In this paper, polyamide 6 single layer laser sintering process was investigated. A moving volumetric heat source model that involves the energy function morphology was simulated, and the temperature field distribution of a single layer of polyamide 6 powder was investigated using the finite element method, with different scan space and preheating temperature. The sintering processes were conducted on several batch of single layer with original thickness of 0.5 mm, which consists of 80 mesh polyamide 6 powders. Then the percentage of porosity was calculated and tensile stress of was tested. The results indicate that the scanning space strongly affect the percentage of porosity. For example, the percentage of porosity reaches 45.1 % when the scanning space increases from 0.25 to 0.45 mm. The results also indicate that the preheating and holding temperature strongly affect the mechanical properties. For example, the max tensile test stress increased from 2.04 to 4.10 MPa when the temperature rises from 50 to 150 °C, while the percentage of porosity shows very limited shift, reducing by only 9.54 %. [ABSTRACT FROM AUTHOR]
CALCIUM sulfate, HYDROXYAPATITE, and LASER sintering
Abstract
The bone scaffolds should possess suitable physicochemical properties and osteogenic activities. In this study, porous calcium sulfate (CaSO4) scaffolds were fabricated successfully via selected laser sintering (SLS). Nano-hydroxyapatite (nHAp), a bioactive material with a low degradation rate, was introduced into CaSO4 scaffolds to overcome the overquick absorption. The results demonstrated that nHAp could not only control the degradation rate of scaffolds by adjusting their content, but also improve the pH environment by alleviating the acidification progress during the degradation of CaSO4 scaffolds. Moreover, the improved scaffolds were covered completely with the apatite spherulites in simulated body fluid (SBF), showing their favorable bioactivity. In addition, the compression strength and fracture toughness were distinctly enhanced, which could be ascribed to large specific area of nHAp and the corresponding stress transfer. [ABSTRACT FROM AUTHOR]