articles+ search results
480 articles+ results
1 - 20
Next
Number of results to display per page
-
DEETUAM, Chutimar, SAMTHONG, Chavakorn, THONGYAI, Supakanok, PRASERTHDAM, Piyasan, and SOMWANGTHANAROJ, Anongnat
- Composites science and technology. 93:1-8
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Conductivité électrique, Electrical conductivity, Conductividad eléctrica, Dérivé du triazole, Triazole derivatives, Triazol derivado, Effet concentration, Concentration effect, Efecto concentración, Etude expérimentale, Experimental study, Estudio experimental, Graphène, Graphene, Matériau composite, Composite material, Material compuesto, Modification chimique, Chemical modification, Modificación química, Morphologie, Morphology, Morfología, Nanocomposite, Nanocompuesto, Polymère conducteur, Conducting polymers, Polymère conjugué, Conjugated polymer, Polímero conjugado, Polyélectrolyte, Polyelectrolyte, Polielectrolito, Propriété thermique, Thermal properties, Propiedad térmica, Propriété électrique, Electrical properties, Propiedad eléctrica, Préparation, Preparation, Preparación, Stabilité thermique, Thermal stability, Estabilidad térmica, Styrènesulfonate polymère, Styrenesulfonate polymer, Estireno sulfonato polímero, Thiophène dérivé polymère, Thiophene derivative polymer, Tiofeno derivado polímero, Traitement surface, Surface treatment, Tratamiento superficie, Ethylènedioxythiophène polymère, Graphène oxyde, Réaction click, A. Nano composites, A. Polymer―matrix composites (PMCs), B. Electrical properties, and D. Photoelectron spectroscopy (XPS)
- Abstract
-
The well dispersed graphene in poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) composites was achieved by chemical modification via click chemistry under mild condition in order to improve the electrical conductivity of polymer. Graphene sheets were prepared from natural graphite flake by a modified Hummers method followed by reducing with hydrazine. Graphene and PEDOT:PSS were functionalized with alkyne and azide, respectively followed by reacting via click chemistry at room temperature for 48 h using copper sulfate as catalyst. The successful functionalization and click reaction between terminal alkyne groups (―C≡C) on graphene sheets and terminal azide groups (—N3) of PED-OT:PSS were confirmed by Fourier Transform Infrared (FTIR), Raman and X-ray photoelectron (XPS) spectroscopy. The preliminary test to check the dissimilar dispersibility between graphene oxide and alkyne-modified graphene oxide in mixed water/hexane solvent was performed. Thermogravimetric analysis result exhibited the composites having excellent thermal stabilities due to the incorporation of graphene in PEDOT:PSS; however, clicked composites showed slightly lower thermal stabilities than unclicked ones as a result of cleavages of amide linkages and remaining oxygen-containing functionalities. It was also found that the surface morphologies observed by scanning electron microscope of clicked composites were smoother than those of unclicked composites because of the enhancement of interfacial interaction between graphene sheets and PEDOT:PSS matrix, resulting in a decrease in graphene agglomeration and, in turn, an increase in electrical conductivity.
- Full text View on content provider's site
-
HAOYI WU, SUMWAI CHIANG, WEI HAN, YOUHONG TANG, FEIYU KANG, and CHENG YANG
- Composites science and technology. 99:109-116
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Fabrication microélectronique (technologie des matériaux et des surfaces), Microelectronic fabrication (materials and surfaces technology), Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Domaines d'application, Application fields, Adhésif, Adhesive, Adhesivo, Argent, Silver, Plata, Conductivité thermique, Thermal conductivity, Conductividad térmica, Epoxyde résine, Epoxy resin, Epóxido resina, Etude expérimentale, Experimental study, Estudio experimental, Fabrication microélectronique, Microelectronic fabrication, Fabricación microeléctrica, Iode, Iodine, Iodo, Matériau composite, Composite material, Material compuesto, Microparticule, Microparticle, Micropartícula, Morphologie, Morphology, Morfología, Particule métallique, Metal particle, Partícula metálica, Particule sphérique, Spherical particle, Partícula esférica, Propriété thermique, Thermal properties, Propiedad térmica, Traitement chimique, Chemical treatment, Tratamiento químico, Traitement surface, Surface treatment, Tratamiento superficie, Adhésif conducteur, A. Polymer―matrix composites (PMCs), B. Thermal properties, and D. Scanning electron microscopy (SEM)
- Abstract
-
Heat dissipation is a critical issue in many areas such as the high-performance electronic devices. The present work gives a detailed investigation regarding a simple and efficient surface modification method, which can remarkably improve the thermal conductivity of the isotropically thermally conductive adhesives (TCAs). Herein we demonstrate that the thermal conductivity of TCAs based on micron-sized silver fillers can be improved to near eightfold merely through simple surface chemistry treatment of the fillers, without changing the conventional epoxy resin (adhesive) processing conditions. Experimental results show that the thermal conductivity of a TCA sample with iodine modified silver fillers (85 wt%, size 1-2 μm. near-spherical particles) achieved 13.5 Wm-1 K-1 when cured at 150 °C. Compared to the unmodified silver-based TCAs, only 1.7 Wm-1 K-1 was achieved when cured in the same condition. This work suggests that through modulating the filler interface of a TCA, the thermal conductivity of a TCA can be drastically improved. These TCAs with superior isotropic thermal conductivity may find many heat dissipation applications e.g. surface mounted devices (SMDs) and high power (printed circuit) motherboards.
- Full text View on content provider's site
-
BENALI, Samira, GORRASI, Giuliana, BONNAUD, Leila, and DUBOIS, Philippe
- Composites science and technology. 90:74-81
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Argile organique, Organic clay, Arcilla orgánica, Caoutchouc thermoplastique, Thermoplastic rubber, Caucho termoplástico, Caprolactone polymère, Polycaprolactone, Caprolactona polímero, Esteruréthanne polymère, Esterurethane polymer, Esteruretano polímero, Etude expérimentale, Experimental study, Estudio experimental, Lactone polymère, Lactone polymer, Lactona polímero, Matériau composite, Composite material, Material compuesto, Montmorillonite, Montmorilonita, Morphologie, Morphology, Morfología, Nanocomposite, Nanocompuesto, Perméabilité vapeur eau, Steam permeability, Permeabilidad vapor agua, Polymère aliphatique, Aliphatic polymer, Polímero alifático, Polymère greffé, Graft polymers, Polymérisation ouverture cycle, Ring opening polymerization, Polimerización abertura ciclo, Propriété mécanique, Mechanical properties, Propiedad mecánica, Propriété thermique, Thermal properties, Propiedad térmica, Propriété transport, Transport properties, Propiedad transporte, Relation structure propriété, Property structure relationship, Relación estructura propiedad, Traitement surface, Surface treatment, Tratamiento superficie, Uréthanne élastomère, Polyurethane elastomer, Uretano elastómero, Mélangeage état fondu, A. Nanoclays, A. Nanocomposites, A. Polymers, B. Thermomechanical properties, and B. Transport properties
- Abstract
-
The lamellar structure of montmorillonite (MMT) clays exhibits an interesting potential to improve the barrier properties of thermoplastic polyurethanes (TPU). However direct melt blending of an ester-based TPU and functional organoclays, despite showing good filler dispersion, did not allowed for improving neither barrier properties (i.e., sorption and diffusion to water vapor) not mechanical performances with respect to the unfilled TPU. Therefore, two alternative strategies involving poly(ε-caprolactone) (PCL)/ organoclay masterbatches were explored to investigate the possibility to prepare materials with improved mechanical and barrier properties. In the first strategy, a PCL/organoclay masterbatch with high inorganic content was obtained by melt-blending (coined free PCL masterbatch), whereas in the second strategy PCL-grafted organoclay nanohybrids, also with high inorganic content were synthesized by in situ intercalative grafting/ring-opening polymerization of ε-caprolactone (CL). Purposely, ROP of CL was initiated from hydroxyl groups available onto the MMT surface actually organo-modified by alkylammonium cations bearing hydroxyl functions (coined nanohybrid PCL masterbatch). These highly-filled PCL masterbatches (with ca. 25 wt% in inorganics) were then added into the ester-based TPU to prepare nanoclay/polyurethane nanocomposites by melt-blending. The morphology and dispersion of the resulting materials were characterized by X-ray diffraction and transmission electron microscopy. Improved sorption and diffusion properties towards water vapor as well as mechanical properties were measured. Herein, these results are discussed as a function of both clay dispersion and matrix/organoclay interaction.
- Full text View on content provider's site
-
BATTISTI, Andrea, ESQUE-DE LOS OJOS, Daniel, GHISLENI, Rudy, and BRUNNER, Andreas J
- Composites science and technology. 95:121-127
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Adhésivité, Adhesivity, Adhesividad, Composite hybride, Hybrid composite, Compuesto híbrido, Dépôt électrophorétique, Electrophoretic deposition, Depósito electroforético, Epoxyde résine, Epoxy resin, Epóxido resina, Etude expérimentale, Experimental study, Estudio experimental, Fibre carbone, Carbon fiber, Fibra carbón, Fibre minérale, Mineral fiber, Fibra inorgánica, Interface fibre matrice, Matrix fiber interface, Interfase fibra matriz, Matériau composite, Composite material, Material compuesto, Modélisation, Modeling, Modelización, Méthode élément fini, Finite element method, Método elemento finito, Nanocomposite, Nanocompuesto, Nanotube carbone, Carbon nanotubes, Propriété interface, Interface properties, Propiedad interfase, Propriété mécanique, Mechanical properties, Propiedad mecánica, Résistance arrachement poussée, Push out resistance, Resistencia empujar, Simulation numérique, Numerical simulation, Simulación numérica, Traitement surface, Surface treatment, Tratamiento superficie, Ténacité, Fracture toughness, Tenacidad, A. Carbon fibers, A. Carbon nanotubes, B. Interfacial strength, C. Finite element analysis (FEA), and D. Electrophoretic deposition
- Abstract
-
Electrophoretic deposition (EPD) of carbon nanotubes (CNTs) on carbon fibers has been implemented as a continuous process on laboratory-scale. The interfacial adhesion and fracture toughness of the carbon fibers in an epoxy composite is assessed by a modified single-fiber push-out test. A detailed energy analysis yields the different energy contributions in the push-out process. A comparison between CNT-deposited, as received and oxidized carbon fibers (passing through the EPD process without CNT) indicates that interfacial adhesion and fracture toughness are not affected by the different fiber treatments. Interfacial friction after fiber debonding, however, is significantly changed. This is confirmed by finite element simulation which has to include friction for reproducing the essential features of the load―displacement plots from fiber push-out. Scanning electron micrographs indicate little interaction between CNT and carbon fibers, but point to changes in surface roughness of CNT-deposited and oxidized fibers after push-out. Therefore, the cyclic loading―unloading fiber push-out test seems well suited to investigate the micromechanical behavior of carbon fiber composites and to discriminate and quantify the different energy contributions to the total load―displacement curves.
- Full text View on content provider's site
-
LING JIANG, CHAO ZHANG, MINGKAI LIU, ZHE YANG, WENG WEEI TJIU, and TIANXI LIU
- Composites science and technology. 91:98-103
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Agent accrochage, Coupling agent, Agente enganche, Argile, Clay, Arcilla, Caoutchouc thermoplastique, Thermoplastic rubber, Caucho termoplástico, Composite hybride, Hybrid composite, Compuesto híbrido, Esteruréthanne polymère, Esterurethane polymer, Esteruretano polímero, Etude expérimentale, Experimental study, Estudio experimental, Matériau composite, Composite material, Material compuesto, Matériau renforcé dispersion, Dispersion reinforced material, Material renforzado dispersión, Module Young, Young modulus, Módulo Young, Morphologie, Morphology, Morfología, Nanotube carbone, Carbon nanotubes, Nanotube multifeuillets, Multiwalled nanotube, Propriété mécanique, Mechanical properties, Propiedad mecánica, Renforcement mécanique, Strengthening, Refuerzo mecánico, Résistance allongement, Elongation strength, Resistencia alargamiento, Résistance traction, Tensile strength, Resistencia tracción, Silane organique, Organic silane, Silano orgánico, Traitement surface, Surface treatment, Tratamiento superficie, Uréthanne élastomère, Polyurethane elastomer, Uretano elastómero, Halloysite, Nanotube carbone fonctionnalisé, A. Carbon nanotubes, A. Hybrid composites, A. Nanoclays, A. Polymer-matrix composites (PMCs), and B. Mechanical properties
- Abstract
-
In this work, three-dimensional (3D) hybrid nanofillers, composed of acid-treated multi-walled carbon nanotubes (a-CNTs) and silane-treated halloysite nanotubes (s-HNTs), have been successfully prepared through covalent bonding. By using simple solution-casting method, polyurethane (PU) elastomers reinforced with these s-HNT/a-CNT (HC) hybrid nanofillers have been fabricated. The morphology and mechanical properties of the resultant hybrid and PU composites are characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), thermogravimetric analysis (TGA) and tensile tests. Tensile test data show that the tensile strength, Young's modulus and elongation at break of the resultant PU composite with merely 1 wt% HC hybrids are significantly improved by 140%, 35% and 68% respectively. This clearly demonstrates the synergistic reinforcement of one-dimensional CNTs and HNTs within the hybrid in improving the strength and toughness of PU composite. Therefore, the s-HNT/a-CNT hybrid thus prepared is an ideal agent for simultaneous reinforcement and toughening of PU elastomers.
- Full text View on content provider's site
-
HODLUR, R. M and RABINAL, M. K
- Composites science and technology. 90:160-165
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Alvéolaires, Cellular, Matière plastique, Plastics, Material plástico, Conductivité électrique, Electrical conductivity, Conductividad eléctrica, Effet pression, Pressure effect, Efecto presión, Etude expérimentale, Experimental study, Estudio experimental, Graphite Oxyde, Graphite Oxides, Grafito Óxido, Graphène, Graphene, Matériau conducteur, Conducting material, Material conductor, Matériau revêtu, Coated material, Material revestido, Morphologie, Morphology, Morfología, Plastique alvéolaire, Cellular plastic, Plástico espumoso, Propriété mécanique, Mechanical properties, Propiedad mecánica, Propriété thermique, Thermal properties, Propiedad térmica, Propriété électrique, Electrical properties, Propiedad eléctrica, Résistance compression, Compressive strength, Resistencia compresión, Stabilité thermique, Thermal stability, Estabilidad térmica, Traitement surface, Surface treatment, Tratamiento superficie, Uréthanne polymère, Polyurethane, Uretano polímero, Alvéolaire flexible, A. Flexible composites, B. Electrical properties, D. Infrared spectroscopy, D. Scanning electron microscopy (SEM), and D. Thermogravimetric analysis (TGA)
- Abstract
-
Nano-flakes of graphene can be suitably anchored on a polymer surface to create functionally more active material. Here, a simple method is reported for uniform coating of graphite-oxide onto flexible polyurethane foam and its further conversion to graphene-polyurethane composite. As prepared foam is quite flexible, highly compressible, homogeneous and electrically conducting that exhibits high pressure sensitivity. The material is characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis to study the morphology, chemical interaction between constituent phases and thermal stability respectively. These studies confirm that graphene is strongly immobilized on polyurethane surface by chemical linkage. The influence of applied pressure on electrical conductivity shows that current increases by more than five orders of magnitude for a small change in pressure (just 0.5 atmospheres) yielding pressure sensitivity of 4 × 105/atmosphere.
- Full text View on content provider's site
-
XUN CHEN, JEONGIN GUG, and SOBKOWICZ, Margaret J
- Composites science and technology. 95:8-15
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Agent accrochage, Coupling agent, Agente enganche, Dimension particule, Particle size, Dimensión partícula, Effet concentration, Concentration effect, Efecto concentración, Ester polymère, Ester polymer, Ester polímero, Etude expérimentale, Experimental study, Estudio experimental, Fumée silice, Silica fume, Humo sílice, Interaction matière charge polymère, Polymer filler interaction, Interacción materia carga polímero, Matériau composite, Composite material, Material compuesto, Nanocomposite, Nanocompuesto, Polymère aliphatique, Aliphatic polymer, Polímero alifático, Propriété dynamomécanique, Dynamic mechanical properties, Propiedad dinamomecánica, Propriété rhéologique, Rheological properties, Propiedad reológica, Propriété thermique, Thermal properties, Propiedad térmica, Relaxation contrainte, Stress relaxation, Relajación tensión, Silane organique, Organic silane, Silano orgánico, Succinate polymère, Polysuccinate, Succinato polímero, Température transition vitreuse, Glass transition temperature, Temperatura transición vítrosa, Traitement surface, Surface treatment, Tratamiento superficie, Viscoélasticité, Viscoelasticity, Viscoelasticidad, Butène succinate polymère, A. Nanocomposites, C. Stress relaxation, and D. Rheology
- Abstract
-
The linear melt viscoelasticity of poly(butylene succinate) (PBS) nanocomposites containing different types of fumed silica nanoparticles (unmodified and modified fumed silica) was studied. Depending on the primary particle size and surface chemistry of fillers, distinct modes of polymer/filler interactions could be identified in the nanocomposites. The PBS nanocomposites containing silica nanoparticles with larger surface area appear to have higher density of temporary physical network structures leading to significantly increased modulus. Increasing the polymer―particle compatibility through introduction of a hydrophobic functionality on the surface of the particles resulted in strong immobilization of the PBS molecules. The presence of such improved polymer/filler interactions was confirmed by the secondary relaxation mode and rubber-like behavior, indicative of stronger adhesion between the modified SiO2 and the PBS matrix. The entangled polymer dynamic theory was used to discuss the influence of polymer/filler interactions on the relaxation behavior of PBS molecules. The relaxation hierarchy can be identified from the linear viscoelastic responses of PBS/modified fumed silica nanocomposites. Dynamic mechanical measurements showed that glass transition range was widened and the peak temperature was also shifted to higher temperature in the composites with enhanced PBS/silicainteractions.
- Full text View on content provider's site
-
SHU HUANG, CHER LING TOH, LIPING YANG, SILEI PHUA, RUI ZHOU, DASARI, Aravind, and XUEHONG LU
- Composites science and technology. 93:30-37
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Amide 6 polymère, Amide 6 polymer, Amida 6 polímero, Etude expérimentale, Experimental study, Estudio experimental, Fibre carbone, Carbon fiber, Fibra carbón, Fibre minérale, Mineral fiber, Fibra inorgánica, Limite élasticité, Yield strength, Límite elasticidad, Matériau composite, Composite material, Material compuesto, Matériau renforcé dispersion, Dispersion reinforced material, Material renforzado dispersión, Module élasticité, Elastic modulus, Módulo elasticidad, Nanocomposite, Nanocompuesto, Nanofibre, Nanofiber, Nanofibra, Polymère aliphatique, Aliphatic polymer, Polímero alifático, Polymère greffé, Graft polymers, Polymérisation anionique, Anionic polymerization, Polimerización aniónica, Polymérisation ouverture cycle, Ring opening polymerization, Polimerización abertura ciclo, Propriété mécanique, Mechanical properties, Propiedad mecánica, Préparation, Preparation, Preparación, Renforcement mécanique, Strengthening, Refuerzo mecánico, Résistance choc, Impact strength, Resistencia choque, Traitement surface, Surface treatment, Tratamiento superficie, Nanofibre carbone fonctionnalisée, Nanofibre carbone, A. Carbon fibers, A. Nanocomposites, Anionic ring-opening polymerization, and B. Mechanical properties
- Abstract
-
This article reports the preparation of nylon 6/stacked-cup carbon nanofiber (CNF) nanocomposites via in situ anionic ring-opening polymerization partially initiated from caprolactam-functionalized CNFs. As a result of the successful functionalization of CNF surface, good dispersion of the CNFs was observed by transmission electron microscopy (TEM). Moreover, with the addition of a very small amount of CNFs, significant enhancements in tensile modulus and yield strength were achieved together with slightly improved impact resistance. The enhanced stiffness may be attributed to effective filler―matrix stress transfer induced by interfacial covalent bonds. On the other hand, SEM micrographs provided evidence for the possible unraveling of the stacked-cup CNF, which may allow the CNFs to bridge the matrix during crack propagation, hence resulting in the toughening of the nanocomposites.
- Full text View on content provider's site
-
YU, Hou-Yong, QIN, Zong-Yi, BIN SUN, YANG, Xiao-Gang, and YAO, Ju-Ming
- Composites science and technology. 94:96-104
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Industries agroalimentaires, Food industries, Généralités, General aspects, Manutention, stockage, conditionnement, transport, Handling, storage, packaging, transport, Butyrate(hydroxy) copolymère, Butyrate(hydroxy) copolymer, Butirato(hidroxi) copolímero, Copolymère greffé, Graft copolymer, Copolímero injertado, Cristallinité, Crystallinity, Cristalinidad, Diffusion molécule, Molecule scattering, Difusión molécula, Effet concentration, Concentration effect, Efecto concentración, Emballage matière plastique, Plastic bag packaging, Empaque material plástico, Ester copolymère, Ester copolymer, Ester copolímero, Etude expérimentale, Experimental study, Estudio experimental, Matériau composite, Composite material, Material compuesto, Matériau renforcé dispersion, Dispersion reinforced material, Material renforzado dispersión, Matériau transparent, Transparent material, Material transparente, Module Young, Young modulus, Módulo Young, Nanocomposite, Nanocompuesto, Nanotube carbone, Carbon nanotubes, Nanotube multifeuillets, Multiwalled nanotube, Perméabilité vapeur eau, Steam permeability, Permeabilidad vapor agua, Produit alimentaire, Foodstuff, Producto alimenticio, Propriété mécanique, Mechanical properties, Propiedad mecánica, Propriété thermique, Thermal properties, Propiedad térmica, Propriété transport, Transport properties, Propiedad transporte, Renforcement mécanique, Strengthening, Refuerzo mecánico, Résistance traction, Tensile strength, Resistencia tracción, Stabilité thermique, Thermal stability, Estabilidad térmica, Traitement surface, Surface treatment, Tratamiento superficie, Valérate(hydroxy) copolymère, Valerate(hydroxy) copolymer, Valerato(hidroxi) copolímero, Butyrate(3-hydroxy) copolymère, Copolymère biodégradable, Nanotube carbone fonctionnalisé, Valérate(3-hydroxy) copolymère, A. Carbon nanotubes, A. Particle-reinforced composites, B. Mechanical properties, B. Thermal properties, and E. Casting
- Abstract
-
Bionanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced with PHBV-grafted multi-walled carbon nanotubes (PHBV-g-MWCNTs) were prepared through a simple solution casting method. The obtained nanocomposite films containing 1-10 wt.% PHBV-g-MWCNTs were transparent in the visible wavelength range. In addition, the PHBV-g-MWCNTs were uniformly dispersed throughout the PHBV matrix and thus improved the thermal stability and mechanical, barrier, and migration properties of PHBV. Compared to neat PHBV, the tensile strength and Young's modulus of the nanocomposite film containing 7 wt.% PHBV-g-MWCNTs were enhanced by 88% and 172%, respectively, and the maximum decomposition temperature of the nanocomposite film was 22.3 °C greater than that of neat PHBV. Moreover, the nanocomposites exhibited a wider melt-processing window and reduced water uptake and water vapor permeability. Furthermore, the migration levels of simulants in all of the nanocomposites were below the overall migration limits required by current legislative standards for food packaging materials in both non-polar and polar simulants.
- Full text View on content provider's site
-
JIEFENG GAO, WAN LI, HENGCHONG SHIA, MINGJUN HU, and LI, Robert K. Y
- Composites science and technology. 92:95-102
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Fibres et fils, Fibers and threads, Caoutchouc thermoplastique, Thermoplastic rubber, Caucho termoplástico, Dureté, Hardness, Dureza, Electrofilage, Electrospinning, Electrohilado, Etude expérimentale, Experimental study, Estudio experimental, Fibre revêtue, Coated fiber, Fibra revestida, Fibre synthétique, Synthetic fiber, Fibra sintética, Filage solvant, Solvent spinning, Hilado solvente, Module Young, Young modulus, Módulo Young, Morphologie, Morphology, Morfología, Nanofibre, Nanofiber, Nanofibra, Nanotube carbone, Carbon nanotubes, Procédé dépôt, Deposition process, Procedimiento revestimiento, Propriété mécanique, Mechanical properties, Propiedad mecánica, Préparation, Preparation, Preparación, Relation mise en oeuvre structure, Structure processing relationship, Relación puesta en marcha estructura, Renforcement mécanique, Strengthening, Refuerzo mecánico, Traitement par ultrasons, Ultrasonic treatment, Tratamiento por ultrasonido, Traitement surface, Surface treatment, Tratamiento superficie, Uréthanne élastomère, Polyurethane elastomer, Uretano elastómero, Mat nanofibres, A. Carbon nanotubes, A. Fibres, A. Polymer-matrix composites (PMCs), B. Mechanical properties, and D. Scanning electron microscopy (SEM)
- Abstract
-
Carbon nanotubes (CNTs) were anchored onto electrospun nanofibers under the assistance of ultrasonication. During ultrasonication, CNTs in the dispersion medium were driven to hit the nanofibers intensively and could be uniformly embedded onto nanofiber surface. The interaction between CNTs and dispersion medium played a vital role in determining CNT decoration. Good dispersion of CNTs in the dispersion medium could prevent CNT migration towards the electrospun nanofibers, because CNTs were trapped in the solution rather than attached onto the nanofiber surface. In addition, the ultrasonication power and time, CNT initial dispersion and the type of dispersion medium can influence the ultimate morphology of the hierarchical nanofiber composite. It was also supported by nanoindentation measurements that the hardness and Young's modulus for the CNT anchored nanofiber mat significantly increased, compared with that for the pure electrospun nanofibers.
- Full text View on content provider's site
-
JIANCHUAN WANG, JIELI WU, WEI XU, QIN ZHANG, and QIANG FU
- Composites science and technology. 91:1-7
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Composé du phosphonium quaternaire, Quaternary phosphonium compound, Fosfonio cuaternario compuesto, Conductivité électrique, Electrical conductivity, Conductividad eléctrica, Constante diélectrique, Permittivity, Constante dieléctrica, Effet concentration, Concentration effect, Efecto concentración, Etude expérimentale, Experimental study, Estudio experimental, Graphène, Graphene, Matériau composite, Composite material, Material compuesto, Percolation, Percolación, Perte diélectrique, Dielectric loss, Pérdida dieléctrica, Polymère téléchélique, Telechelic polymer, Polímero telechélico, Propriété diélectrique, Dielectric properties, Propiedad dieléctrica, Propriété électrique, Electrical properties, Propiedad eléctrica, Préparation, Preparation, Preparación, Traitement surface, Surface treatment, Tratamiento superficie, Vinylidène fluorure polymère, Vinylidene fluoride polymer, Vinilideno fluoruro polímero, Graphène fonctionnalisé, A. Polymer―matrix composites (PMCs), B. Electric properties, D. Infrared (IR) spectroscopy, D. Transmission electron microscopy (TEM), and E. Casting
- Abstract
-
In our work, a novel modifier, quaternary phosphorus salt, (1-hexadecyl) triphenylphosphonium bromide (HTPB), was introduced for the noncovalent functionalization of graphene for the first time. With it, an excellent dispersion of graphene in organic solvent and later in poly(vinylidene fluoride) (PVDF) matrix has been achieved, e.g., transmission electron microscopy (TEM) shows a single-layer dispersion and multi-layer structure of graphene sheets in PVDF matrix. As a result, the films exhibit outstanding electric property with a very low percolation threshold of 0.662 wt% being observed. Their dielectric property is also improved, the dielectric constant of PVDF/graphene composites at 1000 Hz with a loading lower than 0.86 wt% shows an obvious increase (more than 3 times of that of PVDF at most), while the dielectric loss remain quite low (all lower than 0.07). Even more intriguingly, the quaternary phosphorus salt also induces dominant polar β and γ crystalline forms in the prepared composite films. These PVDF/graphene films with good electric and dielectric property as well as dominant polar β and γ forms promise a wide range of potential applications in electronic devices.
- Full text View on content provider's site
-
XINJUN HU, ENQI SU, BOCHAO ZHU, JUNJI JIA, PEIHONG YAO, and YONGXIAO BAI
- Composites science and technology. 97:6-11
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Copolymère silicium, Silicon copolymer, Copolímero silicio, Copolymérisation radicalaire, Radical copolymerization, Copolimerización radical, Etude expérimentale, Experimental study, Estudio experimental, Graphène, Graphene, Matériau composite, Composite material, Material compuesto, Matériau renforcé dispersion, Dispersion reinforced material, Material renforzado dispersión, Méthacrylate copolymère, Methacrylate copolymer, Metacrilato copolímero, Méthacrylate de méthyle copolymère, Methyl methacrylate copolymer, Metacrilato de metilo copolímero, Nanocomposite, Nanocompuesto, Pressage chaud, Hot pressing, Prensado caliente, Propriété mécanique, Mechanical properties, Propiedad mecánica, Propriété thermique, Thermal properties, Propiedad térmica, Préparation, Preparation, Preparación, Résistance traction, Tensile strength, Resistencia tracción, Silane organique, Organic silane, Silano orgánico, Stabilité thermique, Thermal stability, Estabilidad térmica, Traitement surface, Surface treatment, Tratamiento superficie, Graphène oxyde, Méthacrylate de 3-(triméthoxysilyl)propyle copolymère, Nanofeuillet, Oxyde de graphène réduit, A. Nanocomposites, B. Mechanical properties, and B. Thermal properties
- Abstract
-
Due to the aggregation or restacking of graphene and the weak interactions between pristine graphene and polymeric matrices, a method to chemically functionalize graphene nanosheets by silylation was developed in this study. The silanized graphene oxide sheets were reduced to produce well water-soluble graphene derivatives after graphene oxide sheets silanized with 3-Methacryloxypropyltrimethoxysilane (MPS). The MPS-graphene oxide (MPS-GO) and MPS-reduced graphene oxide (MPS-RGO) could be redispersed in polar solvents, which could facilitate their incorporation into poly(methyl methacrylate) (PMMA) through in situ copolymerization method. The mechanical properties of the nanocomposites were studied after fabrication of the graphene/PMMA film through hot press process. And the MPS-RGO/PMMA composites with 0.5 wt.% of MPS-RGO incorporation lead to a ~44% increases in tensile strength than that of the reduced graphene oxide (RGO)/PMMA composites.
- Full text View on content provider's site
-
HUI YIN, LI MA, JUN YAN, MENGYU GAN, ZHITAO LI, XIAOYU SHEN, SHUANG XIE, JUN ZHANG, JIYUE ZHENG, FENFANG XU, and JINLONG HU
- Composites science and technology. 94:139-146
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Metaux. Metallurgie, Metals. Metallurgy, Corrosion, Protection contre la corrosion, Corrosion prevention, Acier, Steel, Acero, Aniline dérivé polymère, Aniline derivative polymer, Anilina derivado polímero, Argile organique, Organic clay, Arcilla orgánica, Etude expérimentale, Experimental study, Estudio experimental, Experimentelle Untersuchung, Kaolinite, Caolinita, Matériau composite, Composite material, Material compuesto, Verbundwerkstoff, Morphologie, Morphology, Morfología, Méthyle sulfoxyde, Methyl sulfoxide, Sulfóxido de dimetilo, Nanocomposite, Nanocompuesto, Polymère aromatique, Aromatic polymer, Polímero aromático, Polymère conducteur, Conducting polymers, Polymérisation oxydante, Oxidative polymerization, Polimerizacion oxidante, Propriété thermique, Thermal properties, Propiedad térmica, Thermische Eigenschaft, Propriété électrochimique, Electrochemical properties, Propiedad electroquímica, Elektrochemische Eigenschaft, Préparation, Preparation, Preparación, Vorbereitung, Revêtement anticorrosion, Corrosion protective coatings, Résistance corrosion, Corrosion resistance, Resistencia corrosión, Korrosionsbestaendigkeit, Stabilité thermique, Thermal stability, Estabilidad térmica, Thermische Stabilitaet, Traitement surface, Surface treatment, Tratamiento superficie, Oberflaechenbehandlung, Aniline(2,3-diméthyl) polymère, Polymérisation intercalative, A. Nanoclays, A. Polymers, B. Corrosion, and B. Thermal properties
- Abstract
-
Poly(2,3-dimethylaniline)/kaolinite nanocomposites (P(2,3-DMA)/K2) were prepared by in situ intercalative polymerization in the presence of organically modified kaolinite, based on the intercalation modification of crude kaolinite with dimethylsulfoxide (DMSO) and methanol system. Intercalation extent of kaolinite, Structure, Morphology and Thermal stability of the nanocomposites were characterized by XRD, FTIR, SEM and TGA-DTA, respectively. The electrochemical behavior of the as-prepared nanocomposites was evaluated by open circuit potential (OCP), tafel polarization curves (TAF) and impedance spectroscopy (EIS) in 3.5 wt% NaCl aqueous solution. Experimental results indicated that the clay layers of kaolinite in P(2,3-DMA)/K2 were well intercalated and exfoliated, and the P(2,3-DMA)/K2 had a more higher thermal stability and anticorrosion properties relative to the bulk poly(2,3-dimethylaniline) (P(2,3-DMA)) and the P(2,3-DMA)/crude kaolinite composites (P(2,3-DMA)/K0).
- Full text View on content provider's site
-
YU XIE, JIE ZHAO, YUN LING, ZHANGGAO LE, MINGJUN LI, JUNHONG CHEN, YUNHUA GAO, YAN HUANG, YUANCHENG QIN, RONG ZHONG, and DAN ZHOU
- Composites science and technology. 99:141-146
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Chitosane, Chitosan, Quitosano, Conductivité électrique, Electrical conductivity, Conductividad eléctrica, Céramique oxyde, Oxide ceramics, Cerámica óxido, Etude expérimentale, Experimental study, Estudio experimental, Ferrites, Ferritas, Matériau composite, Composite material, Material compuesto, Morphologie, Morphology, Morfología, Mécanisme formation, Formation mechanism, Mecanismo formacion, Nanocomposite, Nanocompuesto, Nanotube carbone, Carbon nanotubes, Nanotube multifeuillets, Multiwalled nanotube, Oside polymère, Oside polymer, Osido polímero, Polymère aromatique, Aromatic polymer, Polímero aromático, Polymère conducteur, Conducting polymers, Propriété magnétique, Magnetic properties, Propiedad magnética, Propriété électrique, Electrical properties, Propiedad eléctrica, Préparation, Preparation, Preparación, Thiophène polymère, Thiophene polymer, Tiofeno polímero, Traitement surface, Surface treatment, Tratamiento superficie, A. Carbon nanotubes, A. Oxides, A. Polymer―matrix composites (PMCs), B. Electrical properties, and B. Magnetic properties
- Abstract
-
The chitosan-decorated ferrite-filled multi-walled carbon nanotubes (MWCNTs)/polythiophene composites were synthesized through in situ chemical polymerization of thiophene in the presence of the chitosan-decorated ferrite-filled MWCNTs. The structure of the samples was characterized by Fourier transform infrared spectroscopy, X-ray diffraction. The shape and size were observed by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The properties of the samples were tested with the vibrating sample magnetometer and the four-probe conductivity tester. The results showed that chitosan has been decorated onto the surface of MWCNTs. And the MWCNTs have been filled with a large number of ferrite crystals. And the chitosan-decorated ferrite-filled MWCNTs have also been coated with polythiophene. The magnetic saturation value of the chitosan-decorated ferrite-filled MWCNTs/polythiophene composites has achieved 0.18 emu/g, and the conductivity is 1.613 S/cm. Finally, based on the experimental results, the probable formation mechanism of this composite has been investigated.
- Full text View on content provider's site
-
ZHANG, Zhong-Feng, BAI, Xiao-Fei, ZHA, Jun-Wei, LI, Wei-Kang, and DANG, Zhi-Min
- Composites science and technology. 97:100-105
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electrotechnique. Electroenergetique, Electrical engineering. Electrical power engineering, Matériel électrique divers, Various equipment and components, Condensateurs. Résistances. Filtres, Capacitors. Resistors. Filters, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Domaines d'application, Application fields, Agent accrochage, Coupling agent, Agente enganche, Condensateur diélectrique composite, Composite dielectric capacitor, Condensador dieléctrico compuesto, Constante diélectrique, Permittivity, Constante dieléctrica, Cuivre, Copper, Cobre, Céramique oxyde, Oxide ceramics, Cerámica óxido, Diélectrique, Dielectric materials, Dieléctrico, Effet température, Temperature effect, Efecto temperatura, Epoxyde résine, Epoxy resin, Epóxido resina, Etude expérimentale, Experimental study, Estudio experimental, Matériau composite, Composite material, Material compuesto, Nanocomposite, Nanocompuesto, Perte diélectrique, Dielectric loss, Pérdida dieléctrica, Propriété diélectrique, Dielectric properties, Propiedad dieléctrica, Préparation, Preparation, Preparación, Silane organique, Organic silane, Silano orgánico, Structure sandwich, Sandwich structure, Estructura sandwich, Titanate de baryum, Barium titanates, Traitement surface, Surface treatment, Tratamiento superficie, A. Nanocomposites, A. Nanoparticle, A. Polymer, and B. Electrical properties
- Abstract
-
Incorporating the inorganic particles into polymer have opened up novel opportunities to prepare the dielectric materials applied in embedded capacitors. In this work, the barium titanate (BaTiO3)/epoxy nanocomposites with excellent dielectric properties were fabricated. The embedded capacitors with three-layer sandwich structure containing the BaTiO3/epoxy nanocomposites as dielectric layer and copper foil as electrodes were prepared through lamination process. This method could ensure uniformity of capacitor paste in the structure, resulting in improved dielectric properties. The capacitors exhibit high dielectric permittivity (ε = 20), low dielectric loss (0.01) at 103 Hz from 40 °C to 100 °C and high breakdown strength (24 kV/mm). These results demonstrate that the BaTiO3/epoxy nanocomposites have potential for high-performance embedded capacitors in field of microelectronics.
- Full text View on content provider's site
-
CHANG, Yu-Hsun and LIN, King-Fu
- Composites science and technology. 90:174-179
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Cation organique, Organic cation, Catión orgánico, Degré dispersion, Dispersion degree, Grado dispersión, Durcissement (matière plastique), Curing (plastics), Endurecimiento (material plástico), Epoxyde résine, Epoxy resin, Epóxido resina, Etude expérimentale, Experimental study, Estudio experimental, Matériau composite, Composite material, Material compuesto, Morphologie, Morphology, Morfología, Nanocomposite, Nanocompuesto, Nanotube carbone, Carbon nanotubes, Nanotube multifeuillets, Multiwalled nanotube, Propriété mécanique, Mechanical properties, Propiedad mecánica, Propriété thermique, Thermal properties, Propiedad térmica, Propriété traction, Tensile property, Propiedad tracción, Température transition vitreuse, Glass transition temperature, Temperatura transición vítrosa, Traitement physique, Physical dressing, Procesamiento físico, Traitement surface, Surface treatment, Tratamiento superficie, Acridinium composé, Benzotriazolium composé, A. Carbon nanotubes, A. Nanocomposites, B. Mechanical properties, B. Surface treatments, and D. Rheology
- Abstract
-
Cation-π effect on physisorption of aromatic ionic salts to multi-walled carbon nanotube (MWCNT) was demonstrated by the excess adsorption over their pre-ionized aromatic compounds through thermogravimetric analysis. Their adsorption layer on the surface of MWCNT was confirmed by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Ionic salt-adsorbing MWCNT showed better dispersion in acetone than pristine and pre-ionized compound-adsorbing MWCNT. Incorporation of 1 wt% ionic salt-adsorbing MWCNT is able to gel the epoxy resin at room temperature according to the rheological study. Based on our proposed model, 1 wt% fully-dispersed MWCNTs are enough to form an interconnected network in epoxy resin resulting in gelation. After crosslinking with amine curing agent, the epoxy nanocomposites incorporating 1 wt% ionic salt-adsorbing MWCNT displayed substantially higher glass and ss transition temperatures than that incorporating pristine MWCNT.
- Full text View on content provider's site
17. Noncovalently functionalized pristine graphene/metal nanoparticle hybrid for conductive composites [2014]
-
KONGHUA LIU, SHILONG CHEN, YUANFANG LUO, DEMIN JIA, HONG GAO, GUOJUN HU, and LAN LIU
- Composites science and technology. 94:1-7
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Polymère aromatique, Aromatic polymer, Polímero aromático, Amidoamine polymère, Amidoamine polymer, Amidoamina polímero, Argent, Silver, Plata, Composite hybride, Hybrid composite, Compuesto híbrido, Conductivité électrique, Electrical conductivity, Conductividad eléctrica, Dendrimère, Dendrimer, Dendrímero, Epoxyde résine, Epoxy resin, Epóxido resina, Etude expérimentale, Experimental study, Estudio experimental, Graphène, Graphene, Matériau composite, Composite material, Material compuesto, Matériau conducteur, Conducting material, Material conductor, Morphologie, Morphology, Morfología, Nanocomposite, Nanocompuesto, Particule métallique, Metal particle, Partícula metálica, Percolation, Percolación, Propriété optique, Optical properties, Propiedad óptica, Propriété électrique, Electrical properties, Propiedad eléctrica, Traitement surface, Surface treatment, Tratamiento superficie, Graphène fonctionnalisé, A. Nanocomposites, A. Nanoparticles, A. Polymer-matrix composites (PMCs), and B. Electrical properties
- Abstract
-
The combination of metal nanostructures and pristine graphene with high quality is highly expected for many applications. A method for the large-scale production of metal nanoparticle (NP)/pristine graphene hybrid and its conductive polymer composites is presented, by a combinatorial process of noncovalent functionalization of defect-free pristine-graphene with Poly(amidoamine) (PAMAM) dendrimer and the homogenous attachment of metal NPs on graphene surface. Stable PAMAM functionalized graphene nanofluid is achieved when there is the absence of solvents. The graphene sheets in the hybrid preserve the intrinsic structure and homogenous dispersion. Silver NP (AgNP) decorated graphene hybrid with homogenous dispersion is realized by using PAMAM as stabilizing and also reducing agents through thermal reduction method. The hybrid is used as nanoscale filler to generate epoxy-based conductive composites for electrical interconnects due to the combined effects of the excellent electrical conductivity of high-quality pristine-graphene at low percolation threshold and enhanced contacts between the fillers by low temperature sintering of AgNPs. This method could lead to the large-scale production of graphene-based composites for a wide range of applications.
- Full text View on content provider's site
-
JUAN CHEN, DAN ZHAO, XIN JIN, CUICUI WANG, DONGZHI WANG, and HEYI GE
- Composites science and technology. 97:41-45
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Stratifiés, Laminates, Agent accrochage, Coupling agent, Agente enganche, Epoxyde résine, Epoxy resin, Epóxido resina, Etude expérimentale, Experimental study, Estudio experimental, Fibre minérale, Mineral fiber, Fibra inorgánica, Fibre verre, Glass fiber, Fibra vidrio, Interface fibre matrice, Matrix fiber interface, Interfase fibra matriz, Liaison covalente, Covalent bond, Enlace covalente, Matériau composite, Composite material, Material compuesto, Matériau renforcé fibre, Fiber reinforced material, Material reforzado fibra, Morphologie, Morphology, Morfología, Propriété interface, Interface properties, Propiedad interfase, Propriété mécanique, Mechanical properties, Propiedad mecánica, Résistance cisaillement, Shear strength, Resistencia cizallamiento, Silane organique, Organic silane, Silano orgánico, Stratifié, Laminate, Estratificado, Traitement surface, Surface treatment, Tratamiento superficie, Ténacité, Fracture toughness, Tenacidad, Graphène oxyde, Résistance cisaillement interlaminaire, A. Glass fibres, A. Graphene oxide, A. Polymer-matrix composites, B. Interface, and D. Infrared (IR) spectroscopy
- Abstract
-
Graphene oxide (GO) sheets were covalently grafted onto glass fibers (GFs) to improve the interfacial properties of GFs/polymer composites. It was confirmed that GO sheets were chemically grafted onto GFs via amido bond. The surface configuration of GFs changed by GO sheets could enhance strength and toughness of the interfacial region between GFs and polymer matrix. This strategy has the potential to be applied in high performance polymer matrix composites.
- Full text View on content provider's site
-
JINGWEN LI, ZHIXIONG WU, CHUANJUN HUANG, HUIMING LIU, RONGJIN HUANG, and LAIFENG LI
- Composites science and technology. 90:166-173
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Acrylique acide polymère, Acrylic acid polymer, Acrílico ácido polímero, Cyanate résine, Cyanate resin, Cianato resina, Dépôt plasma, Plasma deposition, Depósito plasma, Effet concentration, Concentration effect, Efecto concentración, Epoxyde résine, Epoxy resin, Epóxido resina, Etude expérimentale, Experimental study, Estudio experimental, Matériau composite, Composite material, Material compuesto, Matériau renforcé dispersion, Dispersion reinforced material, Material renforzado dispersión, Module élasticité, Elastic modulus, Módulo elasticidad, Morphologie, Morphology, Morfología, Mélange polymère, Polymer blends, Nanocomposite, Nanocompuesto, Nanotube carbone, Carbon nanotubes, Nanotube multifeuillets, Multiwalled nanotube, Polymérisation décharge électrique, Glow discharge polymerization, Polimerización descarga eléctrica, Polyélectrolyte, Polyelectrolyte, Polielectrolito, Propriété mécanique, Mechanical properties, Propiedad mecánica, Résistance choc, Impact strength, Resistencia choque, Résistance traction, Tensile strength, Resistencia tracción, Traitement surface, Surface treatment, Tratamiento superficie, Nanotube carbone fonctionnalisé, A. Carbon nanotubes, A. Nanocomposites, B. Mechanical properties, and E. Plasma deposition
- Abstract
-
Multi-wall carbon nanotubes/cyanate ester/epoxy (MWCNT/CE/EP) nanocomposites were prepared. The MWCNTs were functionalized by a plasma polymerization process in order to improve the dispersion property of MWCNTs in the polymer matrix. The effect of mass content and functionalization of the MWCNTs on the mechanical properties at room temperature (RT) and liquid nitrogen temperature (77 K) of nanocomposites were investigated. Results showed that the plasma functionalization of MWCNTs improves the dispersion property and interfacial bonding between MWCNTs and matrix. The functionalized MWCNT/CE/EP nanocomposites showed much greater improvement on mechanical properties than as-received MWCNT/CE/EP nanocomposites. The tensile strength, the tensile modulus, and the impact strength at RT and 77 K were simultaneously enhanced with the addition of functionalized MWCNTs. The tensile strength and modulus of the nanocomposites at 77 K were much higher than those at RT.
- Full text View on content provider's site
-
JUN YANG, ZHAO, Jing-Jing, HAN, Chun-Rui, and DUAN, Jiu-Fang
- Composites science and technology. 95:1-7
- Subjects
-
Chemical industry parachemical industry, Industrie chimique et parachimique, Mechanics acoustics, Mécanique et acoustique, Metallurgy, welding, Métallurgie, soudage, Polymers, paint and wood industries, Polymères, industries des peintures et bois, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Industrie des polymeres, peintures, bois, Polymer industry, paints, wood, Technologie des polymères, Technology of polymers, Formes d'application et semiproduits, Forms of application and semi-finished materials, Matériaux composites, Composites, Acrylamide copolymère, Acrylamide copolymer, Acrilamida copolímero, Agent accrochage, Coupling agent, Agente enganche, Copolymère greffé, Graft copolymer, Copolímero injertado, Copolymérisation photochimique, Photochemical copolymerization, Copolimerización fotoquímica, Etude expérimentale, Experimental study, Estudio experimental, Hydrogel, Hidrogel, Interaction matière charge polymère, Polymer filler interaction, Interacción materia carga polímero, Matériau composite, Composite material, Material compuesto, Matériau renforcé dispersion, Dispersion reinforced material, Material renforzado dispersión, Morphologie, Morphology, Morfología, Méthacrylate copolymère, Methacrylate copolymer, Metacrilato copolímero, Nanocomposite, Nanocompuesto, Propriété mécanique, Mechanical properties, Propiedad mecánica, Propriété élastique, Elastic properties, Propiedad elástica, Relation structure propriété, Property structure relationship, Relación estructura propiedad, Renforcement mécanique, Strengthening, Refuerzo mecánico, Silane organique, Organic silane, Silano orgánico, Silice, Silica, Sílice, Traitement surface, Surface treatment, Tratamiento superficie, A. Hybrid composites, A. Nano composites, A. Particle-reinforced composites, B. Fracture, and Interface
- Abstract
-
Polymer nanocomposites have attracted an increasing interest by adding of trace amount of nano-scale fillers. The mechanical reinforcement of silica nanoparticle/poly(acrylamide) composites, which results in a homogeneous dispersion of small primary clusters in the matrix, is investigated based on a facile synthetic platform, and the structure―property relationship of the network structure is interpreted in this paper. The high grafting efficiency of polymer chains on silica nanoparticles surface pronouncedly confines the segmental motion of the chains, leading to a 6-time increase in toughness. The cluster network structure is observed by transmission electronic microscopy and mechanical response of the nanocomposites is studied by both small (oscillatory shear) and large (uniaxial tension) deformations as a function of silica particle volume fractions to demystify the effect of constrained region on the elastic properties. A constrained region model for nanocomposites is tentatively proposed and the result indicates that modulus enhancement of the nanocomposites is found to have good correlation with the volume of constrained region. This research reveals that the network structure―property relations relate to two main reinforcement effects, the filler network (filler-polymer matrix interaction) and filler mobility (energy dissipation), suggesting a need to reconsider the filler―polymer interaction and region of constraint polymer in forming a indirect bridge network among neighboring clusters.
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 20
Next