articles+ search results
9 articles+ results
1 - 9
Number of results to display per page
-
Kenny Álvarez, Rodrigo F. Lagos, and Miguel Aizpun
- Ingeniería e Investigación, Vol 36, Iss 3, Pp 110-116 (2016)
- Subjects
-
3D printing, mechanical properties, FDM process, ABS, makerbot replicator 2X, Engineering (General). Civil engineering (General), and TA1-2040
- Abstract
-
3D printing is a manufacturing process that is usually used for modeling and prototyping. One of the most popular printing techniques is fused deposition modeling (FDM), which is based on adding melted material layer by layer. Although FDM has several advantages with respect to other manufacturing materials, there are several problems that have to be faced. When setting the printing options, several parameters have to be taken into account, such as temperature, speed, infill percentage, etc. Selecting these parameters is often a great challenge for the user, and is generally solved by experience without considering the influence of variations in the parameters on the mechanical properties of the printed parts.This article analyzes the influence of the infill percentage on the mechanical properties of ABS (Acrylonitrile Butadiene Styrene) printed parts. In order to characterize this influence, test specimens for tensile strength and Charpy tests were printed with a Makerbot Replicator 2X printer, in which the infill percentage was varied but the rest of the printing parameters were kept constant. Three different results were analyzed for these tests: tensile strength, impact resistance, and effective printing time. Results showed that the maximum tensile force (1438N) and tensile stress (34,57MPa) were obtained by using 100% infill. The maximum impact resistance, 1,55J, was also obtained with 100% infill. In terms of effective printing time, results showed that printing with an infill range between 50% and 98% is not recommended, since the effective printing time is higher than with a 100% infill and the tensile strength and impact resistance are smaller. In addition, in comparing the results of our analysis with results from other authors, it can be concluded that the printer type and plastic roll significantly influence the mechanical properties of ABS parts.
- Full text View on content provider's site
-
Miguel Aizpun, Diego Sandino, and Inaki Merideno
- Ingeniería e Investigación, Vol 35, Iss 3, Pp 121-128 (2015)
- Subjects
-
Student community, multidisciplinary teamwork, creativity, motivation, university-industry collaboration., Engineering (General). Civil engineering (General), and TA1-2040
- Abstract
-
In addition to the engineering knowledge base that has been traditionally taught, today’s undergraduate engineering students need to be given the opportunity to practice a set of skills that will be demanded to them by future employers, namely: creativity, teamwork, problem solving, leadership and the ability to generate innovative ideas. In order to achieve this and educate engineers with both in-depth technical knowledge and professional skills, universities must carry out their own innovating and find suitable approaches that serve their students. This article presents a novel approach that involves university-industry collaboration. It is based on creating a student community for a particular company, allowing students to deal with real industry projects and apply what they are learning in the classroom. A sample project for the German sports brand adidas is presented, along with the project results and evaluation by students and teachers. The university-industry collaborative approach is shown to be beneficial for both students and industry.
- Full text View on content provider's site
-
Miguel Aizpun-Navarro and Ignacio Sesma-Gotor
- Dyna, Vol 82, Iss 194, Pp 46-51 (2015)
- Subjects
-
Technology, Mining engineering. Metallurgy, and TN1-997
- Abstract
-
La influencia del viento lateral en el descarrilamiento de los vehículos ferroviarios es un factor crítico desde que se comenzaron a producir vehículos ligeros que circulan a altas velocidades. Además, el confort del pasajero también puede verse afectado por el viento lateral. Sin embargo, este efecto todavía no ha sido investigado en profundidad en la literatura ferroviaria. Este artículo describe el efecto del viento lateral en el confort para trenes de alta velocidad que circulan en curvas para diferentes velocidades de viento, utilizando un escenario de viento tipo sombrero chino. Las simulaciones muestran que la combinación del viento lateral y la rigidez del tope de la suspensión secundaria pueden suponer una fuente importante de inestabilidad, produciendo contacto pestaña-pestaña y disminuyendo significativamente el confort. Además, este efecto se produce cuando el índice de descarrilamiento está muy por debajo del límite según la norma de seguridad ferroviaria.
- Full text View on content provider's site
-
Asier Alonso, Miguel Aizpun, and Jordi Vinolas
- Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 230:879-890
- Subjects
-
Mechanical Engineering, Dynamic simulation, Resistance test, Acceptance testing, Lateral stiffness, Automotive engineering, Friction coefficient, Engineering, business.industry, business, Bogie, Damper, and Suspension (vehicle)
- Abstract
-
A more widespread use of the dynamic simulation of rail vehicles would become possible if the validation of the model was secured and the model parameters were known to be accurate. This paper proposes an analytical methodology for the objective identification of parameter values used in modelling rail vehicles, using the results of a bogie rotational resistance test defined in the acceptance process of railway vehicles (EN 14363). This methodology also takes into account the variability of the measuring process by providing a probabilistic estimation of the identified parameters. The methodology is experimentally validated using test results obtained for an Intercity vehicle. Seven model parameters can be accurately estimated: longitudinal and lateral stiffness of the air-spring secondary suspension, damping and force–speed characteristics of the anti-yaw dampers, longitudinal and lateral stiffness of the emergency spring, and lateral/longitudinal friction coefficient of the emergency spring; they all show excellent correlation with the component tests.
-
Rodrigo F Lagos C, Miguel Aizpun, and Kenny L Alvarez C
- Ingeniare. Revista chilena de ingeniería, Volume: 24, Issue: Especial, Pages: 17-24, Published: AUG 2016
Ingeniare. Revista chilena de ingeniería v.24 n.Especial 2016
SciELO Chile
CONICYT Chile
instacron:CONICYT
- Subjects
-
Impresión 3D, FDM, ABS, Makerbot Replicator 2X, resistencia a la tracción, 3D printing, fused deposition modelling, mechanical properties, General Engineering, Humanities, Manufacturing process, Physics, and 3d printer
- Abstract
-
espanolLa impresion 3D es un proceso de manufactura que se basa en la fabricacion de prototipos, partes y piezas funcionales. Existen diferentes metodos, en los cuales se utilizan distintos materiales en diversos formatos. Uno de los metodos mas utilizados es el Modelado por Deposicion Fundida (FDM). A pesar de las ventajas que posee con respecto a otros procesos de fabricacion, la impresion 3D no esta libre de dificultades o problemas. Una de las principales problematicas se presenta al momento de configurar una impresion y tiene relacion con la eleccion de los parametros de impresion. En ocasiones, la eleccion se realiza en funcion de la experiencia de los operadores, pero cuando se requieren propiedades especificas, no se conocen los parametros a elegir. En este trabajo, se analizo la influencia del porcentaje de relleno en la resistencia a la traccion de piezas fabricadas en ABS, con una impresora Makerbot Replicator 2X. Para ello, se imprimieron probetas para ensayos de traccion, variando el porcentaje de relleno, manteniendo los demas parametros constantes. Luego fueron ensayadas y de esta manera se logro obtener la propiedad mecanica de resistencia a la traccion. Ademas, se analizo el tiempo efectivo de impresion, logrando establecer un rango recomendado de impresion en funcion de este parametro combinado con la resistencia a la traccion. La maxima resistencia a la traccion promedio, se obtuvo con un porcentaje de relleno de 100% y fue de 34,57 [MPa] English3D printing is manufacturing process that consists of the fabrication of prototypes, parts and functional pieces. Several methods can be used, with different materials in different formats. One of the most popular techniques is the Fused Deposition Modelling (FDM). This method has several advantages with respect to other manufacturing processes, although it also has some problems and difficulties. One of these problems arises when setting the printing parameters. Generally, the printing parameters are selected according to the user’s experience, although it is rather difficult to adapt the parameter settings in order to obtain specific mechanical properties of the printed parts. This work, analyzes the influence of infill on the tensile strength in parts printed with ABS, using a Makerbot Replicator 2X 3D printer. Test specimens were printed, modifying the infill, while maintaining the other parameters constant. Afterwards, the test specimens were tested in a traction test obtaining the tensile strength. In addition, the effective impression time was analyzed, in order to obtain a recommended infill ranges of impression time and tensile strength. Results showed that the maximum tensile strength was 34.57 [MPa] considering a 100% infill.
-
Asier Alonso, Jordi Vinolas, and Miguel Aizpun
- Vehicle System Dynamics. 52:1139-1152
- Subjects
-
Mechanical Engineering, Safety, Risk, Reliability and Quality, Automotive Engineering, Normal mode, Poison control, Acceptance testing, Vibration, Engineering, business.industry, business, Mathematical model, Suspension (vehicle), Control theory, Stiffness, medicine.symptom, medicine, Modal analysis, Simulation, and Computer Science::Robotics
- Abstract
-
The validation of vehicle mathematical models is a key part of the virtual acceptance process since it is essential to ensure a precise representation of the reality. The model validation procedure should include validation of stationary but also dynamic tests. However, parameter identification from on-track tests is a challenging task due to the non-controlled excitation and the great variability of the test results. Thus, an alternative solution by means of a vehicle modal analysis is proposed, developing a parameter identification methodology for dynamic vehicle model parameters. This methodology calculates estimated values of the vehicle model parameters that have an influence on the excited vehicle vibration modes. Moreover, a new criterion for taking into account the effect of the measurement uncertainties on the selection process of the vehicle parameters is developed. Finally, experimental results show that not only estimations of the suspension stiffness parameters can be obtained, but damping values and structural frequencies from the vehicle bodies can also be estimated.
- Full text View on content provider's site
-
Ignacio Sesma Godor and Miguel Aizpun Navarro
- UNIVERSIDAD NACIONAL DE COLOMBIA
DYNA
- Subjects
-
Ingeniería y Tecnología, Ingeniería Mecánica, Mecánica Aplicada, Rail vehicle models, and crosswind stability
- Abstract
-
La influencia del viento lateral en el descarrilamiento de los vehiculos ferroviarios es un factor critico desde que se comenzaron a producirvehiculos ligeros que circulan a altas velocidades Ademas el confort del pasajero tambien puede verse afectado por el viento lateral Sinembargo este efecto todavia no ha sido investigado en profundidad en la literatura ferroviaria Este articulo describe el efecto del vientolateral en el confort para trenes de alta velocidad que circulan en curvas para diferentes velocidades de viento utilizando un escenario deviento tipo sombrero chino Las simulaciones muestran que la combinacion del viento lateral y la rigidez del tope de la suspensionsecundaria pueden suponer una fuente importante de inestabilidad produciendo contacto pestanapestana y disminuyendosignificativamente el confort Ademas este efecto se produce cuando el indice de descarrilamiento esta muy por debajo del limite segun lanorma de seguridad ferroviaria
-
Miguel Aizpun Navarro and Ignacio Sesma Gotor
- Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombia
Dyna, Vol 82, Iss 194, Pp 46-51 (2015)
DYNA, Volume: 82, Issue: 194, Pages: 46-51, Published: DEC 2015
- Subjects
-
62 Ingeniería y operaciones afines / Engineering, Rail vehicle models, crosswind stability, ride quality, lcsh:Technology, lcsh:T, lcsh:Mining engineering. Metallurgy, lcsh:TN1-997, General Engineering, Vehicle safety, Train, Automotive engineering, Crosswind, Ride quality, Suspension (vehicle), Engineering, business.industry, business, Stiffness, medicine.symptom, medicine, modelos de vehículos ferroviarios, estabilidad con viento lateral, and confort
- Abstract
-
The effect of crosswinds on the risk of railway vehicles overturning has been a major issue ever since manufacturers began to produce lighter vehicles that run at high speeds. However, ride comfort can also be influenced by crosswinds, and this effect has not been thoroughly analyzed. This article describes the effect of crosswinds on ride comfort in high speed trains when running on curves and for several wind velocities under a Chinese hat wind scenario, which is the scenario recommended by the standard. Simulation results show that the combination of crosswinds and the added stiffness of the lateral bumpstop on the secondary suspension can become a significant source of instability, leading to flange-to-flange contact and greatly jeopardizing ride comfort. Moreover, this comfort problem is an issue even when the wheel unloading ratio is well below the standard's limits and vehicle safety can be guaranteed. La influencia del viento lateral en el descarrilamiento de los vehículos ferroviarios es un factor crítico desde que se comenzaron a producir vehículos ligeros que circulan a altas velocidades. Además, el confort del pasajero también puede verse afectado por el viento lateral. Sin embargo, este efecto todavía no ha sido investigado en profundidad en la literatura ferroviaria. Este artículo describe el efecto del viento lateral en el confort para trenes de alta velocidad que circulan en curvas para diferentes velocidades de viento, utilizando un escenario de viento tipo sombrero chino. Las simulaciones muestran que la combinación del viento lateral y la rigidez del tope de la suspensión secundaria pueden suponer una fuente importante de inestabilidad, produciendo contacto pestaña-pestaña y disminuyendo significativamente el confort. Además, este efecto se produce cuando el índice de descarrilamiento está muy por debajo del límite según la norma de seguridad ferroviaria.
-
Asier Alonso, Jordi Vinolas, and Miguel Aizpun
- Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 228:408-421
- Subjects
-
Mechanical Engineering, Probabilistic estimation, Control theory, Automotive engineering, Acceptance testing, Engineering, business.industry, business, Scale model, Coupling effect, Suspension (vehicle), Stiffness, medicine.symptom, medicine, Model building process, and Model parameters
- Abstract
-
The accuracy of multi-body simulation results relies on the model building process and the accuracy of the model parameters. A more widespread use of vehicle dynamic calculations in the acceptance process would be possible if the validation of the model was secured. This paper proposes a methodology for an objective and direct identification of the values of the parameters of a rail vehicle model, using the results of the stationary tests defined in the acceptance process of railway vehicles (EN14363). The methodology also takes into account the variability of the measuring process by providing a probabilistic estimation of the identified parameters. The methodology is validated using an example of a virtual wheel unloading test (simulation). Four significant model parameters can be accurately calculated: vertical primary and secondary suspension stiffness, stiffness of the anti-roll bar, and height of the null moment point (the lateral/roll coupling effect of the air spring). Finally, a reduction method is shown which decreases the uncertainties of the identified parameters by up to 50%.
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.