Foudhaili, Takoua, Jaidi, Rihem, Neculita, Carmen M., Rosa, Eric, Triffault-Bouchet, Gaëlle, Veilleux, Éloïse, Coudert, Lucie, and Lefebvre, Olivier
Subjects
Pollution, Waste Management and Disposal, Environmental Chemistry, Environmental Engineering, Daphnia magna, biology.organism_classification, biology, Daphnia pulex, Water quality, Pulex, Toxicity, Acute toxicity, Environmental chemistry, Daphnia, Chemistry, and Effluent
Abstract
Mine effluents must meet discharge criteria for both physicochemical parameters and toxicity. While chemical precipitation is efficient for the treatment of metallic elements in mine effluents, the removal of sulfates, as a source of salinity and potential toxicity, is limited by gypsum solubility. This study evaluated the efficiency of electrocoagulation (EC), an emerging process to treat mine water, in removing sulfates and acute toxicity in two gold mine effluents (E1 and E2), before and after treatment (Fe-electrodes, 30 min at 20 mA/cm2, and pH near neutrality). Standard toxicity tests were conducted on two daphnia species, Daphnia magna (standard test species) and Daphnia pulex (more common in cold climate). Four uncontaminated surface waters (S#1 to S#4), which originated from different watershed lithologies, were also used as dilution media with E1 to assess water quality effect on toxicity response. Statistical analyses using the Student’s t-test showed no significant difference in immobility or mortality caused by surface waters on either D. magna or D. pulex species (p > 0.05). However, higher toxicity was observed with both daphnia when reconstituted hard water was used for testing of the treated effluent E2. The present study highlights the toxicity effect added by EC despite a sulfates-related salinity decrease of >7.5%. Further research should identify and confirm the potential sources of observed toxicity.
Municipal biosolids are increasingly used as a low-cost fertilizer in agricultural soil. Biosolids are contaminated by low concentrations (nanograms per gram dry wt range) of a large variety of organic contaminants, such as triclosan. The effect of exposure to low concentrations of organic contaminants on soil biota remains largely undocumented. We evaluated the sublethal effects of triclosan on the earthworm Eisenia andrei using an artificial soil amended with a nominal concentration of triclosan of 50 ng g-1 dry weight soil. Using a 56-d reproduction test, we monitored the effect of triclosan exposure on adult earthworm survival, growth, and reproduction. The bioaccumulation of triclosan in earthworm tissue (adults and juveniles) and degradation of triclosan were monitored. The genotoxicity of triclosan was evaluated using a comet assay (DNA damage) on adult earthworm coelomocytes. Exposure to a low concentration of triclosan had no significant effects on adult earthworm survival and DNA damage but significantly stimulated growth (p
General Medicine, General Chemistry, Environmental Chemistry, Environmental Engineering, Pollution, Health, Toxicology and Mutagenesis, Public Health, Environmental and Occupational Health, Toxicology, Pesticide, Comet assay, Neonicotinoid, Toxicity, Dry weight, Earthworm, biology.organism_classification, biology, Environmental chemistry, Eisenia andrei, and Bioaccumulation
Abstract
In this study, we evaluated the bioaccumulation of neonicotinoid insecticides in the earthworm Eisenia andrei exposed to environmental concentrations ( −1 dry weight, nominal concentration) in an artificial soil. We tested the selectivity for neonicotinoids by exposing earthworms to 7 neonicotinoids alone and in more complex mixtures of 54 pesticides then 69 organic contaminants (OCs) (54 pesticides and 15 pharmaceuticals). We applied long-term (56-day) toxicity tests to further evaluate the effect of OCs on earthworms. We monitored adult survival, adult DNA damage using a comet assay on earthworm coelomocyte cells, and reproduction performance (i.e. number of cocoons and number and dry weight of juveniles). A selective bioaccumulation of neonicotinoid insecticides in adult and juvenile earthworms was found. This bioaccumulation is concomitant with a significant increase in adult DNA damage and significant effects on reproduction when earthworms were exposed to neonicotinoid insecticides alone. This study reveals a new potential point of entry of neonicotinoid insecticides into the wildlife food chain and also shows that E. andrei reproduction could be affected by long-term exposure to environmental concentrations of OCs.