articles+ search results
224,814 articles+ results
1 - 20
Next
Number of results to display per page
1 - 20
Next
Number of results to display per page
1. Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds [2023]
-
M. Chatziparaschos, N. Daskalakis, S. Myriokefalitakis, N. Kalivitis, A. Nenes, M. Gonçalves Ageitos, M. Costa-Surós, C. Pérez García-Pando, M. Zanoli, M. Vrekoussis, and M. Kanakidou
- Atmospheric Chemistry and Physics, Vol 23, Pp 1785-1801 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
Ice-nucleating particles (INPs) enable ice formation, profoundly affecting the microphysical and radiative properties, lifetimes, and precipitation rates of clouds. Mineral dust emitted from arid regions, particularly potassium-containing feldspar (K-feldspar), has been shown to be a very effective INP through immersion freezing in mixed-phase clouds. However, despite the fact that quartz has a significantly lower ice nucleation activity, it is more abundant than K-feldspar in atmospheric desert dust and therefore may be a significant source of INPs. In this contribution, we test this hypothesis by investigating the global and regional importance of quartz as a contributor to INPs in the atmosphere relative to K-feldspar. We have extended a global 3-D chemistry transport model (TM4-ECPL) to predict INP concentrations from both K-feldspar and quartz mineral dust particles with state-of-the-art parameterizations using the ice-active surface-site approach for immersion freezing. Our results show that, although K-feldspar remains the most important contributor to INP concentrations globally, affecting mid-level mixed-phase clouds, the contribution of quartz can also be significant. Quartz dominates the lowest and the highest altitudes of dust-derived INPs, affecting mainly low-level and high-level mixed-phase clouds. The consideration of quartz INPs also improves the comparison between simulations and observations at low temperatures. Our simulated INP concentrations predict ∼ 51 % of the observations gathered from different campaigns within 1 order of magnitude and ∼ 69 % within 1.5 orders of magnitude, despite the omission of other potentially important INP aerosol precursors like marine bioaerosols. Our findings support the inclusion of quartz in addition to K-feldspar as an INP in climate models and highlight the need for further constraining their abundance in arid soil surfaces along with their abundance, size distribution, and mixing state in the emitted dust atmospheric particles.
- Full text View on content provider's site
-
Y. Song, C. Xing, C. Liu, J. Lin, H. Wu, T. Liu, H. Lin, C. Zhang, W. Tan, X. Ji, H. Liu, and Q. Li
- Atmospheric Chemistry and Physics, Vol 23, Pp 1803-1824 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
Pollutant transport has a substantial impact on the atmospheric environment in megacity clusters. However, owing to the lack of knowledge of vertical pollutant structure, quantification of transport processes and understanding of their impacts on the environment remain inadequate. In this study, we retrieved the vertical profiles of aerosols, nitrogen dioxide (NO2), and formaldehyde (HCHO) using multi-axis differential optical absorption spectroscopy (MAX-DOAS) and analyzed three typical transport phenomena over the North China Plain (NCP) and Yangtze River Delta (YRD). We found the following: (1) the main transport layers (MTL) of aerosols, NO2, and HCHO along the southwest–northeast transport pathway in the Jing-Jin-Ji region were approximately 400–800, 0–400, and 400–1200 m, respectively. The maximum transport flux of HCHO appeared in Wangdu (WD), and aerosol and NO2 transport fluxes were assumed to be high in Shijiazhuang (SJZ), both urban areas being significant sources feeding regional pollutant transport pathways. (2) The NCP was affected by severe dust transport on 15 March 2021. The airborne dust suppressed dissipation and boosted pollutant accumulation, decreasing the height of high-altitude pollutant peaks. Furthermore, the dust enhanced aerosol production and accumulation, weakening light intensity. For the NO2 levels, dust and aerosols had different effects. At the SJZ and Dongying (DY) stations, the decreased light intensity prevented NO2 photolysis and favored NO2 concentration increase. In contrast, dust and aerosols provided surfaces for heterogeneous reactions, resulting in reduced NO2 levels at the Nancheng (NC) and Xianghe (XH) stations. The reduced solar radiation favored local HCHO accumulation in SJZ owing to the dominant contribution of the primary HCHO. (3) Back-and-forth transboundary transport between the NCP and YRD was found. The YRD-to-NCP and NCP-to-YRD transport processes mainly occurred in the 500–1500 and 0–1000 m layers, respectively. This transport, accompanied by the dome effect of aerosols, produced a large-scale increase in PM2.5, further validating the haze-amplifying mechanism.
- Full text View on content provider's site
-
L. Fink, M. Karl, V. Matthias, S. Oppo, R. Kranenburg, J. Kuenen, J. Moldanova, S. Jutterström, J.-P. Jalkanen, and E. Majamäki
- Atmospheric Chemistry and Physics, Vol 23, Pp 1825-1862 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
Shipping has a significant share in the emissions of air pollutants such as NOx and particulate matter (PM), and the global maritime transport volumes are projected to increase further in the future. The major route for short sea shipping within Europe and the main shipping route between Europe and East Asia are found in the Mediterranean Sea. Thus, it is a highly frequented shipping area, and high levels of air pollutants with significant potential impacts from shipping emissions are observed at monitoring stations in many cities along the Mediterranean coast. The present study is part of the EU H2020 project SCIPPER (Shipping contribution to Inland Pollution Push for the Enforcement of Regulations). Five different regional chemistry transport models (CAMx – Comprehensive Air Quality Model with Extensions, CHIMERE, CMAQ, EMEP – European Monitoring and Evaluation Programme, LOTOS-EUROS) were used to simulate the transport, chemical transformation and fate of atmospheric pollutants in the Mediterranean Sea for 2015. Shipping emissions were calculated with the Ship Traffic Emission Assessment Model (STEAM) version 3.3.0, and land-based emissions were taken from the CAMS-REG v2.2.1 dataset for a domain covering the Mediterranean Sea at a resolution of 12 km × 12 km (or 0.1∘×0.1∘). All models used their standard setup for further input. The potential impact of ships was calculated with the zero-out method. The model results were compared to each other and to measured background data at monitoring stations. The model results differ regarding the time series and pattern but are similar concerning the overall underestimation of NO2 and overestimation of O3. The potential impact from ships on the total NO2 concentration was especially high on the main shipping routes and in coastal regions (25 % to 85 %). The potential impact from ships on the total O3 concentration was lowest in regions with the highest NO2 impact (down to −20%). CAMx and CHIMERE simulated the highest potential impacts of ships on the NO2 and O3 air concentrations. Additionally, the strongest correlation was found between CAMx and CHIMERE, which can be traced back to the use of the same meteorological input data. The other models used different meteorological input due to their standard setup. The CMAQ-, EMEP- and LOTOS-EUROS-simulated values were within one range for the NO2 and O3 air concentrations. Regarding simulated deposition, larger differences between the models were found when compared to air concentration. These uncertainties and deviations between models are caused by deposition mechanisms, which are unique within each model. A reliable output from models simulating ships' potential impacts can be expected for air concentrations of NO2 and O3.
- Full text View on content provider's site
-
F. Yu, G. Luo, A. A. Nair, S. Eastham, C. J. Williamson, A. Kupc, and C. A. Brock
- Atmospheric Chemistry and Physics, Vol 23, Pp 1863-1877 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
While formation and growth of particles in the troposphere have been extensively studied in the past two decades, very limited efforts have been devoted to understanding these in the stratosphere. Here we use both Cosmics Leaving OUtdoor Droplets (CLOUD) laboratory measurements taken under very low temperatures (205–223 K) and Atmospheric Tomography Mission (ATom) in situ observations of particle number size distributions (PNSDs) down to 3 nm to constrain nucleation mechanisms and to evaluate model-simulated particle size distributions in the lowermost stratosphere (LMS). We show that the binary homogenous nucleation (BHN) scheme used in most of the existing stratospheric aerosol injection (a proposed method of solar radiation modification) modeling studies overpredicts the nucleation rates by 3–4 orders of magnitude (when compared to CLOUD data) and particle number concentrations in the background LMS by a factor ∼ 2–4 (when compared to ATom data). Based on a recently developed kinetic nucleation model, which gives rates of both ion-mediated nucleation (IMN) and BHN at low temperatures in good agreement with CLOUD measurements, both BHN and IMN occur in the stratosphere. However, IMN rates are generally more than 1 order of magnitude higher than BHN rates and thus dominate nucleation in the background stratosphere. In the Southern Hemisphere (SH) LMS with minimum influence of anthropogenic emissions, our analysis shows that ATom-measured PNSDs generally have four apparent modes. The model captures reasonably well the two modes (Aitken mode and the first accumulation mode) with the highest number concentrations and size-dependent standard deviations. However, the model misses an apparent second accumulation mode peaking around 300–400 nm, which is in the size range important for aerosol direct radiative forcing. The bimodal structure of accumulation mode particles has also been observed in the stratosphere well above tropopause and in the volcano-perturbed stratosphere. We suggest that this bimodal structure may be caused by the effect of charges on coagulation and growth, which is not yet considered in any existing models and may be important in the stratosphere due to high ionization rates and the long lifetime of aerosols. Considering the importance of accurate PNSDs for projecting a realistic radiation forcing response to stratospheric aerosol injection (SAI), it is essential to understand and incorporate such potentially important processes in SAI model simulations and to carry out further research to find out what other processes the present models might have missed.
- Full text View on content provider's site
-
C. Sarangi, Y. Qian, L. R. Leung, Y. Zhang, Y. Zou, and Y. Wang
- Atmospheric Chemistry and Physics, Vol 23, Pp 1769-1783 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
Anthropogenic contribution to the overall fine particulate matter (PM2.5) concentrations has been declining sharply in North America. In contrast, a steep rise in wildfire-induced air pollution events with recent warming is evident in the region. Here, based on coupled fire–climate–ecosystem model simulations, summertime wildfire-induced PM2.5 concentrations are projected to nearly double in North America by the mid-21st century compared to the present. More strikingly, the projected enhancement in fire-induced PM2.5 (∼ 1–2 µg m−3) and its contribution (∼ 15 %–20 %) to the total PM2.5 are distinctively significant in the eastern US. This can be attributed to downwind transport of smoke from future enhancement of wildfires in North America to the eastern US and associated positive climatic feedback on PM2.5, i.e., perturbations in circulation, atmospheric stability, and precipitation. Therefore, the anticipated reductions in PM2.5 from regulatory controls on anthropogenic emissions could be significantly compromised in the future in the densely populated eastern US.
- Full text View on content provider's site
-
G. G. Mace, S. Benson, R. Humphries, P. M. Gombert, and E. Sterner
- Atmospheric Chemistry and Physics, Vol 23, Pp 1677-1685 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
The number of cloud droplets per unit volume (Nd) is a fundamentally important property of marine boundary layer (MBL) liquid clouds that, at constant liquid water path, exerts considerable controls on albedo. Past work has shown that regional Nd has a direct correlation to marine primary productivity (PP) because of the role of seasonally varying, biogenically derived precursor gases in modulating secondary aerosol properties. These linkages are thought to be observable over the high-latitude oceans, where strong seasonal variability in aerosol and meteorology covary in mostly pristine environments. Here, we examine Nd variability derived from 5 years of MODIS Level 2-derived cloud properties in a broad region of the summer eastern Southern Ocean and adjacent marginal seas. We demonstrate latitudinal, longitudinal and temporal gradients in Nd that are strongly correlated with the passage of air masses over high-PP waters that are mostly concentrated along the Antarctic Shelf poleward of 60∘ S. We find that the albedo of MBL clouds in the latitudes south of 60∘ S is significantly higher than similar liquid water path (LWP) clouds north of this latitude.
- Full text View on content provider's site
-
C. C. J. H. Salinas, D. L. Wu, J. N. Lee, L. C. Chang, L. Qian, and H. Liu
- Atmospheric Chemistry and Physics, Vol 23, Pp 1705-1730 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
This work uses 17 years of upper mesospheric carbon monoxide (CO) and temperature observations by the microwave limb sounder (MLS) on-board the Aura satellite to present and explain the seasonal and interannual variability of the migrating diurnal tide (DW1) component of upper mesospheric CO. This work then compares these observations to simulations by the specified dynamics – whole atmosphere community climate model with ionosphere/thermosphere extension (SD-WACCM-X). Results show that, for all seasons, MLS CO local-time perturbations peaks above 85 km and has a latitude structure resembling the (1,1) mode in temperature. On the other hand, SD-WACCM-X DW1 also peaks above 85 km and has a latitude structure resembling the (1,1) mode, but it simulates two local maximum of the (1,1) mode between 85 and 92 km. Despite the differences in altitude structure, a tendency analysis and the adiabatic displacement method revealed that, on seasonal and interannual timescales, observed and modeled CO's (1,1) component can be reproduced solely using vertical advection. It was also found that both observed and modeled CO's (1,1) component contains interannual oscillations with periodicities close to that of the quasi-biennial oscillation and the El Niño–Southern Oscillation. From these results, this work concludes that on seasonal and interannual timescales, the observed and modeled (1,1) mode affects the global structure of upper mesospheric CO primarily through vertical advection.
- Full text View on content provider's site
-
Y. Liu, C. K. Lim, Z. Shen, P. K. H. Lee, and T. Nah
- Atmospheric Chemistry and Physics, Vol 23, Pp 1731-1747 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
Recent studies have reported that interactions between live bacteria and organic matter can potentially affect the carbon budget in clouds, which has important atmospheric and climate implications. However, bacteria in clouds are subject to a variety of atmospheric stressors, which can adversely affect their survival and energetic metabolism and, consequently, their ability to biodegrade organic compounds. At present, the effects of cloud water pH and solar radiation on bacteria are not well understood. In this study, we investigated how cloud water pH (pH 3 to 6) and exposure to solar radiation impact the survival and energetic metabolism of two Enterobacter bacterial strains that were isolated from ambient air collected in Hong Kong and their ability to biodegrade organic acids. Experiments were conducted using simulated sunlight (wavelength from 320 to 700 nm) and microcosms comprised of artificial cloud water that mimicked the pH and chemical composition of cloud water in Hong Kong, South China. Our results showed that the energetic metabolism and survival of both strains depended on the pH. Low survival rates were observed for both strains at pH, regardless of whether the strains were exposed to simulated sunlight. At pH 4 to 5, the energetic metabolism and survival of both strains were negatively impacted only when they were exposed to simulated sunlight. Organic compounds such as lipids and peptides were detected during exposure to simulated sunlight at pH 4 to 5. In contrast, there were minimal effects on the energetic metabolism and the survival of both strains when they were exposed to simulated sunlight at pH>5. The biodegradation of organic acids was found to depend on the presence (or absence) of simulated sunlight and the pH of the artificial cloud water medium. Overall, this study provides new insights into how two common atmospheric stressors, cloud water pH and exposure to solar radiation, can influence the survival and energetic metabolism of bacteria, and consequently the roles that they play in cloud processes.
- Full text View on content provider's site
9. Meteorological export and deposition fluxes of black carbon on glaciers of the central Chilean Andes [2023]
-
R. Lapere, N. Huneeus, S. Mailler, L. Menut, and F. Couvidat
- Atmospheric Chemistry and Physics, Vol 23, Pp 1749-1768 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
Air pollution in the central zone of Chile is not only a public health concern but also threatens water resources and climate, in connection with the transport and deposition of black carbon (BC) from urban centers onto the glaciers of the Andes. Chemistry-transport simulations reveal a seasonal dichotomy in the flux and latitudinal pattern of BC deposition on glaciers of the central Chilean Andes. The average deposition flux of BC on glaciers between 30 and 37∘ S is 4 times larger in winter, affecting mostly low-elevation glaciers, whereas the smaller summertime flux affects glaciers evenly, irrespective of their elevation. The contribution of emissions from the city of Santiago is dominant in summertime with more than 50 % along the Andes but minor in wintertime with less than 20 % even close to the capital city. Transport at larger scales and more local sources likely account for the remaining flux. The superimposition of synoptic-scale circulation and local mountain-valley circulation along the Andes drives the differences between summertime and wintertime deposition fluxes and generates a greater meteorological export potential during summer months. Future emissions and climate projections suggest that under the RCP8.5 scenario the gap between summertime and wintertime BC export and deposition flux could decrease, thereby pointing to summertime emission control gaining relevance. The chemistry-transport modeling approach for BC deposition on the Andes sheds light on the importance of the often disregarded summertime emissions on the radiative balance of its glaciers, particularly in the vicinity of Santiago.
- Full text View on content provider's site
10. Future changes in atmospheric rivers over East Asia under stratospheric aerosol intervention [2023]
-
J. Liang and J. Haywood
- Atmospheric Chemistry and Physics, Vol 23, Pp 1687-1703 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
Atmospheric rivers (ARs) are closely associated with historical extreme precipitation events over East Asia. The projected increase in such weather systems under global warming has been extensively discussed in previous studies, while the role of stratospheric aerosol, particularly for the implementation of stratospheric aerosol intervention (SAI), in such a change remains unknown. Based on an ensemble of the UK Earth System Model (UKESM1) simulations, here we investigate changes in the frequency of ARs and their associated mean and extreme precipitation under a range of climate forcing, including greenhouse gas emission scenarios of high (SSP5–8.5) and medium (SSP2–4.5) levels, the deployment of SAI geoengineering (G6sulfur), and solar dimming (G6solar). The result indicates a significant increase in AR frequency and AR-related precipitation over most of East Asia in a warmer climate, and the most pronounced changes are observed in southern China. Comparing G6solar and both the Shared Socioeconomic Pathway (SSP) scenarios, the G6sulfur simulations indicate that SAI is effective at partly ameliorating the increases in AR activity over the subtropical region; however, it may result in more pronounced increases in ARs and associated precipitation over the upper-midlatitude regions, particularly northeastern China. Such a response is associated with the further weakening of the subtropical westerly jet stream under SAI that favours the upper-midlatitude AR activity. This is driven by the decreased meridional gradient of thermal expansion in the mid–high troposphere associated with aerosol cooling across the tropical region, though SAI effectively ameliorates the widespread increase in thermal expansion under climate warming. Such a side effect of SAI over the populated region implies that caution must be taken when considering geoengineering approaches to mitigating hydrological risk under climate change.
- Full text View on content provider's site
-
Belenkov, Roman N and Postnikov, Eugene B
- Известия высших учебных заведений: Прикладная нелинейная динамика, Vol 31, Iss 1, Pp 45-62 (2023)
- Subjects
-
nonlinearity parameter, high-intense ultrasound, thermodynamic fluctuations, nonlinear waves, Physics, and QC1-999
- Abstract
-
The nonlinearity parameter B/A is a characteristic of liquids and soft matter, which gains growing attention due to its sensibility to the composition of materials. This makes it a prospective indicator for nondestructive testing applications based on the ultrasound sounding suitable for a variety of applications from physic chemistry to biomedical studies. At the same time, the thermodynamic definition of the nonlinearity parameter requires extensive measurements at elevated pressures that are not always available; in addition, there are known certain contradiction of such data with the data obtained by methods of nonlinear acoustics. Objective. In this work, we consider a recently proposed approach to the prediction of the speed of sound at high pressures, which uses the property of invariance of the reduced pressure fluctuations and the data obtained at normal ambient pressure only. The method generalises the classic Nomoto model, which however gives only a qualitative picture, and results in the quantitative correspondence to the experimental values within their range of uncertainty. Methods. Analytical methods of the theory of thermodynamic fluctuations applied to the parameters of equations of nonlinear acoustics as well as numerical simulation in the COMSOL Multiphysics® environment. Results. Expressions for calculating the nonlinearity parameter with acceptable accuracy were obtained using thermodynamic data obtained only at atmospheric pressure. Numerical calculations were performed for toluene. In addition, the discrepancy between values of the nonlinear parameter obtained via the thermodynamic and nonlinear acoustic routes is analysed based on the numerical solution of the Westervelt equation; it is revealed that this deviation emerges when the effects of absorption of finite-amplitude waves were not properly taken into account.
- Full text View record in DOAJ
-
Safarov, Ismoil Ibrohimovich and Teshaev, Muhsin Khudoyberdiyevich
- Известия высших учебных заведений: Прикладная нелинейная динамика, Vol 31, Iss 1, Pp 63-74 (2023)
- Subjects
-
vibration, dynamic damper, construction, viscoelastic support, shock absorber, Physics, and QC1-999
- Abstract
-
The study of the problem of damping vibrations of a solid body mounted on viscoelastic supports is an urgent task. The paper considers the problem of reducing the level of vibrations on the paws of electric machines using dynamic vibration dampers. For this purpose, the paw of electric machines is represented in the form of a subamortized solid body with six degrees of freedom mounted on viscoelastic supports. The aim of the work is to develop calculation methods and algorithms for studying the oscillations of the resonant amplitudes of a solid body mounted on viscoelastic supports. Dynamic oscillation (vibration) damping method consists in attaching a system to the protected object, the reactions of which reduce the scope of vibration of the object at the points of attachment of this system. Applying the D’Alembert principle, the equations of small vibrations of a solid with dampers are derived. For practical calculations, a simplified system of equations was obtained that takes into account only three degrees of freedom. Numerical calculations were carried out on a computer to determine the amplitude-frequency characteristics of the main body. Numerical experiments were carried out using the Matlab mathematical package. Considering that a solid body is characterized by vibration, as a rule, in a continuous and wide frequency range, therefore, dynamic vibration dampers are used to protect a solid body mounted on viscoelastic supports. It was found that when the damper is set at a frequency of 50 Hz, the vibration level at the left end of the frequency interval of rotary motion of the rotor-converter, decreases to 37.5 dB, and at the right end — to 42.5 dB. At a frequency of 50 Hz, the paws do not oscillate. When setting the dampers to a frequency of 51.5 Hz, the maximum vibration level does not exceed 40 dB. The optimal setting of the dampers is within the frequency of 50.60...50.70 Hz, and a two-mass extinguisher is 10–15% more efficient than a single-mass one. Thus, the paper sets the tasks of dynamic damping of vibrations of a solid body mounted on viscoelastic supports, develops solution methods and an algorithm for determining the dynamic state of a solid body with passive vibration of the object in question.
- Full text View record in DOAJ
-
Polunovskii, Andrey Andreevich
- Известия высших учебных заведений: Прикладная нелинейная динамика, Vol 31, Iss 1, Pp 8-19 (2023)
- Subjects
-
dynamic chaos, feigenbaum equation, functional equations with superposition, power series, Physics, and QC1-999
- Abstract
-
Purpose. New algorithms were consider for functional equations solving using the Feigenbaum equation as an example. This equation is of great interest in the theory of deterministic chaos and is a good illustrative example in the class of functional equations with superposition. Methods. The article proposes three new effective methods for solving functional equations — the method of successive approximations, the method of successive approximations using the fast Fourier transform and the numerical-analytical method using a small parameter. Results. Three new methods for solving functional equations were presented, considered on the example of the Feigenbaum equation. For each of them, the features of their application were investigated, as well as the complexity of the resulting algorithms was estimated. The methods previously used by researchers to solve functional equations are compared with those described in this article. In the description of the latter, the numerical-analytical method, several coefficients of expansions of the universal Feigenbaum constants were written out. Conclusion. The obtained algorithms, based on simple iteration methods, allow solving functional equations with superposition without the need to reverse the Jacobi matrix. This feature greatly simplifies the use of computer memory and gives a gain in the operating time of the algorithms in question, compared with previously used ones. Also, the latter, numerically-analytical method made it possible to obtain sequentially the coefficients of expansions of the universal Feigenbaum constants, which in fact can be an analytical representation of these constants
- Full text View record in DOAJ
-
Mokhseni, T. I. and Petrosyan, Manvel Mher
- Известия высших учебных заведений: Прикладная нелинейная динамика, Vol 31, Iss 1, Pp 20-31 (2023)
- Subjects
-
dynamic chaos, ultra–wideband signals, differentially coherent information transmission, correlation technique, Physics, and QC1-999
- Abstract
-
Methods of differentially coherent information transmission using noise signals are of interest because of the impossibility of implementing the known methods of correlation reception for such signals. With a potentially higher noise immunity compared to the methods of information transmission based on chaotic synchronization, however, they have a feature that does not allow transceivers to be implemented in practice. The transmitter and receiver of the scheme, based on already known methods of differentially coherent transmission, require a time delay comparable to the duration of the transmitted bits. With an analog implementation of the scheme this leads to a physical length of the delay line of tens of meters or more. Previously, the authors proposed and studied a differentially coherent transmission scheme in which there are no long delays. In this scheme, the duration of delays in the transmitter and receiver is determined not by the duration of the bit, but by the decay time of the autocorrelation function of the chaotic signal. Purpose of this work is to experimentally demonstrate the possibility of physical implementation of a direct-chaotic differentially coherent information transmission scheme in a wired communication channel. Methods. For this, a layout of the communication scheme, transmitting a binary data stream in the frequency range from 200 to 500 MHz, was designed and assembled. The layout is an ultrawideband differentially coherent transmitter and receiver connected via a wired channel. Results of the experiment are in full agreement with the previously obtained results of the analytical evaluations, as well as with the data of computer simulation. Conclusion. In the course of the research, a transceiver layout of a differentially coherent ultra-wideband direct chaotic communication scheme was developed, designed and manufactured. For the first time, experiments on the transmission of digital information were carried out on it, and thereby the practical feasibility and operability of the proposed direct chaotic differentially coherent transmission scheme were proved.
- Full text View record in DOAJ
-
Koronovskii, Aleksei Aleksandrovich, Kurovskaya, Maria Konstantinovna, and Moskalenko, Olga Igorevna
- Известия высших учебных заведений: Прикладная нелинейная динамика, Vol 31, Iss 1, Pp 32-44 (2023)
- Subjects
-
explosive synchronization phenomenon, kuramoto oscillators, nonlinear element networks, small-world topology, ring topology, partial frequencies, Physics, and QC1-999
- Abstract
-
Purpose of this study is to investigate the problem of how typical (or, conversely, unique) is the phenomenon of explosive synchronization in networks of nonlinear oscillators with topologies of links such as “ring” and “small world”, and, in turn, how the partial frequencies of the interacting oscillators must correlate with each other for the phenomenon of explosive synchronization in these networks can be possible. Methods. In this paper, we use an analytical description of the synchronous behavior of networks of nonlinear elements with “ring” and “small world” link topologies. To confirm the obtained results the numerical simulation is used. Results. It is shown that in networks of nonlinear oscillators with topologies of links such as “ring” and “small world”, the phenomenon of explosive synchronization can be observed for the different distributions of partial frequencies of network oscillators. Conclusion. The paper considers an analytical description of the behavior of network oscillators with “ring” and “small world” topologies of links and shows that the phenomenon of explosive synchronization in such networks is atypical, but not unique.
- Full text View record in DOAJ
-
Egorov, Nikita Mikhailovich, Sysoeva, Marina Vyacheslavovna, Ponomarenko, Vladimir Ivanovich, Kornilov, Maksim Vyacheslavovich, and Sysoev, Ilya Vyacheslavovich
- Известия высших учебных заведений: Прикладная нелинейная динамика, Vol 31, Iss 1, Pp 103-120 (2023)
- Subjects
-
fitzhugh–nagumo neuron electronic circuit, neural network, time delayed systems, sigmoid coupling, Physics, and QC1-999
- Abstract
-
The aim of the work is to build a radiophysical generator of neuron-like activity with a frequency tunable in various ways, corresponding to modern ideas about the structure of the hippocampus and the generation of pathological epileptic rhythms in it. Methods. The elements of the generator are radio engineering implementations of the complete FitzHugh– Nagumo neuron and the electronic implementation of a chemical synapse in the form of a sigmoid function with a delayed argument. The simulation was carried out in the SPICE simulator. Results. Various ways of introducing delay into the coupling are considered: an ideal delay line, a phase filter with a rheostat, one tunable Bessel filter, and a sequence of non-tunable Bessel filters. For circuit implementation, the approach using a Bessel filter with a rheostat is recognized as optimal as a compromise between simplicity and minimization of signal distortion. The dependences of the oscillation frequency on the number of elements in the ring and the delay time are constructed. The bistability of generation regimes is studied for certain values of the parameters. The effect of inclusion of inhibitory elements (interneurons) in the circuit is considered. Conclusion. The constructed ring generator models the experimentally observed properties of the dynamics of epileptic discharge fundamental frequency in limbic epilepsy. It is able to reproduce the occurrence of oscillations as a result of external short-term driving, smooth and sharp frequency tuning, the coexistence of different modes with the same parameters.
- Full text View record in DOAJ
-
Soloviev, Igor Aleksandrovich and Klinshov, Vladimir Viktorovich
- Известия высших учебных заведений: Прикладная нелинейная динамика, Vol 31, Iss 1, Pp 75-85 (2023)
- Subjects
-
dynamical networks, collective dynamics, associative memory, Physics, and QC1-999
- Abstract
-
Purpose of the work is the detailed study of the attractors of the Hopfield network and their basins of attraction depending on the parameters of the system, the size of the network and the number of stored images. To characterize the basins of attraction we used the method of the so-called stability threshold, i.e., the minimum distance from an attractor to the boundary of its basin of attraction. For useful attractors, this value corresponds to the minimum distortion of the stored image, after which the system is unable to recognize it. In the result of the study it is shown that the dependence of the average stability threshold of useful attractors on the number of stored images can be nonmonotonic, due to which the stability of the network can improve when new images are memorized. An analysis of the stability thresholds allowed to estimate the maximum number of images that the network can store without fatal errors in their recognition. In this case, the stability threshold of useful attractors turns out to be close to the minimum possible value, that is, to unity. To conclude, calculation of the stability thresholds provides important information about the attraction basins of the network attractors.
- Full text View record in DOAJ
-
Kovaleva, Natalya Sergeevna, Matrosov, Valerij Vladimirovich, and Mishchenko, Mikhail Andreevich
- Известия высших учебных заведений: Прикладная нелинейная динамика, Vol 31, Iss 1, Pp 86-102 (2023)
- Subjects
-
working memory, memory capacity, spiking neural network, delayed activity, short-term synaptic plasticity, Physics, and QC1-999
- Abstract
-
Purpose of this work is to study a computational model of working memory formation based on spiking neural network with plastic connections and to study the capacity of working memory depending on the time scales of synaptic facilitation and depression and the background excitation of the network. Methods. The model imitates working memory formation within synaptic theory: memorized items are stored in form of short-term potentiated connections in selective population but not in form of persistent activity. Integrate-And-Fire neuron model in excitable mode are used as network elements. Connections between excitatory neurons demonstrates the effect of short-term plasticity. Results. It is shown that the working memory capacity increases as calcium recovery time parameter grow up or the capacity increases with neurotransmitter recovery time parameter becomes lower. Working memory capacity is found to decrease to zero with decrease of the background excitation as a result of lower values of both the mean and the variance of the external noise. Conclusion. Working memory capacity was studied as a function of time scales of synaptic facilitation and depression and background excitation of the network. Estimated working memory capacity is shown to be possibly larger than classical experimental estimations of four items. But capacity strongly depends on intrinsic parameters of neural networks.
- Full text View record in DOAJ
-
H. von Storch
- Nonlinear Processes in Geophysics, Vol 30, Pp 31-36 (2023)
- Subjects
-
Science, Physics, QC1-999, Geophysics. Cosmic physics, and QC801-809
- Abstract
-
For ages, the topic of climate – in the sense of “usual weather” – has in the western tradition attracted attention as a possible explanatory factor for differences in societies and in human behavior. Climate, and its purported impact on society, is an integrated element in western thinking and perception. In this essay, the history of ideas about the climatic impact on humans and society and the emergence of the ideology of climatic determinism are sketched from the viewpoint of a natural scientist. This ideology favored the perception of westerners being superior to the people in the rest of the world, giving legitimacy to colonialism. In modern times, when natural sciences instituted self-critical processes (repeatability, falsification) and norms (such as the Mertonian norms named CUDOS), the traditional host for climate issues, namely, geography, lost its grip, and physics took over. This “scientification” of climate science led to a more systematic, critical and rigorous approach of building and testing hypotheses and concepts. This gain in methodical rigor, however, went along with the loss of understanding that climate is hardly a key explanatory factor for societal differences and developments. Consequently, large segments of the field tacitly and unknowingly began reviving the abandoned concept of climatic determinism. Climate science finds itself in a “post-normal” condition, which leads to a frequent dominance of political utility over methodical rigor.
- Full text View on content provider's site
-
B. Xu, J. Tang, T. Tang, S. Zhao, G. Zhong, S. Zhu, J. Li, and G. Zhang
- Atmospheric Chemistry and Physics, Vol 23, Pp 1565-1578 (2023)
- Subjects
-
Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
Secondary organic aerosols (SOAs) are important components of fine particulates in the atmosphere. However, the sources of SOA precursor and atmospheric processes affecting SOAs are poorly understood. This limits our abilities to improve air quality and model aerosol-mediated climate forcing. Here, we use novel compound-specific dual-carbon isotope fingerprints (Δ14C and δ13C) for individual SOA tracer molecules (i.e., oxalic acid) to investigate the fates of SOAs in the atmosphere at five emission hotspots in China. Coal combustion and vehicle exhaust accounted for ∼ 55 % of the sources of carbon in oxalic acid in Beijing and Shanghai, but biomass burning and biogenic emissions accounted for ∼ 70 % of the sources of carbon in oxalic acid in Chengdu, Guangzhou, and Wuhan during the sampling period. The dual-carbon isotope signatures of oxalic acid and bulk organic carbon pools (e.g., water-soluble organic carbon) were compared to investigate the fates of SOAs in the atmosphere. Photochemical aging and aqueous-phase chemical processes dominate the formation of oxalic acid in summer and in winter, respectively. The results indicated that SOA carbon sources and chemical processes producing SOAs vary spatially and seasonally, and these variations need to be included in Chinese climate projection models and air quality management practices.
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 20
Next