We study knowledge-grounded dialogue generation with pre-trained language models. To leverage the redundant external knowledge under capacity constraint, we propose equipping response generation defined by a pre-trained language model with a knowledge selection module, and an unsupervised approach to jointly optimizing knowledge selection and response generation with unlabeled dialogues. Empirical results on two benchmarks indicate that our model can significantly outperform state-of-the-art methods in both automatic evaluation and human judgment. Comment: Accepted by EMNLP 2020
Building an intelligent dialogue system with the ability to select a proper response according to a multi-turn context is a great challenging task. Existing studies focus on building a context-response matching model with various neural architectures or PLMs and typically learning with a single response prediction task. These approaches overlook many potential training signals contained in dialogue data, which might be beneficial for context understanding and produce better features for response prediction. Besides, the response retrieved from existing dialogue systems supervised by the conventional way still faces some critical challenges, including incoherence and inconsistency. To address these issues, in this paper, we propose learning a context-response matching model with auxiliary self-supervised tasks designed for the dialogue data based on pre-trained language models. Specifically, we introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination, and jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner. By this means, the auxiliary tasks can guide the learning of the matching model to achieve a better local optimum and select a more proper response. Experiment results on two benchmarks indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection in retrieval-based dialogues, and our model achieves new state-of-the-art results on both datasets. Comment: 10 pages
While neural conversation models have shown great potentials towards generating informative and engaging responses via introducing external knowledge, learning such a model often requires knowledge-grounded dialogues that are difficult to obtain. To overcome the data challenge and reduce the cost of building a knowledge-grounded dialogue system, we explore the problem under a zero-resource setting by assuming no context-knowledge-response triples are needed for training. To this end, we propose representing the knowledge that bridges a context and a response and the way that the knowledge is expressed as latent variables, and devise a variational approach that can effectively estimate a generation model from a dialogue corpus and a knowledge corpus that are independent with each other. Evaluation results on three benchmarks of knowledge-grounded dialogue generation indicate that our model can achieve comparable performance with state-of-the-art methods that rely on knowledge-grounded dialogues for training, and exhibits a good generalization ability over different topics and different datasets.
Responding with knowledge has been recognized as an important capability for an intelligent conversational agent. Yet knowledge-grounded dialogues, as training data for learning such a response generation model, are difficult to obtain. Motivated by the challenge in practice, we consider knowledge-grounded dialogue generation under a natural assumption that only limited training examples are available. In such a low-resource setting, we devise a disentangled response decoder in order to isolate parameters that depend on knowledge-grounded dialogues from the entire generation model. By this means, the major part of the model can be learned from a large number of ungrounded dialogues and unstructured documents, while the remaining small parameters can be well fitted using the limited training examples. Evaluation results on two benchmarks indicate that with only 1/8 training data, our model can achieve the state-of-the-art performance and generalize well on out-of-domain knowledge. Comment: Published in ICLR 2020
2018 International Conference on Artificial Intelligence and Big Data (ICAIBD) Artificial Intelligence and Big Data (ICAIBD), 2018 International Conference on. :82-86 May, 2018
We present a document-grounded matching network (DGMN) for response selection that can power a knowledge-aware retrieval-based chatbot system. The challenges of building such a model lie in how to ground conversation contexts with background documents and how to recognize important information in the documents for matching. To overcome the challenges, DGMN fuses information in a document and a context into representations of each other, and dynamically determines if grounding is necessary and importance of different parts of the document and the context through hierarchical interaction with a response at the matching step. Empirical studies on two public data sets indicate that DGMN can significantly improve upon state-of-the-art methods and at the same time enjoys good interpretability.