COVID-19 pandemic, ELECTRONIC circuit design, DIGITAL electronics, INTERNET of things, PHYSICS laboratories, and FIELD programmable gate arrays
Abstract
This paper presents a system for the remote design and testing of electronic circuits and devices with FPGAs during COVID-19 and similar lockdown periods when physical access to laboratories is not permitted. The system is based on the application of the IoT concept, in which the final device is a test board with an FPGA chip. The system allows for remote visual inspection of the board and the devices linked to it in the laboratory. The system was developed for remote learning taking place during the lockdown periods at Poznan University of Technology (PUT) in Poland. The functionality of the system is confirmed by two demonstration tasks (the use of the temperature and humidity DHT11 sensor and the design of a generator of sinusoidal waveforms) for students in the fundamentals of digital design and synthesis courses. The proposed solution allows, in part, to bypass the time-consuming simulations, and accelerate the process of prototyping digital circuits by remotely accessing the infrastructure of the microelectronics laboratory. [ABSTRACT FROM AUTHOR]
Michał Melosik, Mariusz Naumowicz, Marek Kropidłowski, and Wieslaw Marszalek
Electronics, Vol 11, Iss 1497, p 1497 (2022)
Subjects
Internet of Things, remote prototyping, FPGA devices, undergraduate teaching, digital design and synthesis lab, COVID-19 lockdowns, Electronics, and TK7800-8360
Abstract
This paper presents a system for the remote design and testing of electronic circuits and devices with FPGAs during COVID-19 and similar lockdown periods when physical access to laboratories is not permitted. The system is based on the application of the IoT concept, in which the final device is a test board with an FPGA chip. The system allows for remote visual inspection of the board and the devices linked to it in the laboratory. The system was developed for remote learning taking place during the lockdown periods at Poznan University of Technology (PUT) in Poland. The functionality of the system is confirmed by two demonstration tasks (the use of the temperature and humidity DHT11 sensor and the design of a generator of sinusoidal waveforms) for students in the fundamentals of digital design and synthesis courses. The proposed solution allows, in part, to bypass the time-consuming simulations, and accelerate the process of prototyping digital circuits by remotely accessing the infrastructure of the microelectronics laboratory.