Industry 4.0 is fast becoming a mainstream goal, and many companies are lining up to join the Fourth Industrial Revolution. Small and medium-sized enterprises, especially in the manufacturing industry, are the most heavily challenged in adopting new technology. One of the reasons why these enterprises are lagging behind is the motivation of the key personnel, the decision-makers. The factories in question often do not have a pressing need for advancing to Industry 4.0 and are wary of the risk in doing so. The authors present a rapid, low-cost prototyping solution for the manufacturing companies with legacy machinery intending to adopt the Industry 4.0 paradigm with a low-risk initial step. The legacy machines are retrofitted through the Industrial Internet of Things, making these machines both connectable and capable of providing data, thus enabling process monitoring. The machine chosen as the digitization target was not connectable, and the retrofit was extensive. The choice was made to present the benefits of digitization to the stakeholders quickly and effectively. Indeed, the solution provides immediate results within manufacturing industrial settings, with the ultimate goal being the digital transformation of the entire factory. This work presents an implementation cycle for digitizing an industrial broaching machine, supported by state-of-the-art literature analysis. The methodology utilized in this work is based on the well-known DMAIC strategy customized for the specifics of this case study.
Earth is one of the most widely used building materials in the World. Different types of adobe dwellings are made to assure protection and wellbeing of the population according to the diverse zones needs. Therefore, it is importantstudy the structural behaviour of the adobe masonry constructions, analysing their seismic vulnerability, which may help in preventing social, cultural and economic losses. In the present chapter, an explanation of the seismic behaviour of adobe buildings, a summary of recent research outputs from experimental tests conducted on adobe masonry components and from numerical modelling of fullscale representative adobe constructions are reported. In addition, different rehabilitation and strengthening solutions are presented and results from the testing of retrofitted adobe constructions and components are discussed.