%{search_type} search results

4 catalog results

RSS feed for this result
Book
various paging : illustrations (some color) ; 29 cm
  • The microbial world and you
  • Chemical principles
  • Observing microorganisms through a microscope
  • Functional anatomy of prokaryotic and eukaryotic cells
  • Microbial growth
  • The control of microbial growth
  • Microbial genetics
  • Biotechnology and DNA technology
  • Classification of microorganisms
  • The prokaryotes: domains bacteria and archaea
  • The eukaryotes: fungi, algae, protozoa, and helminths
  • Viruses, viroids, and prions
  • Principles of disease and epidemiology
  • Microbial mechanisms of pathogenicity
  • Innate immunity: specific defenses of the host
  • Practical applications of immunology
  • Disorders associated with the immune system
  • Antimicrobial drugs
  • Microbial diseases of the skin and eyes
  • Microbial diseases of the nervous system
  • Microbial diseases fo the cardiovascular and lymphatic systems
  • Microbial diseases of the respiratory system
  • Microbial diseases of the digestive system
  • Microbial diseases of the urinary and reproductive systems
  • Environmental microbiology
  • Applied and industrical microbiology.
Science Library (Li and Ma)
BIO-62-01
Book
xxvii, 1022 pages : illustrations (some color) ; 29 cm
  • UNIT I: THE FOUNDATIONS OF MICROBIOLOGY 1. The Microbial World 2. Microbial Cell Structure and Function 3. Microbial Metabolism 4. Molecular Information Flow and Protein Processing UNIT II: MICROBIAL GROWTH AND REGULATION 5. Microbial Growth and Its Control 6. Microbial Regulatory Systems 7. Molecular Biology of Microbial Growth 8. Viruses and Their Replication UNIT III: GENOMICS AND GENETICS 9. Microbial Systems Biology 10. Viral Genomics 11. Genetics of Bacteria and Archaea 12. Biotechnology and Synthetic Biology UNIT IV: MICROBIAL EVOLUTION AND DIVERSITY 13. Microbial Evolution and Systematics 14. Metabolic Diversity of Microorganisms 15. Functional Diversity of Microorganisms 16. Diversity of Bacteria 17. Diversity of Archaea 18. Diversity of Microbial Eukarya UNIT V: MICROBIAL ECOLOGY AND ENVIRONMENTAL MICROBIOLOGY 19. Taking the Measure of Microbial Systems 20. Microbial Ecosystems 21. Nutrient Cycles in Nature 22. Microbiology of the Built Environment 23. Microbial Symbioses with Microbes, Plants, and Animals UNIT VI: MICROBE-HUMAN INTERACTIONS AND THE IMMUNE SYSTEM 24. Microbial Symbioses with Humans 25. Microbial Infection and Pathogenesis 26. Innate Immunity: Broadly Specific Host Defenses 27. Adaptive Immunity: Highly Specific Host Defenses 28. Clinical Microbiology and Immunology UNIT VII INFECTIOUS DISEASES AND THEIR TRANSMISSION 29. Epidemiology 30. Person-to-Person Bacterial and Viral Diseases 31. Vectorborne and Soilborne Bacterial and Viral Diseases 32. Foodborne and Waterborne Bacterial and Viral Diseases 33. Eukaryotic Pathogens: Fungi, Protozoa, and Helminths.
  • (source: Nielsen Book Data)9780134261928 20171121
  • Machine generated contents note: UNIT 1 Foundations of Microbiology
  • 1. Microbial World
  • Microbiologynow Microorganisms, Our Constant Companions
  • I. Exploring the Microbial World
  • 1.1. Microorganisms, Tiny Titans of the Earth
  • 1.2. Structure and Activities of Microbial Cells
  • 1.3. Microorganisms and the Biosphere
  • 1.4. Impact of Microorganisms on Human Society
  • II. Microscopy and the Origins of Microbiology
  • 1.5. Light Microscopy and the Discovery of Microorganisms
  • 1.6. Improving Contrast in Light Microscopy
  • 1.7. Imaging Cells in Three Dimensions
  • 1.8. Probing Cell Structure: Electron Microscopy
  • III. Microbial Cultivation Expands the Horizon of Microbiology
  • 1.9. Pasteur and Spontaneous Generation
  • 1.10. Koch, Infectious Diseases, and Pure Cultures
  • 1.11. Discovery of Microbial Diversity
  • IV. Molecular Biology and the Unity and Diversity of Life
  • 1.12. Molecular Basis of Life
  • 1.13. Woese and the Tree of Life
  • 1.14. Introduction to Microbial Life
  • 2. Microbial Cell Structure and Function
  • Microbiologynow The Archaellum: Motility for the Archaea
  • I. Cells of Bacteria and Archaea
  • 2.1. Cell Morphology
  • 2.2. Small World
  • II. Cell Membrane and Wall
  • 2.3. Cytoplasmic Membrane
  • 2.4. Bacterial Cell Walls: Peptidoglycan
  • 2.5. LPS: The Outer Membrane
  • 2.6. Archaeal Cell Walls
  • III. Cell Surface Structures and Inclusions
  • 2.7. Cell Surface Structures
  • 2.8. Cell Inclusions
  • 2.9. Gas Vesicles
  • 2.10. Endospores
  • IV. Cell Locomotion
  • 2.11. Flagella, Archaella, and Swimming Motility
  • 2.12. Gliding Motility
  • 2.13. Chemotaxis and Other Taxes
  • V. Eukaryotic Microbial Cells
  • 2.14. Nucleus and Cell Division
  • 2.15. Mitochondria, Hydrogenosomes, and Chloroplasts
  • 2.16. Other Eukaryotic Cell Structures
  • Explore The Microbial World Tiny Cells
  • 3. Microbial Metabolism
  • Microbiologynow Sugars and Sweets: Archaea Do It Their Way
  • I. Microbial Nutrients and Nutrient Uptake
  • 3.1. Feeding the Microbe: Cell Nutrition
  • 3.2. Transporting Nutrients into the Cell
  • II. Energetics, Enzymes, and Redox
  • 3.3. Energy Classes of Microorganisms
  • 3.4. Principles of Bioenergetics
  • 3.5. Catalysis and Enzymes
  • 3.6. Electron Donors and Acceptors
  • 3.7. Energy-Rich Compounds
  • III. Catabolism: Fermentation and Respiration
  • 3.8. Glycolysis and Fermentation
  • 3.9. Respiration: Citric Acid and Glyoxylate Cycles
  • 3.10. Respiration: Electron Carriers
  • 3.11. Electron Transport and the Proton Motive Force
  • 3.12. Options for Energy Conservation
  • IV. Biosyntheses
  • 3.13. Sugars and Polysaccharides
  • 3.14. Amino Acids and Nucleotides
  • 3.15. Fatty Acids and Lipids
  • 4. Molecular Information Flow and Protein Processing
  • Microbiologynow Synthesis of Jumbo Proteins: Secretion of Halomucin
  • I. Molecular Biology and Genetic Elements
  • 4.1. DNA and Genetic Information Flow
  • 4.2. Genetic Elements: Chromosomes and Plasmids
  • II. Copying the Genetic Blueprint: DNA Replication
  • 4.3. Templates, Enzymes, and the Replication Fork
  • 4.4. Bidirectional Replication, the Replisome, and Proofreading
  • III. RNA Synthesis: Transcription
  • 4.5. Transcription in Bacteria
  • 4.6. Transcription in Archaea and Eukarya
  • IV. Protein Synthesis: Translation
  • 4.7. Amino Acids, Polypeptides, and Proteins
  • 4.8. Transfer RNA
  • 4.9. Translation and the Genetic Code
  • 4.10. Mechanism of Protein Synthesis
  • V. Protein Processing, Secretion, and Targeting
  • 4.11. Assisted Protein Folding and Chaperones
  • 4.12. Protein Secretion: The Sec and Tat Systems
  • 4.13. Protein Secretion: Gram-Negative Systems
  • UNIT 2 Microbial Growth and Regulation
  • 5. Microbial Growth and Its Control
  • Microbiologynow Picking Apart a Microbial Consortium
  • I. Cell Division and Population Growth
  • 5.1. Binary Fission, Budding, and Biofilms
  • 5.2. Quantitative Aspects of Microbial Growth
  • 5.3. Microbial Growth Cycle
  • 5.4. Continuous Culture
  • II. Culturing Microbes and Measuring Their Growth
  • 5.5. Growth Media and Laboratory Culture
  • 5.6. Microscopic Counts of Microbial Cell Numbers
  • 5.7. Viable Counting of Microbial Cell Numbers
  • 5.8. Turbidimetric Measures of Microbial Cell Numbers
  • III. Environmental Effects on Growth: Temperature
  • 5.9. Temperature Classes of Microorganisms
  • 5.10. Microbial Life in the Cold
  • 5.11. Microbial Life at High Temperatures
  • IV. Environmental Effects on Growth: pH, Osmolarity, and Oxygen
  • 5.12. Effects of pH on Microbial Growth
  • 5.13. Osmolarity and Microbial Growth
  • 5.14. Oxygen and Microbial Growth
  • V. Controlling Microbial Growth
  • 5.15. General Principles and Growth Control by Heat
  • 5.16. Other Physical Control Methods: Radiation and Filtration
  • 5.17. Chemical Control of Microbial Growth
  • 6. Microbial Regulatory Systems
  • Microbiologynow Microbial Hunter: Pseudomonas aeruginosa Senses and Scavenges Nutrients from Damaged Tissues
  • I. DNA-Binding Proteins and Transcriptional Regulation
  • 6.1. DNA-Binding Proteins
  • 6.2. Negative Control: Repression and Induction
  • 6.3. Positive Control: Activation
  • 6.4. Global Control and the lac Operon
  • 6.5. Transcription Controls in Archaea
  • II. Sensing and Signal Transduction
  • 6.6. Two-Component Regulatory Systems
  • 6.7. Regulation of Chemotaxis
  • 6.8. Quorum Sensing
  • 6.9. Stringent Response
  • 6.10. Other Global Networks
  • III. RNA-Based Regulation
  • 6.11. Regulatory RNAs
  • 6.12. Riboswitches
  • 6.13. Attenuation
  • IV. Regulation of Enzymes and Other Proteins
  • 6.14. Feedback Inhibition
  • 6.15. Post-Translational Regulation
  • 7. Molecular Biology of Microbial Growth
  • Microbiologynow Explosive Cell Death Promotes Biofilm Formation
  • I. Bacterial Cell Division
  • 7.1. Visualizing Molecular Growth
  • 7.2. Chromosome Replication and Segregation
  • 7.3. Cell Division and Fts Proteins
  • 7.4. MreB and Cell Morphology
  • 7.5. Peptidoglycan Biosynthesis
  • II. Regulation of Development in Model Bacteria
  • 7.6. Regulation of Endospore Formation
  • 7.7. Caulobacter Differentiation
  • 7.8. Heterocyst Formation in Anabaena
  • 7.9. Biofilm Formation
  • III. Antibiotics and Microbial Growth
  • 7.10. Antibiotic Targets and Antibiotic Resistance
  • 7.11. Persistence and Dormancy
  • 8. Viruses and Their Replication
  • Microbiologynow Virophages: Viruses That Parasitize Other Viruses
  • I. Nature of Viruses
  • 8.1. What Is a Virus-- 8.2. Structure of the Virion
  • 8.3. Overview of the Virus Life Cycle
  • 8.4. Culturing, Detecting, and Counting Viruses
  • II. Viral Replication Cycle
  • 8.5. Attachment and Entry of Bacteriophage T4
  • 8.6. Replication of Bacteriophage T4
  • 8.7. Temperate Bacteriophages and Lysogeny
  • 8.8. Overview of Animal Virus Infection
  • UNIT 3 Genomics and Genetics
  • 9. Microbial Systems Biology
  • Microbiologynow DNA Sequencing in the Palm of Your Hand
  • I. Genomics
  • 9.1. Introduction to Genomics
  • 9.2. Sequencing and Annotating Genomes
  • 9.3. Genome Size and Gene Content in Bacteria and Archaea
  • 9.4. Organelle and Eukaryotic Microbial Genomes
  • II. Evolution of Genomes
  • 9.5. Gene Families, Duplications, and Deletions
  • 9.6. Horizontal Gene Transfer and the Mobilome
  • 9.7. Core Genome Versus Pan Genome
  • III. Functional Omics
  • 9.8. Metagenomics
  • 9.9. Gene Chips and Transcriptomics
  • 9.10. Proteomics and the Interactome
  • 9.11. Metabolomics
  • IV. Utility of Systems Biology
  • 9.12. Single-Cell Genomics
  • 9.13. Integrating Mycobacterium tuberculosis Omics
  • 9.14. Systems Biology and Human Health
  • 10. Viral Genomics, Diversity, and Ecology
  • Microbiologynow Viral Imaging to the Rescue: Structural Blueprint of Zika
  • I. Viral Genomes and Evolution
  • 10.1. Size and Structure of Viral Genomes
  • 10.2. Viral Evolution
  • II. DNA Viruses
  • 10.3. Single-Stranded DNA Bacteriophages: φ[×]174 and M13
  • 10.4. Double-Stranded DNA Bacteriophages: T7 and Mu
  • 10.5. Viruses of Archaea
  • 10.6. Uniquely Replicating DNA Animal Viruses
  • 10.7. DNA Tumor Viruses
  • III. Viruses with RNA Genomes
  • 10.8. Positive-Strand RNA Viruses
  • 10.9. Negative-Strand RNA Animal Viruses
  • 10.10. Double-Stranded RNA Viruses
  • 10.11. Viruses That Use Reverse Transcriptase
  • IV. Viral Ecology
  • 10.12. Bacterial and Archael Virosphere
  • 10.13. Viral Defense Mechanisms of Bacteria and Archaea
  • 10.14. Human Virome
  • V. Subviral Agents
  • 10.15. Viroids
  • 10.16. Prions
  • 11. Genetics of Bacteria and Archaea
  • Microbiologynow Killing and Stealing: DNA Uptake by the Predator Vibrio cholerae
  • I. Mutation
  • 11.1. Mutations and Mutants
  • 11.2. Molecular Basis of Mutation
  • 11.3. Reversions and Mutation Rates
  • 11.4. Mutagenesis
  • II. Gene Transfer in Bacteria
  • 11.5. Genetic Recombination
  • 11.6. Transformation
  • 11.7. Transduction
  • 11.8. Conjugation
  • 11.9. Formation of Hfr Strains and Chromosome Mobilization
  • III. Gene Transfer in Archaea and Other Genetic Events
  • 11.10. Horizontal Gene Transfer in Archaea
  • 11.11. Mobile DNA: Transposable Elements
  • 11.12. Preserving Genomic Integrity: CRISPR Interference
  • 12. Biotechnology and Synthetic Biology
  • Microbiologynow Creation of a New Life Form: Design of a Minimal Cell
  • I. Tools of the Genetic Engineer
  • 12.1. Manipulating DNA: PCR and Nucleic Acid Hybridization --
  • Contents note continued: 22.3. Bioremediation of Uranium-Contaminated Environments
  • 22.4. Bioremediation of Organic Pollutants: Hydrocarbons
  • 22.5. Bioremediation of Organic Pollutants: Pesticides and Plastics
  • III. Wastewater and Drinking Water Treatment
  • 22.6. Primary and Secondary Wastewater Treatment
  • 22.7. Advanced Wastewater Treatment
  • 22.8. Drinking Water Purification and Stabilization
  • 22.9. Water Distribution Systems
  • IV. Indoor Microbiology and Microbially Influenced Corrosion
  • 22.10. Microbiology of Homes and Public Spaces
  • 22.11. Microbially Influenced Corrosion of Metals
  • 22.12. Biodeterioration of Stone and Concrete
  • 23. Microbial Symbioses with Microbes, Plants, and Animals
  • Microbiologynow The Inner Life of Bees
  • I. Symbioses between Microorganisms
  • 23.1. Lichens
  • 23.2. "Chlorochromatium aggregatum"
  • II. Plants as Microbial Habitats
  • 23.3. Legume--Root Nodule Symbiosis
  • 23.4. Mycorrhizae
  • 23.5. Agrobacterium and Crown Gall Disease
  • III. Insects as Microbial Habitats
  • 23.6. Heritable Symbionts of Insects
  • 23.7. Termites
  • IV. Other Invertebrates as Microbial Habitats
  • 23.8. Hawaiian Bobtail Squid
  • 23.9. Marine Invertebrates at Hydrothermal Vents and Cold Seeps
  • 23.10. Entomopathogenic Nematodes
  • 23.11. Reef-Building Corals
  • V. Mammalian Gut Systems as Microbial Habitats
  • 23.12. Alternative Mammalian Gut Systems
  • 23.13. Rumen and Ruminant Animals
  • Explore The Microbial World The Multiple Microbial Symbionts of Fungus-Cultivating Ants
  • UNIT 6 Microbe--Human Interactions and the Immune System
  • 24. Microbial Symbioses with Humans
  • Microbiologynow Frozen in Time: The Iceman Microbiome
  • I. Structure and Function of the Healthy Adult Human Microbiome
  • 24.1. Overview of the Human Microbiome
  • 24.2. Gastrointestinal Microbiota
  • 24.3. Oral Cavity and Airways
  • 24.4. Urogenital Tracts and Their Microbes
  • 24.5. Skin and Its Microbes
  • II. From Birth to Death: Development of the Human Microbiome
  • 24.6. Human Study Groups and Animal Models
  • 24.7. Colonization, Succession, and Stability of the Gut Microbiota
  • III. Disorders Attributed to the Human Microbiome
  • 24.8. Disorders Attributed to the Gut Microbiota
  • 24.9. Disorders Attributed to the Oral, Skin, and Vaginal Microbiota
  • IV. Modulation of the Human Microbiome
  • 24.10. Antibiotics and the Human Microbiome
  • 24.11. Probiotics and Prebiotics
  • Explore The Microbial World The Gut--Brain Axis
  • 25. Microbial Infection and Pathogenesis
  • Microbiologynow The Microbial Community That Thrives on Your Teeth
  • I. Human--Microbial Interactions
  • 25.1. Microbial Adherence
  • 25.2. Colonization and Invasion
  • 25.3. Pathogenicity, Virulence, and Attenuation
  • 25.4. Genetics of Virulence and the Compromised Host
  • II. Enzymes and Toxins of Pathogenesis
  • 25.5. Enzymes as Virulence Factors
  • 25.6. AB-Type Exotoxins
  • 25.7. Cytolytic and Superantigen Exotoxins
  • 25.8. Endotoxins
  • 26. Innate Immunity: Broadly Specific Host Defenses
  • Microbiologynow Rehabilitating a Much-Maligned Peptide: Amyloid-β
  • I. Fundamentals of Host Defense
  • 26.1. Basic Properties of the Immune System
  • 26.2. Barriers to Pathogen Invasion
  • II. Cells and Organs of the Immune System
  • 26.3. Blood and Lymphatic Systems
  • 26.4. Leukocyte Production and Diversity
  • III. Phagocyte Response Mechanisms
  • 26.5. Pathogen Challenge and Phagocyte Recruitment
  • 26.6. Pathogen Recognition and Phagocyte Signal Transduction
  • 26.7. Phagocytosis and Phagocyte Inhibition
  • IV. Other Innate Host Defenses
  • 26.8. Inflammation and Fever
  • 26.9. Complement System
  • 26.10. Innate Defenses against Viruses
  • Explore The Microbial World Drosophila Toll Receptors---An Ancient Response to Infections
  • 27. Adaptive Immunity: Highly Specific Host Defenses
  • Microbiologynow Got (Raw) MilkThe Role of Unprocessed Cow's Milk in Protecting against Allergy and Asthma
  • I. Principles of Adaptive Immunity
  • 27.1. Specificity, Memory, Selection Processes, and Tolerance
  • 27.2. Immunogens and Classes of Immunity
  • II. Antibodies
  • 27.3. Antibody Production and Structural Diversity
  • 27.4. Antigen Binding and the Genetics of Antibody Diversity
  • III. Major Histocompatibility Complex (MHC)
  • 27.5. MHC Proteins and Their Functions
  • 27.6. MHC Polymorphism, Polygeny, and Peptide Binding
  • IV. T Cells and Their Receptors
  • 27.7. T Cell Receptors: Proteins, Genes, and Diversity
  • 27.8. T Cell Diversity
  • V. Immune Disorders and Deficiencies
  • 27.9. Allergy, Hypersensitivity, and Autoimmunity
  • 27.10. Superantigens and Immunodeficiency
  • 28. Clinical Microbiology and Immunology
  • Microbiologynow Bacteriophages: Tiny Allies in the Fight against Antibiotic-Resistant Bacteria
  • I. Clinical Microbiology Setting
  • 28.1. Safety in the Microbiology Laboratory
  • 28.2. Healthcare-Associated Infections
  • II. Isolating and Characterizing Infectious Microorganisms
  • 28.3. Workflow in the Clinical Laboratory
  • 28.4. Choosing the Right Treatment
  • III. Immunological and Molecular Tools for Disease Diagnosis
  • 28.5. Immunoassays and Disease
  • 28.6. Precipitation, Agglutination, and Immunofluorescence
  • 28.7. Enzyme Immunoassays, Rapid Tests, and Immunoblots
  • 28.8. Nucleic Acid--Based Clinical Assays
  • IV. Prevention and Treatment of Infectious Diseases
  • 28.9. Vaccination
  • 28.10. Antibacterial Drugs
  • 28.11. Antimicrobial Drugs That Target Nonbacterial Pathogens
  • 28.12. Antimicrobial Drug Resistance and New Treatment Strategies
  • Explore The Microbial World MRSA---A Formidable Clinical Challenge
  • UNIT 7 Infectious Diseases and Their Transmission
  • 29. Epidemiology
  • Microbiologynow A Mysterious New Disease Outbreak
  • I. Principles of Epidemiology
  • 29.1. Language of Epidemiology
  • 29.2. Host Community
  • 29.3. Infectious Disease Transmission and Reservoirs
  • 29.4. Characteristics of Disease Epidemics
  • II. Epidemiology and Public Health
  • 29.5. Public Health and Infectious Disease
  • 29.6. Global Health Comparisons
  • III. Emerging Infectious Diseases, Pandemics, and Other Threats
  • 29.7. Emerging and Reemerging Infectious Diseases
  • 29.8. Examples of Pandemics: HIV/AIDS, Cholera, and Influenza
  • 29.9. Public Health Threats from Microbial Weapons
  • Explore The Microbial World Textbook Epidemiology: The SARS Epidemic
  • 30. Person-to-Person Bacterial and Viral Diseases
  • Microbiologynow A New Weapon against AIDS-- I. Airborne Bacterial Diseases
  • 30.1. Airborne Pathogens
  • 30.2. Streptococcal Syndromes
  • 30.3. Diphtheria and Pertussis
  • 30.4. Tuberculosis and Leprosy
  • 30.5. Meningitis and Meningococcemia
  • II. Airborne Viral Diseases
  • 30.6. MMR and Varicella-Zoster Infections
  • 30.7. Common Cold
  • 30.8. Influenza
  • III. Direct-Contact Bacterial and Viral Diseases
  • 30.9. Staphylococcus aureus Infections
  • 30.10. Helicobacter pylori and Gastric Diseases
  • 30.11. Hepatitis
  • 30.12. Ebola: A Deadly Threat
  • IV. Sexually Transmitted Infections
  • 30.13. Gonorrhea and Syphilis
  • 30.14. Chlamydia, Herpes, and Human Papillomavirus
  • 30.15. HIV/AIDS
  • 31. Vectorborne and Soilborne Bacterial and Viral Diseases
  • Microbiologynow A New Look at Rabies Vaccines
  • I. Animal-Transmitted Viral Diseases
  • 31.1. Rabies Virus and Rabies
  • 31.2. Hantavirus and Hantavirus Syndromes
  • II. Arthropod-Transmitted Bacterial and Viral Diseases
  • 31.3. Rickettsial Diseases
  • 31.4. Lyme Disease and Borrelia
  • 31.5. Yellow Fever, Dengue Fever, Chikungunya, and Zika
  • 31.6. West Nile Fever
  • 31.7. Plague
  • III. Soilborne Bacterial Diseases
  • 31.8. Anthrax
  • 31.9. Tetanus and Gas Gangrene
  • 32. Waterborne and Foodborne Bacterial and Viral Diseases
  • Microbiologynow The Classic Botulism Scenario
  • I. Water as a Disease Vehicle
  • 32.1. Agents and Sources of Waterborne Diseases
  • 32.2. Public Health and Water Quality
  • II. Waterborne Diseases
  • 32.3. Vibrio cholerae and Cholera
  • 32.4. Legionellosis
  • 32.5. Typhoid Fever and Norovirus Illness
  • III. Food as a Disease Vehicle
  • 32.6. Food Spoilage and Food Preservation
  • 32.7. Foodborne Disease and Food Epidemiology
  • IV. Food Poisoning
  • 32.8. Staphylococcal Food Poisoning
  • 32.9. Clostridial Food Poisoning
  • V. Food Infection
  • 32.10. Salmonellosis
  • 32.11. Pathogenic Escherichia coli
  • 32.12. Campylobacter
  • 32.13. Listeriosis
  • 32.14. Other Foodborne Infectious Diseases
  • 33. Eukaryotic Pathogens: Fungi, Protozoa, and Helminths
  • Microbiologynow Environmental Change and Parasitic Diseases in the Amazon
  • I. Fungal Infections
  • 33.1. Pathogenic Fungi and Classes of Infection
  • 33.2. Fungal Diseases: Mycoses
  • II. Visceral Parasitic Infections
  • 33.3. Amoebae and Ciliates: Entamoeba, Naegleria, and Balantidium
  • 33.4. Other Visceral Parasites: Giardia, Trichomonas, Cryptosporidium, Toxoplasma, and Cyclospora
  • III. Blood and Tissue Parasitic Infections
  • 33.5. Plasmodium and Malaria
  • 33.6. Leishmaniasis, Trypanosomiasis, and Chagas Disease
  • 33.7. Parasitic Helminths: Schistosomiasis and Filariases.
For courses in General Microbiology. A streamlined approach to master microbiologyBrock Biology of Microorganisms is the leading majors microbiology text on the market. It sets the standard for impeccable scholarship, accuracy, and strong coverage of ecology, evolution, and metabolism. The 15th edition seamlessly integrates the most current science, paying particular attention to molecular biology and the genomic revolution. It introduces a flexible, more streamlined organization with a consistent level of detail and comprehensive art program. Brock Biology of Microorganisms helps students quickly master concepts, both in and outside the classroom, through personalized learning, engaging activities to improve problem solving skills, and superior art and animations with Mastering (TM) Microbiology. Also available with Mastering Microbiology.Mastering (TM) Microbiology is an online homework, tutorial, and assessment product designed to improve results by helping students quickly master concepts. Students benefit from self-paced tutorials that feature personalized wrong-answer feedback and hints that emulate the office-hour experience and help keep students on track. With a wide range of interactive, engaging, and assignable activities, students are encouraged to actively learn and retain tough course concepts.Students, if interested in purchasing this title with Mastering Microbiology, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. Note: You are purchasing a standalone product; Mastering (TM) Microbiology does not come packaged with this content. Students, if interested in purchasing this title with Mastering Microbiology, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and Mastering Microbiology, search for: 0134268660 / 9780134268668 Brock Biology of Microorganisms Plus Mastering Microbiology with eText -- Access Card Package, 15/e Package consists of:0134261925 / 9780134261928 Brock Biology of Microorganisms0134603974 / 9780134603971 Mastering Microbiology with Pearson eText -- Standalone Access Card -- for Brock Biology of Microorganisms, 15/e MasteringMicrobiology should only be purchased when required by an instructor.
(source: Nielsen Book Data)9780134261928 20171121
Science Library (Li and Ma)
BIO-62-01, CHEMENG-355-01
Book
1 volume (various pagings) : illustrations (chiefly color) ; 29 cm
  • Part One: Fundamentals of Microbiology Ch 1: The Microbial World and You Ch 2: Chemical Principles Ch 3: Observing Microorganisms through a Microscope Ch 4: Functional Anatomy of Prokaryotic and Eukaryotic Cells Ch 5: Microbial Metabolism Ch 6: Microbial Growth Ch 7: The Control of Microbial Growth Ch 8: Microbial Genetics Ch 9: Biotechnology and DNA Technology Part Two: A Survey of the Microbial World Ch 10: Classification of Microorganisms Ch 11: The Prokaryotes: Domains Bacteria and Archaea Ch 12: The Eukaryotes: Fungi, Algae, Protozoa, and Helminths Ch 13: Viruses, Viroids, and Prions Part Three: Interaction between Microbe and Host Ch 14: Principles of Disease and Epidemiology Ch 15: Microbial Mechanisms of Pathogenicity Ch 16: Innate Immunity: Nonspecific Defenses of the Host Ch 17: Adaptive Immunity: Specific Defenses of the Host Ch 18: Practical Applications of Immunology Ch 19: Disorders Associated with the Immune System Ch 20: Antimicrobial Drugs Part Four Microorganisms and Human Disease Ch 21: Microbial Diseases of the Skin and Eyes Ch 22: Microbial Diseases of the Nervous System Ch 23: Microbial Diseases of the Cardiovascular and Lymphatic Systems Ch 24: Microbial Diseases of the Respiratory System Ch 25: Microbial Diseases of the Digestive System Ch 26: Microbial Disease of the Urinary and Reproductive Systems Part Five: Environmental and Applied Microbiology Ch 27: Environmental Microbiology Ch 28: Applied and Industrial Microbiology Appendix A: Metabolic Pathways Appendix B: Exponents, Exponential Notation, Logarithms, and Generation Time Appendix C: Methods for Taking Clinical Samples Appendix D: Pronunciation of Scientific Names Appendix E: Word Roots Used in Microbiology Appendix F: Classification of Bacteria According to Bergey's Manual.
  • (source: Nielsen Book Data)9780321929150 20161205
NOTE: You are purchasing a standalone product; MasteringMicrobiology does not come packaged with this content. If you would like to purchase both the physical text and MasteringMicrobiology search for ISBN-10: 032192892X/ISBN-13: 9780321928924. That package includes ISBN-10: 0321929152/ISBN-13: 9780321929150 and ISBN-10: 0133905527/ISBN-13:9780133905526 . Master Microbiology where it matters. Everywhere. An engaging and clear approach to learning complex microbiology topics and theory Praised for its exceptionally clear presentation of complex topics, this #1-selling text for microbiology non-majors provides a careful balance of concepts and applications, proven art that teaches and the most robust, dynamic media in MasteringMicrobiology. The Twelfth Edition ofTortora, Funke, and Case's Microbiology: An Introduction focuses on big picture concepts and themes in microbiology, encouraging students to visualize and synthesize tough topics such as microbial metabolism, immunology, and microbial genetics. The text and accompanying resources also help students make connections between microbiology theory and disease diagnosis, treatment, and prevention. Also available with MasteringMicrobiology MasteringMicrobiology is an online homework, tutorial, and assessment resource that helps students quickly master concepts and improve course results. Students benefit from self-paced tutorials that feature immediate wrong-answer feedback and hints that emulate the instructor office-hour experience to help keep students on track. With a wide range of interactive, engaging, and assignable activities, students are encouraged to actively learn and retain tough course concepts.
(source: Nielsen Book Data)9780321929150 20161205
Science Library (Li and Ma)
BIO-62-01

4. Biochemistry [2015]

Book
xxxii, 1056, 48, 43, 43 pages : illustrations (some color) ; 29 cm
  • PART I: THE MOLECULAR DESIGN OF LIFE 1. Biochemistry: An Evolving Science 2. Protein Composition and Structure 3. Exploring Proteins and Proteomes 4. DNA, RNA, and the Flow of Genetic Information 5. Exploring Genes and Genomes 6. Exploring Evolution and Bioinformatics 7. Hemoglobin: Portrait of a Protein in Action 8. Enzymes: Basic Concepts and Kinetics 9. Catalytic Strategies 10. Regulatory Strategies 11. Carbohydrates 12. Lipids and Cell Membranes 13. Membrane Channels and Pumps 14. Signal-Transduction Pathways PART II: TRANSDUCING AND STORING ENERGY 15. Metabolism: Basic Concepts and Design 16. Glycolysis and Gluconeogenesis 17. The Citric Acid Cycle 18. Oxidative Phosphorylation 19. The Light Reactions of Photosynthesis 20. The Calvin Cycle and the Pentose Phosphate Pathway 21. Glycogen Metabolism 22. Fatty Acid Metabolism 23. Protein Turnover and Amino Acid Catabolism PART III: SYNTHESIZING THE MOLECULES OF LIFE 24. The Biosynthesis of Amino Acids 25. Nucleotide Biosynthesis 26. The Biosynthesis of Membrane Lipids and Steroids 27. The Integration of Metabolism 28. DNA Replication, Repair, and Recombination 29. RNA Synthesis and Processing 30. Protein Synthesis 31. The Control of Gene Expression in Prokaryotes 32. The Control of Gene Expression in Eukaryotes PART IV: RESPONDING TO ENVIRONMENTAL CHANGES 33. Sensory Systems 34. The Immune System 35. Molecular Motors 36. Drug Development.
  • (source: Nielsen Book Data)9781464126109 20160618
For four decades, this extraordinary textbook played an pivotal role in the way biochemistry is taught, offering exceptionally clear writing, innovative graphics, coverage of the latest research techniques and advances, and a signature emphasis on physiological and medical relevance. Those defining features are at the heart of this edition.
(source: Nielsen Book Data)9781464126109 20160618
Science Library (Li and Ma)
BIO-62-01, CHEM-143-01, CHEM-143-01, CHEM-143-01, CHEM-184-01