Lopes, Maximiano Maicon Batista and Cota, André Barros
Rem: Revista Escola de Minas. March 2014 67(1):61-66
Subjects
ENGINEERING, CIVIL, METALLURGY & METALLURGICAL ENGINEERING, austenite formation, kinetics, low carbon steel, formação da austenita, cinética, and aço baixo carbono
Abstract
The austenite formation under isochronal conditions in Nb microalloyed low carbon steel was studied by means of dilatometric analysis and the data was adjusted to the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, for different heating rates and for three initial microstructures. It was shown that the kinetics of austenitization of a pearlite+ferrite structure is faster than that of martensite (tempered martensite) at a heating rate of 0.1ºC/s. For heating rates higher than 0.1ºC/s, the kinetics of austenitization of a martensite structure is faster than of pearlite+ferrite one. The K parameter of the JMAK equation increases with the heating rate for the three previous microstructures and it is greater for the initial microstructure composed of ferrite+pearlite. At lower heating rates, the formation of austenite in this steel is controlled by carbon diffusion, independently of the initial microstructure. At higher heating rates, the formation of austenite from an initial microstructure composed of pearlite and ferrite is controlled by interface-controlled transformation. Foi estudada a formação da austenita em condições isócronas em um aço de baixo carbono e microligado com Nb por meio de análise dilatométrica, com o ajuste dos dados à equação de Johnson-Mehl-Avrami-Kolmogorov (JMAK), para diferentes taxas de aquecimento e para três diferentes microestruturas iniciais. Foi mostrado que a cinética de austenitização da estrutura perlita+ferrita é mais rápida que a da martensita (martensita revenida) à taxa de aquecimento de 0,1ºC/s. Para taxas de aquecimento maiores que 0,1ºC/s, a cinética de austenitização da estrutura martensítica é maior que da estrutura perlita+ferrita. O parâmetro K da equação de JMAK aumenta com a taxa de aquecimento para as três microestruturas prévias e é maior para a microestrutura inicial composta de perlita+ferrita. A baixas taxas de aquecimento, a formação da austenita é controlada pela difusão de carbono, independentemente da microestrutura inicial. A altas taxas de aquecimento, a formação da austenita da microestrutura inicial composta de perlita+ferrita é uma transformação controlada pela interface.
Estudou-se o emprego da resina PUROLITE S-930 como substrato para a remoção de níquel e cobalto de soluções sulfúricas. Experimentos de adsorção com diferentes razões [Ni]/[Co] mostraram uma maior seleção da resina em soluções mais ricas em níquel (Ni 600 mg/L - Co 800 mg/L). Isotermas de adsorção mostraram um aumento na capacidade de adsorção da resina em temperaturas mais elevadas (q max Ni 0,28 mol/L, a 70ºC e q max Co 0,18 mol/L, a 60ºC). Os valores de ∆H indicaram uma fisiossorção endotérmica. Para modelar a cinética de carregamento da resina, em leito fixo, utilizou-se o modelo de difusão superficial homogênea (Homogeneous Surface Diffusion Model - HSDM). Os resultados mostram um bom ajuste ao modelo, com k f = 5,2x10-6 m/s e D S = 4,5x10-12 m²/s, indicando que o carregamento da resina baseia-se em difusão na camada-limite e difusão nos poros da resina. A study concerning the resin PUROLITE S-930 as a substrate to remove nickel and cobalt from sulphuric solution is herein presented. The influence of nickel and cobalt concentrations was studied, and the results have shown a greater selection of the resins for solutions rich in nickel (Ni 600 mg/L - Co 800 mg/L). The adsorption isotherms showed an increase in the resin adsorption capacity at higher temperatures (q max Ni 0.28 mol/L, at 70ºC and q max Co 0.18 mol/L, at 60ºC). The enthalpy values suggested endothermic physisorption. The Homogeneous Surface Diffusion Model (HSDM) was chosen for modeling the adsorption kinetics of metals in a fixed-bed column. The results showed good agreement with the model. Both, k f = 5.2x10-6 m/s and D S = 4.5x10-12 m²/s indicated that resin loading is based on transport through the boundary layer and porous diffusion in the resin.
Macedo, Marciano Quites, Cota, André Barros, and Araújo, Fernando Gabriel da Silva
Rem: Revista Escola de Minas. June 2011 64(2):163-167
Subjects
ENGINEERING, CIVIL, METALLURGY & METALLURGICAL ENGINEERING, Austenitization, kinetics, fast heating, dilatometry, Austenitização, cinética, aquecimento rápido, and dilatometria
Abstract
The variation in critical temperatures for the formation of austenite when increasing the heating rate was studied by dilatometry. The analysis was performed at heating rates between 10 and 90ºC/s. Empirical equations are herein proposed for calculating Ac3 with respect to the heating rate. The results showed that an increase in the heating rate had no influence on Ac1, but Ac3 increased 115ºC. The equations proved to be of a more general use, as they also predicted the results of works on other steels with high values of correlation coefficients. Foi estudada por dilatometria a variação das temperaturas críticas para a formação de austenita, com o aumento da velocidade de aquecimento. A análise foi realizada a velocidades de aquecimento entre 10 e 90ºC/s. Foram propostas equações empíricas para o cálculo de Ac3, em função da velocidade de aquecimento. O aumento da velocidade de aquecimento não afetou Ac1, mas Ac3 aumentou em 115ºC. As equações propostas se revelaram de uso mais geral, uma vez que também previram os resultados obtidos em trabalhos para outros aços com altos coeficientes de correlação.
Almeida, Geraldo Magela Rodrigues de, Dafé, Sara Silva Ferreira de, Oliveira, Fernando Lucas Gonçalves de, and Cota, André Barros
Rem: Revista Escola de Minas. June 2010 63(2):293-298
Subjects
ENGINEERING, CIVIL, METALLURGY & METALLURGICAL ENGINEERING, Phase transformations, modeling, kinetics, low carbon steel, Transformações de fase, modelagem, cinética, and aço de baixo carbono
Abstract
A formação da austenita em condições isócronas em um aço de baixo carbono e microligado com Nb, a diferentes taxas de aquecimento e usando curvas dilatométricas, foi estudada utilizando o modelo de Johnson-Mehl-Avrami-Kolmogorov (JMAK), em conjunção com a relação funcional entre a energia de ativação aparente e a taxa de aquecimento. Mostrou-se que essa relação funcional é logarítmica e que a energia de ativação aparente diminui de 152,5 para 118,1 kJ/mol, quando a taxa de aquecimento aumenta de 0,1 para 16 K/s, para o expoente n da equação de JMAK igual a 1,0. The austenite formation under isochronal conditions in Nb micro-alloyed low carbon steel was studied using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, for different heating rates and by means of dilatometric curves. The functional relationship between the apparent activation energy and heating rate was used in addition to this model. It was shown that this functional relationship is logarithmic and that the apparent activation energy decreases from 152.5 to 118.1 kJ/mol when the heating rate increases from 0.1 to 16 K/s, with the n exponent of the JMAK equation equal to 1.0.
Batista Lopes, Maximiano Maicon and Barros Cota, André
Rem: Revista Escola de Minas. Jan-Mar2014, Vol. 67 Issue 1, p61-66. 6p.
Subjects
CARBON steel, PERLITE, FERRITES, DIFFUSION, and ECONOMICS
Abstract
The austenite formation under isochronal conditions in Nb microalloyed low carbon steel was studied by means of dilatometric analysis and the data was adjusted to the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, for different heating rates and for three initial microstructures. It was shown that the kinetics of austenitization of a pearlite+ferrite structure is faster than that of martensite (tempered martensite) at a heating rate of 0.1oC/s. For heating rates higher than 0.1°C/s, the kinetics of austenitization of a martensite structure is faster than of pearlite+ferrite one. The K parameter of the JMAK equation increases with the heating rate for the three previous microstructures and it is greater for the initial microstructure composed of ferrite+pearlite. At lower heating rates, the formation of austenite in this steel is controlled by carbon diffusion, independently of the initial microstructure. At higher heating rates, the formation of austenite from an initial microstructure composed of pearlite and ferrite is controlled by interface-controlled transformation. [ABSTRACT FROM AUTHOR]
Esse trabalho estuda a redução do MnO por banhos de ferro saturado em carbono, nas temperaturas de 1500°C, 1550°C e 1600°C. São determinados os valores da energia de ativação aparente para essa reação, através do método das velocidades iniciais, para teores de manganês iniciais no banho de 0%, 10% e 40%. Os valores encontrados foram, respectivamente, 64,8 kcal/mol, 63,13 kcal/mol e 63,25 kcal/mol . The objective of this work was to investigate the effect of temperature on the velocity of MnO reduction by a carbon saturated liquid iron bath. The tests were performed in a laboratory apparatus specially designed to simulate smelting reduction reactions. The reactions were carried out respectively at 1500°C, 1550°C and 1600°C, and also the initial manganese concentration in the bath were 0%, 10% e 40%. The apparent activation energies were graphically determined for the overall reduction process through the initial velocity method. The overall reaction rate increases as the temperature increases, and the apparent activation energies were 64,8, 63,13 and 63,25 kcal/mol, respectively for 0%, 10% and 40% of initial manganese content in the carbon saturated iron bath.
The austenite formation under isochronal conditions in Nb micro-alloyed low carbon steel was studied using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, for different heating rates and by means of dilatometric curves. The functional relationship between the apparent activation energy and heating rate was used in addition to this model. It was shown that this functional relationship is logarithmic and that the apparent activation energy decreases from 152.5 to 118.1 kJ/mol when the heating rate increases from 0.1 to 16 K/s, with the n exponent of the JMAK equation equal to 1.0. [ABSTRACT FROM AUTHOR]