, Co-Flow, and Counter-Flow 197 4.7 Conclusions and Future Directions 204 References 205 5. Reverse Osmosis 207 5.1 Introduction and History 207 5.2 Theoretical Background 208 5.3 Membranes and Materials 213 5.3.1 Cellulosic Membranes 213 5.3.2 Noncellulosic Polymer Membranes 216 5.3.3 Interfacial Composite Membranes 217 5.3.4 Other Membrane Materials 219 5.4 Reverse Osmosis Membrane Categories 220 5.4.1 Seawater and Brackish Water Desalination Membranes 221 5.4.2 Nanofiltration Membranes 222 5.4.3 Hyperfiltration Organic Solvent Separating Membranes 224 5.5 Membrane Selectivity 227 5.6 Membrane Modules 228 5.7 Membrane Fouling Control 231 5.7.1 Scale 231 5.7.2 Silt 233 5.7.3 Biofouling 233 5.7.4 Organic Fouling 235 5.7.5 Membrane Cleaning 236 5.8 Applications 237 5.8.1 Brackish Water Desalination 238 5.8.2 Seawater Desalination 240 5.8.3 Ultrapure Water 241 5.8.4 Wastewater Treatment 242 5.8.5 Nanofiltration 244 5.8.6 Organic Solvent Separation 245 5.9 Conclusions and Future Directions 246 References 247 6. Ultrafiltration 253 6.1 Introduction and History 253 6.2 Characterization of Ultrafiltration Membranes 254 6.3 Membrane Fouling 257 6.3.1 Constant Pressure/Constant Flux Operation 257 6.3.2 Concentration Polarization 261 6.3.3 Fouling Control 271 6.4 Membranes 274 6.5 Constant Pressure Modules, System Design, and Applications 274 6.5.1 Cross-Flow Ultrafiltration Modules 275 6.5.2 Constant Pressure (Cross-Flow) System Design 278 6.5.3 Applications of Cross-Flow Membrane Modules 282 6.5.4 Food Industry 284 6.6 Constant Flux Modules, System Design, and Applications 292 6.6.1 Constant Flux/Variable Pressure Modules 292 6.6.2 Submerged Membrane Modules and System Design 293 6.6.3 Submerged Membrane Applications 296 6.7 Conclusions and Future Directions 299 References 300 7. Microfiltration 303 7.1 Introduction and History 303 7.2 Background 305 7.2.1 Types of Membrane 305 7.2.2 Membrane Characterization 306 7.2.3 Microfiltration Membranes and Modules 313 7.2.4 Process Design 316 7.3 Applications 320 7.3.1 Sterile Filtration of Pharmaceuticals 322 7.3.2 Sterilization of Wine and Beer 322 7.3.3 Microfiltration in the Electronics Industry 323 7.4 Conclusions and Future Directions 323 References 324 8. Gas Separation 325 8.1 Introduction and History 325 8.2 Theoretical Background 326 8.2.1 Polymer Membranes 328 8.2.2 Metal Membranes 337 8.2.3 Ceramic and Zeolite Membranes 337 8.2.4 Thermally Rearranged/Microporous Carbon Membranes 338 8.2.5 Mixed-Matrix Membranes 338 8.3 Membrane Modules 338 8.4 Process Design 339 8.4.1 Pressure Ratio 340 8.4.2 Stage-Cut 343 8.4.3 Multistep and Multistage System Designs 345 8.4.4 Recycle Designs 347 8.5 Applications 349 8.5.1 Hydrogen Separations 350 8.5.2 Oxygen/Nitrogen Separation 352 8.5.3 Natural Gas Separations 359 8.5.4 Carbon Dioxide Separation 361 8.5.5 Vapor/Gas Separations 368 8.5.6 Dehydration of Air 369 8.5.7 Carbon Dioxide/Hydrogen and Carbon Dioxide/ Nitrogen Separations 370 8.5.8 Vapor/Vapor Separations 372 8.6 Conclusions and Future Directions 373 References 375 9. Pervaporation 379 9.1 Introduction and History 379 9.2 Theoretical Background 381 9.3 Membrane Materials and Modules 389 9.3.1 Membrane Materials 389 9.3.2 Dehydration Membranes 392 9.3.3 Organic/Water Separation Membranes 393 9.3.4 Organic/Organic Separation Membranes 394 9.3.5 Membrane Modules 395 9.4 System Design 398 9.5 Applications 400 9.5.1 Solvent Dehydration 401 9.5.2 Separation of Dissolved Organics from Water 406 9.5.3 Separation of Organic Mixtures 409 9.6 Conclusions and Future Directions 412 References 412 10. Ion Exchange Membrane Processes -- Electrodialysis 417 10.1 Introduction/History 417 10.2 Theoretical Background 421 10.2.1 Transport through Ion Exchange Membranes 421 10.3 Chemistry of Ion Exchange Membranes 423 10.3.1 Homogeneous Membranes 425 10.3.2 Heterogeneous Membranes 426 10.4 Electrodialysis 428 10.4.1 Concentration Polarization and Limiting Current Density 428 10.4.2 Current Efficiency and Power Consumption 433 10.4.3 System Design 435 10.5 Electrodialysis Applications 438 10.5.1 Brackish Water Desalination 438 10.5.2 Salt Recovery from Seawater 438 10.5.3 Other Electrodialysis Separation Applications 440 10.5.4 Continuous Electrodeionization and Ultrapure Water 442 10.5.5 Bipolar Membranes 443 10.6 Fuel Cells 444 10.7 Membranes in Chlor-Alkali Processes 448 10.8 Conclusions and Future Directions 449 References 449 11. Carrier Facilitated Transport 453 11.1 Introduction/History 453 11.2 Coupled Transport 459 11.2.1 Background 459 11.2.2 Characteristics of Coupled Transport Membranes 463 11.2.3 Coupled Transport Membranes 468 11.2.4 Applications 472 11.3 Facilitated Transport 473 11.3.1 Background 473 11.3.2 Process Designs 476 11.3.3 Applications 481 11.4 Conclusions and Future Directions 486 References 487 12. Medical Applications of Membranes 493 12.1 Introduction 493 12.2 Hemodialysis 493 12.3 Blood Oxygenators 498 12.4 Plasma Fractionation 500 12.5 Controlled Drug Delivery 501 12.5.1 Membrane Diffusion-Controlled Systems 502 12.5.2 Biodegradable Systems 510 12.5.3 Osmotic Systems 512 References 518 13. Other Membrane Processes 521 13.1 Introduction 521 13.2 Dialysis 521 13.3 Donnan Dialysis (Diffusion Dialysis) 522 13.4 Charge Mosaic Membranes and Piezodialysis 526 13.5 Membrane Contactors and Membrane Distillation 529 13.5.1 Applications of Membrane Contactors 532 13.6 Membrane Reactors 538 13.6.1 Applications of Membrane Reactors 541 13.7 Ion-Conducting Membrane Reactors 544 13.8 Pressure-Retarded Osmosis (PRO) and Reverse Electrodialysis (RED) 547 13.9 Chiral Drug Separation 551 13.10 Conclusions and Future Directions 552 References 553 Appendix 559 Index 571.
  • (source: Nielsen Book Data)9781118359686 20160608
"...the best handbook on membrane technology, which is currently on the market..." --Membrane News (on the previous edition) Building on the success of the previous edition, Membrane Technology and Applications Third Edition provides a comprehensive overview of separation membranes, their manufacture and their applications. Beginning with a series of general chapters on membrane preparation, transport theory and concentration polarization, the book then surveys several major areas of membrane application in separate chapters. Written in a readily accessible style, each chapter covers its membrane subject thoroughly, from historical and theoretical backgrounds through to current and potential applications. Topics include reverse osmosis, ultrafiltration, pervaporation, microfiltration, gas separation and coupled and facilitated transport; chapters on electrodialysis and medical applications round out the coverage. NEW TO THE THIRD EDITION New sections on the use of membranes in the chlor-alkali industry, membrane distillation, pressure retarded osmosis and constant flux-variable pressure ultrafiltration Zeolite and ceramic membranes, submerged membrane modules, and fuel cell membranes Substantially enhanced chapters on ultrafiltration, pervaporation and membrane contactors Updates to every chapter to reflect the developments in the field.
(source: Nielsen Book Data)9781118359686 20160608
dx.doi.org Wiley Online Library
eReserve
CHEMENG-162-01
Book
xxiii, 473 p. : ill. ; 25 cm.
  • Preface Symbols INTRODUCTION Overview of Membrane Science and Technology History of Membranes Science and Technology Advantages and Limitations of Membrane Processes The Membrane-Based Industry: Its Structures and Markets Future Developments in Membrane Science and Technology Summary FUNDAMENTALS Introduction Definition of Terms Fundamentals of Mass Transport in Membranes and Membrane Processes Mathematical Description of Mass Transport in Membranes MEMBRANE PREPARATION AND CHARACTERIZATION Introduction Membrane Materials Preparation of Membranes Membrane Characterization PRINCIPLES OF MEMBRANE SEPARATION PROCESSSES Introduction The Principle of Membrane Filtration Processes The Principle of Gas and Vapor Separation The Principle of Dialysis The Principle of Electromembrane Processes The Principle of Membrane Contactors Membrane Reactors Membrane-Based Controlled Release of Active Agents MEMBRANE MODULES AND CONCENTRATION POLARIZATION Introduction Membrane Modules Concentration Polarization and Membrane Fouling MEMBRANE PROCESS DESIGN AND OPERATION Introduction Membrane Filtration Processes Gas Separation Pervaporation Dialysis Electrodialysis and Related Processes APPENDIX A APPENDIX B.
  • (source: Nielsen Book Data)9783527324514 20160606
Written by a dedicated lecturer and leading membrane scientist, who has worked both in academia and industry, this advanced textbook provides an impressive overview of all aspects of membranes and their applications. Together with numerous industrial case studies, practical examples and questions, the book provides an excellent and comprehensive introduction to the topic. Advanced students as well as process and chemical engineers working in industry will profit from this resource. A significant feature of the book is the treatment of more recently developed membranes and their applications in energy conversion, biomedical components, controlled release devices and environmental engineering with an indication of the present and future commercial impact. The solutions to the questions in the book can be found under http://www.wiley-vch.de/publish/en/books/ISBN3-537-32451-8/ From the Contents: * Introduction * Fundamentals * Membrane Preparation and Characterization * Principles of Membrane Separation Processes * Membrane Modules and Concentration Polarization * Membrane Process Design and Operation.
(source: Nielsen Book Data)9783527324514 20160606
Science Library (Li and Ma)
CHEMENG-162-01
Book
xxvii, 403 p. : ill. ; 29 cm.
  • PREFACE. LIST OF SYMBOLS. Introduction to Polymer Materials. PART I. 1 The Four Classes of Polymer Materials. 2 The Macromolecular Chain in the Amorphous Bulk Polymer: Static and Dynamic Properties. 3 The Glass Transition. 4 Secondary Relaxations in Amorphous Polymers. 5 Entanglements in Bulk Un-Cross-Linked Polymers. 6 Semicrystalline Polymers. PART II. 7 Elastic and Hyperelastic Behaviors. 8 Linear Viscoelastic Behavior. 9 Anelastic and Viscoplastic Behaviors. 10 Damage and Fracture of Solid Polymers. PART III. 11 Mechanical Properties of Poly(Methyl Methacrylate) and Some of Its Random Copolymers. 12 Mechanical Properties of Bisphenol-A Polycarbonate. 13 Mechanical Properties of Epoxy Resins. 14 Polyethylene and Ethylene-a-olefi n Copolymers. 15 High-Modulus Thermoplastic Polymers. PART IV. 16 Mechanical Tests for Studying Impact Behavior. 17 High-Impact Polystyrene. 18 Toughened Poly(Methyl Methacrylate). 19 Toughened Aliphatic Polyamides. 20 Toughened Epoxy Resins. PART V. 21 Chemically Cross-Linked Elastomers. 22 Reinforcement of Elastomers by Fillers. 23 Thermoplastic Elastomers. Appendix: Problems. INDEX.
  • (source: Nielsen Book Data)9780470616192 20160609
Advanced reviews for Polymer Materials "Molecular modeling of polymers ...is a subject that cannot be found in any other [book] in any appreciable detail...[T]he detailed chapters on specific polymer systems is a great idea." - Gregory Odegard, Michigan Technological University "The polymer community needs a text book which can connect the macroscopic mechanics with mesoscopic and molecular aspects of polymer." - Liangbin Li, University of Science and Technology of China This book takes a unique, multi-scale approach to the mechanical properties of polymers, covering both the macroscopic and molecular levels unlike any other book on the market. Based on the authors' extensive research and writing in the field, Polymer Materials emphasizes the relationships between the chemical structure and the mechanical behavior of polymer materials, providing authoritative guidelines for assessing polymer performance under different conditions and the design of new materials. Key features of this book include:* Experimental results on selected examples precede and reinforce the development of theoretical features* In-depth discussions of a limited number of polymer systems instead of a brief overview of many* Self-contained chapters with a summary of their key points* Comprehensive problems and a solutions manual for the different parts of the book* Coverage of the basics with an emphasis on polymer dynamics An indispensable resource for polymer scientists and students alike, Polymer Materials is also highly useful for material scientists, engineers, chemists, and physicists in industry and academia.
(source: Nielsen Book Data)9780470616192 20160609
Science Library (Li and Ma)
CHEMENG-162-01
Book
xxv, 546 p., [4] p. of plates : ill. (some col.) ; 25 cm.
  • PREFACE. ACKNOWLEDGMENTS. NOMENCLATURE. I FUEL CELL PRINCIPLES. 1 INTRODUCTION. 1.1 What is a Fuel Cell? 1.2 A Simple Fuel Cell. 1.3 Fuel Cell Advantages. 1.4 Fuel Cell Disadvantages. 1.5 Fuel Cell Types. 1.6 Basic Fuel Cell Operation. 1.7 Fuel Cell Performance. 1.8 Characterization and Modeling. 1.9 Fuel Cell Technology. 1.10 Fuel Cells and the Environment. Chapter Summary. Chapter Exercises. 2 FUEL CELL THERMODYNAMICS. 2.1 Thermodynamics Review. 2.2 Heat Potential of a Fuel: Enthalpy of Reaction. 2.3 Work Potential of a Fuel: Gibbs Free Energy. 2.4 Predicting Reversible Voltage of a Fuel Cell Under Non-Standard-State Conditions. 2.5 Fuel Cell Efficiency. 2.6 Thermal and Mass Balances in Fuel Cells. Chapter Summary. Chapter Exercises. 3 FUEL CELL REACTION KINETICS. 3.1 Introduction to Electrode Kinetics. 3.2 Why Charge Transfer Reactions Have an Activation Energy. 3.3 Activation Energy Determines Reaction Rate. 3.4 Calculating Net Rate of a Reaction. 3.5 Rate of reaction at Equilibrium: Exchange current Density. 3.6 Potential of a Reaction at Equilibrium: Galvani Potential. 3.7 Potential and Rate: Butler-Volmer Equation. 3.8 Exchange Currents and Electrocatalysis: How to Improve Kinetic Performance. 3.9 Simplified Activation Kinetics: Tafel Equation. 3.10 Different Fuel Cell Reactions Produce Different Kinetics. 3.11 Catalyst-Electrode Design. 3.12 Quantum Mechanics: Framework for Understanding Catalysis in Fuel Cells. 3.13 Connecting the Butler-Volmer and Nernst Equations (Optional). Chapter Summary. Chapter Exercises. 4 FUEL CELL CHARGE TRANSPORT. 4.1 Charges Move in Response to Forces. 4.2 Charge Transport Results in a Voltage Loss. 4.3 Characteristics of Fuel Cell Charge Transport Resistance. 4.4 Physical Meaning of Conductivity. 4.5 Review of Fuel Cell Electrolyte Classes. 4.6 More on Diffusivity and Conductivity (Optional). 4.7 Why Electrical Driving Forces Dominate Charge Transport (Optional). 4.8 Quantum Mechanics-Based Simulaton of Ion Conduction in Oxide Electrolytes (Optional). Chapter Summary. Chapter Exercises. 5 FUEL CELL MASS TRANSPORT. 5.1 Transport in Electrode Versus Flow Structure. 5.2 Transport in Electrode: Diffusive Transport. 5.3 Transport in Flow Structures: Convective Transport. Chapter Summary. Chapter Exercises. 6 FUEL CELL MODELING. 6.1 Putting It All Together: A Basic Fuel Cell Model. 6.2 A 1D Fuel Cell Model. 6.3 Fuel Cell Models Based on Computational Fluid Dynamics (Optional). Chapter Summary. Chapter Exercises. 7 FUEL CELL CHARACTERIZATION. 7.1 What Do We Want to Characterize? 7.2 Overview of Characterization Techniques. 7.3 In Situ Electrochemical Characterization Techniques. 7.4 Ex Situ Characterization Techniques. Chapter Summary. Chapter Exercises. II FUEL CELL TECHNOLOGY. 8 OVERVIEW OF FUEL CELL TYPES. 8.1 Introduction. 8.2 Phosphoric Acid Fuel Cell. 8.3 Polymer Electrolyte Membrane Fuel Cell. 8.4 Alkaline Fuel Cell. 8.5 Molten Carbonate Fuel Cell. 8.6 Solid Oxide Fuel Cell. 8.7 Other Fuel Cells. 8.8 Summary Comparison. Chapter Summary. Chapter Exercises. 9 PEMFC AND SOFC MATERIALS. 9.1 PEMFC Electrolyte Materials. 9.2 PEMFC Electrode/Catalyst Materials. 9.3 SOFC Electrolyte Materials. 9.4 SOFC Electrode/Catalyst Materials. 9.5 Material Stability, Durability, And Lifetime. Chapter Summary. Chapter Exercises. 10 OVERVIEW OF FUEL CELL SYSTEMS. 10.1 Fuel Cell Stack (Fuel Cell Subsystem). 10.2 The Thermal Management Subsystem. 10.3 Fuel Delivery/Processing Subsystem. 10.4 Power Electronics Subsystem. 10.5 Case Study of Fuel Cell System Design: Stationary Combined Heat and Power Systems. 10.6 Case Study of Fuel Cell System Design: Sizing A Portable Fuel Cell. Chapter Summary. Chapter Exercises. 11 FUEL PROCESSING SUBSYSTEM DESIGN. 11.1 Fuel Reforming Overview. 11.2 Water-Gas Shift Reactors. 11.3 Carbon Monoxide Clean-Up. 11.4 Reformer and Processor Efficiency Losses. 11.5 Reactor Design for Fuel Reformers and Processors. Chapter Summary. Chapter Exercises. 12 THERMAL MANAGEMENT SUBSYSTEM DESIGN. 12.1 Overview of Pinch Point Analysis Steps. Chapter Summary. Chapter Exercises. 13 FUEL CELL SYSTEM DESIGN. 13.1 Fuel Cell Design Via Computational Fluid Dynamics. 13.2 Fuel Cell System Design: a Case Study. Chapter Summary. Chapter Exercises. 14 ENVIRONMENTAL IMPACT OF FUEL CELLS. 14.1 Life Cycle Assessment. 14.2 Important Emissions For LCA. 14.3 Emissions Related to Global Warming. 14.4 Emissions Related to Air Pollution. 14.5 Analyzing Entire Scenarios with LCA. Chapter Summary. Chapter Exercises. APPENDIXES. A CONSTANTS AND CONVERSIONS. B THERMODYNAMIC DATA. C STANDARD ELECTRODE POTENTIALS AT 25 C. D QUANTUM MECHANICS. D.1 Atomic Orbitals. D.2 Postulates of Quantum Mechanics. D.3 One-Dimensional Electron Gas. D.4 Analogy to Column Buckling. D.5 Hydrogen Atom. E PERIODIC TABLE OF THE ELEMENTS. F SUGGESTED FURTHER READING. G IMPORTANT EQUATIONS. BIBLIOGRAPHY. INDEX.
  • (source: Nielsen Book Data)9780470258439 20160528
As the search for alternative fuels heats up, no topic is hotter than fuel cells. Filling a glaring gap in the literature, "Fuel Cell Fundamentals, Second Edition" gives advanced undergraduate and beginning level graduate students an important introduction to the basic science and engineering behind fuel cell technology. Emphasizing the foundational scientific principles that apply to any fuel cell type or technology, the text provides straightforward descriptions of how fuel cells work, why they offer the potential for high efficiency, and how their unique advantages can best be used.Designed to be accessible to fuel cell beginners, the text is suitable for any engineering or science major with a background in calculus, basic physics, and elementary thermodynamics. This new edition provides updated and enhanced examples, problems, and pedagogy for classroom use and features a significantly enlarged section on the practical applications of fuel cell technology. A solutions manual will be developed.
(source: Nielsen Book Data)9780470258439 20160528
Science Library (Li and Ma)
CHEMENG-162-01
Book
xxii, 406 p. : ill. ; 26 cm.
  • Preface.Foreword to the first edition.Acknowledgements.Abbreviations.Symbols.Introduction.Effi ciency and Open Circuit Voltage.Operational Fuel Cell Voltages.Proton Exchange Membrane Fuel Cells.Alkaline Electrolyte Fuel Cells.Direct Methanol Fuel Cells.Medium and High Temperature Fuel Cells.Fuelling Fuel Cells.Compressors, Turbines, Ejectors, Fans, Blowers, and Pumps.Delivering Fuel Cell Power.Fuel Cell Systems Analysed.Appendix 1: Change in Molar Gibbs Free Energy Calculations.Appendix 2: Useful Fuel Cell Equations.Index.
  • (source: Nielsen Book Data)9780470848579 20160528
Building on the success of the first edition, "Fuel Cell Systems Explained" presents a balanced introduction to this growing area. 'In summary, an altogether satisfying book that puts within its covers the academic tools necessary for explaining fuel cell systems on a multidisciplinary basis' - "Power Engineering Journal". 'An excellent book...well written and produced' - "Journal of Power and Energy".Fully revised and updated, the second edition: provides an essential guide to the principles, design and application of fuel cell systems; includes full and updated coverage of fuel processing and hydrogen generation and storage systems; presents a full and clear explanation of the operation of all the major fuel cell types, and an introduction to possible future technology, such as biological fuel cells; features a new chapter on the direct methanol fuel cell; now includes examples of the modelling, design and engineering of real fuel cell systems; a clear overview of fuel cell operation and thermodynamics; and, coverage of the complete fuel cell system including compressors, turbines, and the electrical and electronic sub-systems such as regulators, inverters, grid inter-ties, electric motors, and hybrid fuel cell/battery systems. Assuming no prior knowledge of fuel cell chemistry, this reference comprehensively brings together all of the key topics encompassed by this diverse field. Practitioners, researchers and students in electrical, power, chemical and automotive engineering will continue to benefit from this essential guide to the principles, design and application of fuel cell systems.
(source: Nielsen Book Data)9780470848579 20160528
Science Library (Li and Ma)
CHEMENG-162-01