Candace J. Poole, Atul Lodh, Jeong-Hyeon Choi, and Jan van Riggelen
Epigenetics & Chromatin, Vol 12, Iss 1, Pp 1-20 (2019)
Subjects
MYC, TET1, TET2, DNA methylation, DNA hydroxymethylation, Leukemia/lymphoma, Genetics, and QH426-470
Abstract
Abstract Background While aberrant DNA methylation is a characteristic feature of tumor cells, our knowledge of how these DNA methylation patterns are established and maintained is limited. DNA methyltransferases and ten-eleven translocation methylcytosine dioxygenases (TETs) function has been found altered in a variety of cancer types. Results Here, we report that in T cell acute lymphoblastic leukemia (T-ALL) the MYC oncogene controls the expression of TET1 and TET2 to maintain 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) patterns, which is associated with tumor cell-specific gene expression. We found that cellular senescence and tumor regression upon MYC inactivation in T-ALL was associated with genome-wide changes in 5mC and 5hmC patterns. Correlating with the changes in DNA (hydroxy)methylation, we found that T-ALL overexpress TET1, while suppressing TET2 in a MYC-dependent fashion. Consequently, MYC inactivation led to an inverse expression pattern, decreasing TET1, while increasing TET2 levels. Knockdown of TET1 or ectopic expression of TET2 in T-ALL was associated with genome-wide changes in 5mC and 5hmC enrichment and decreased cell proliferation, suggesting a tumor promoting function of TET1, and a tumor suppressing role for TET2. Among the genes and pathways controlled by TET1, we found ribosomal biogenesis and translational control of protein synthesis highly enriched. Conclusions Our finding that MYC directly deregulates the expression of TET1 and TET2 in T-ALL provides novel evidence that MYC controls DNA (hydroxy)methylation in a genome-wide fashion. It reveals a coordinated interplay between the components of the DNA (de)methylating machinery that contribute to MYC-driven tumor maintenance, highlighting the potential of specific TET enzymes for therapeutic strategies.
High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma.
Erhu Zhao, Jane Ding, Yingfeng Xia, Mengling Liu, Bingwei Ye, Jeong-Hyeon Choi, Chunhong Yan, Zheng Dong, Shuang Huang, Yunhong Zha, Liqun Yang, Hongjuan Cui, and Han-Fei Ding
Cell Reports, Vol 14, Iss 3, Pp 506-519 (2016)
Subjects
Biology (General) and QH301-705.5
Abstract
The histone lysine demethylase KDM4C is often overexpressed in cancers primarily through gene amplification. The molecular mechanisms of KDM4C action in tumorigenesis are not well defined. Here, we report that KDM4C transcriptionally activates amino acid biosynthesis and transport, leading to a significant increase in intracellular amino acid levels. Examination of the serine-glycine synthesis pathway reveals that KDM4C epigenetically activates the pathway genes under steady-state and serine deprivation conditions by removing the repressive histone modification H3 lysine 9 (H3K9) trimethylation. This action of KDM4C requires ATF4, a transcriptional master regulator of amino acid metabolism and stress responses. KDM4C activates ATF4 transcription and interacts with ATF4 to target serine pathway genes for transcriptional activation. We further present evidence for KDM4C in transcriptional coordination of amino acid metabolism and cell proliferation. These findings suggest a molecular mechanism linking KDM4C-mediated H3K9 demethylation and ATF4-mediated transactivation in reprogramming amino acid metabolism for cancer cell proliferation.
Rochelle L. Tiedemann, Emily L. Putiri, Jeong-Heon Lee, Ryan A. Hlady, Katsunobu Kashiwagi, Tamas Ordog, Zhiguo Zhang, Chen Liu, Jeong-Hyeon Choi, and Keith D. Robertson
Cell Reports, Vol 9, Iss 4, Pp 1554-1566 (2014)
Subjects
Biology (General) and QH301-705.5
Abstract
Global patterns of DNA methylation, mediated by the DNA methyltransferases (DNMTs), are disrupted in all cancers by mechanisms that remain largely unknown, hampering their development as therapeutic targets. Combinatorial acute depletion of all DNMTs in a pluripotent human tumor cell line, followed by epigenome and transcriptome analysis, revealed DNMT functions in fine detail. DNMT3B occupancy regulates methylation during differentiation, whereas an unexpected interplay was discovered in which DNMT1 and DNMT3B antithetically regulate methylation and hydroxymethylation in gene bodies, a finding confirmed in other cell types. DNMT3B mediated non-CpG methylation, whereas DNMT3L influenced the activity of DNMT3B toward non-CpG versus CpG site methylation. Altogether, these data reveal functional targets of each DNMT, suggesting that isoform selective inhibition would be therapeutically advantageous.
Xiangwei Wang, Liqun Yang, Jeong-Hyeon Choi, Eiko Kitamura, Chang-Sheng Chang, Jane Ding, Eun J. Lee, Hongjuan Cui, and Han-Fei Ding
Genomics Data, Vol 2, Iss C, Pp 50-52 (2014)
Subjects
Neuroblastoma, differentiation, HOXC9, Genetics, and QH426-470
Abstract
Induction of differentiation is a therapeutic strategy in neuroblastoma, a common pediatric cancer of the sympathetic nervous system. The homeobox protein HOXC9 is a key regulator of neuroblastoma differentiation. To gain a molecular understanding of the function of HOXC9 in promoting differentiation of neuroblastoma cells, we conducted a genome-wide analysis of the HOXC9-induced differentiation program by microarray gene expression profiling and chromatin immunoprecipitation in combination with massively parallel sequencing (ChIP-seq). Here we describe in detail the experimental system, methods, and quality control for the generation of the microarray and ChIP-seq data associated with our recent publication [1].
Bilian Jin, Jason Ernst, Rochelle L. Tiedemann, Hongyan Xu, Suhas Sureshchandra, Manolis Kellis, Stephen Dalton, Chen Liu, Jeong-Hyeon Choi, and Keith D. Robertson
Cell Reports, Vol 2, Iss 5, Pp 1411-1424 (2012)
Subjects
Biology (General) and QH301-705.5
Abstract
DNA methylation, mediated by the combined action of three DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), is essential for mammalian development and is a major contributor to cellular transformation. To elucidate how DNA methylation is targeted, we mapped the genome-wide localization of all DNMTs and methylation, and examined the relationships among these markers, histone modifications, and nucleosome structure in a pluripotent human tumor cell line in its undifferentiated and differentiated states. Our findings reveal a strong link between DNMTs and transcribed loci, and that DNA methylation is not a simple sum of DNMT localization patterns. A comparison of the epigenomes of normal and cancerous stem cells, and pluripotent and differentiated states shows that the presence of at least two DNMTs is strongly associated with loci targeted for DNA hypermethylation. Taken together, these results shed important light on the determinants of DNA methylation and how it may become disrupted in cancer cells.
Mark P Peterson, Kimberly A Rosvall, Jeong-Hyeon Choi, Charles Ziegenfus, Haixu Tang, John K Colbourne, and Ellen D Ketterson
PLoS ONE, Vol 8, Iss 4, p e61784 (2013)
Subjects
Medicine and Science
Abstract
Despite sharing much of their genomes, males and females are often highly dimorphic, reflecting at least in part the resolution of sexual conflict in response to sexually antagonistic selection. Sexual dimorphism arises owing to sex differences in gene expression, and steroid hormones are often invoked as a proximate cause of sexual dimorphism. Experimental elevation of androgens can modify behavior, physiology, and gene expression, but knowledge of the role of hormones remains incomplete, including how the sexes differ in gene expression in response to hormones. We addressed these questions in a bird species with a long history of behavioral endocrinological and ecological study, the dark-eyed junco (Junco hyemalis), using a custom microarray. Focusing on two brain regions involved in sexually dimorphic behavior and regulation of hormone secretion, we identified 651 genes that differed in expression by sex in medial amygdala and 611 in hypothalamus. Additionally, we treated individuals of each sex with testosterone implants and identified many genes that may be related to previously identified phenotypic effects of testosterone treatment. Some of these genes relate to previously identified effects of testosterone-treatment and suggest that the multiple effects of testosterone may be mediated by modifying the expression of a small number of genes. Notably, testosterone-treatment tended to alter expression of different genes in each sex: only 4 of the 527 genes identified as significant in one sex or the other were significantly differentially expressed in both sexes. Hormonally regulated gene expression is a key mechanism underlying sexual dimorphism, and our study identifies specific genes that may mediate some of these processes.
Xu Wang, David Wheeler, Amanda Avery, Alfredo Rago, Jeong-Hyeon Choi, John K Colbourne, Andrew G Clark, and John H Werren
PLoS Genetics, Vol 9, Iss 10, p e1003872 (2013)
Subjects
Genetics and QH426-470
Abstract
The parasitoid wasp Nasonia vitripennis is an emerging genetic model for functional analysis of DNA methylation. Here, we characterize genome-wide methylation at a base-pair resolution, and compare these results to gene expression across five developmental stages and to methylation patterns reported in other insects. An accurate assessment of DNA methylation across the genome is accomplished using bisulfite sequencing of adult females from a highly inbred line. One-third of genes show extensive methylation over the gene body, yet methylated DNA is not found in non-coding regions and rarely in transposons. Methylated genes occur in small clusters across the genome. Methylation demarcates exon-intron boundaries, with elevated levels over exons, primarily in the 5' regions of genes. It is also elevated near the sites of translational initiation and termination, with reduced levels in 5' and 3' UTRs. Methylated genes have higher median expression levels and lower expression variation across development stages than non-methylated genes. There is no difference in frequency of differential splicing between methylated and non-methylated genes, and as yet no established role for methylation in regulating alternative splicing in Nasonia. Phylogenetic comparisons indicate that many genes maintain methylation status across long evolutionary time scales. Nasonia methylated genes are more likely to be conserved in insects, but even those that are not conserved show broader expression across development than comparable non-methylated genes. Finally, examination of duplicated genes shows that those paralogs that have lost methylation in the Nasonia lineage following gene duplication evolve more rapidly, show decreased median expression levels, and increased specialization in expression across development. Methylation of Nasonia genes signals constitutive transcription across developmental stages, whereas non-methylated genes show more dynamic developmental expression patterns. We speculate that loss of methylation may result in increased developmental specialization in evolution and acquisition of methylation may lead to broader constitutive expression.
Claudia Dussaubat, Jean-Luc Brunet, Mariano Higes, John K Colbourne, Jacqueline Lopez, Jeong-Hyeon Choi, Raquel Martín-Hernández, Cristina Botías, Marianne Cousin, Cynthia McDonnell, Marc Bonnet, Luc P Belzunces, Robin F A Moritz, Yves Le Conte, and Cédric Alaux
PLoS ONE, Vol 7, Iss 5, p e37017 (2012)
Subjects
Medicine and Science
Abstract
The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase). At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway), a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses.
Jeong-Hyeon Choi, Yajun Li, Juyuan Guo, Lirong Pei, Tibor A. Rauch, Robin S. Kramer, Simone L. Macmil, Graham B. Wiley, Lynda B. Bennett, Jennifer L. Schnabel, Kristen H. Taylor, Sun Kim, Dong Xu, Arun Sreekumar, Gerd P. Pfeifer, Bruce A. Roe, Charles W. Caldwell, Kapil N. Bhalla, and Huidong Shi
Jeong-Hyeon Choi, Yajun Li, Juyuan Guo, Lirong Pei, Tibor A Rauch, Robin S Kramer, Simone L Macmil, Graham B Wiley, Lynda B Bennett, Jennifer L Schnabel, Kristen H Taylor, Sun Kim, Dong Xu, Arun Sreekumar, Gerd P Pfeifer, Bruce A Roe, Charles W Caldwell, Kapil N Bhalla, and Huidong Shi
PLoS ONE, Vol 5, Iss 9 (2010)
Subjects
Medicine and Science
Abstract
Follicular lymphoma (FL) is a form of non-Hodgkin's lymphoma (NHL) that arises from germinal center (GC) B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL.We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+) B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+) B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs) were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+) B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells.This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.
Jae-Wan Choi, Jeung-Mo Kang, Jae-Wook Kim, Jeong-Hyeon Choi, Du-Hyun Kim, Geun-Ho Kim, and Jeong-Soo Lee
2007 Asia Optical Fiber Communication and Optoelectronics Conference Optical Fiber Communication and Optoelectronics Conference, 2007 Asia. :357-359 Oct, 2007