articles+ search results
190 articles+ results
1 - 10
Next
Number of results to display per page
1 - 10
Next
Number of results to display per page
-
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, and Zoller H
Nature reviews. Endocrinology [Nat Rev Endocrinol] 2023 Feb 17. Date of Electronic Publication: 2023 Feb 17.
- Abstract
-
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
(© 2023. Springer Nature Limited.)
- Full text View on content provider's site
-
POCCO, M. A. R. T. I. N. A. E., GUZMÁN, N. O. E. L. I. A., PLISCHUK, S. A. N. T. I. A. G. O., CONFALONIERI, V. I. V. I. A. N. A., LANGE, C. A. R. L. O. S. E., and CIGLIANO, MARÍA M. A. R. T. A.
Systematic Entomology . Apr2018, Vol. 43 Issue 2, p290-307. 18p.
- Subjects
-
BIODIVERSITY, GRASSHOPPER behavior, BIOMES, PHYLOGENY, and SPECIES distribution
- Abstract
-
Abstract: The open vegetation biomes, within the limits of the Chacoan subregion, occur along a diagonal in eastern South America covering a large range of environmental conditions. In order to contribute to the knowledge on the biodiversity of these open biomes, we analysed the phylogenetic relationships of the grasshopper genus Zoniopoda to the remaining South American Romaleinae, and examined the biogeographical patterns of diversification of the genus. The study is based on morphological and molecular (COI and H3) evidence, including 12 species of Zoniopoda and 17 species of four tribes of South American Romaleinae. We describe a new species of Zoniopoda, and test its taxonomic placement within the group. Results of our phylogenetic analyses recovered Zoniopoda as a monophyletic group with high support values. According to the dispersion–vicariance analysis, the ancestor of Zoniopoda may have been distributed in an area corresponding to the Chacoan and Cerrado provinces. A vicariant event, that could be explained by the uplift of the Brazilian Plateau and the subsidence of the Chaco, is hypothesized to have occurred splitting the ancestral distribution of Zoniopoda, resulting in the independent evolution of the Tarsata group within the Cerrado and the Iheringi group in the Chacoan subregion. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:act:FCFB4C5D-1741-46F1-8E25-B37ED2B9D872. [ABSTRACT FROM AUTHOR]
- Full text
View/download PDF
-
Guimier A, de Pontual L, Braddock SR, Torti E, Pérez-Jurado LA, Muñoz-Cabello P, Arumí M, Monaghan KG, Lee H, Wang LK, Pluym ID, Lynch SA, Stals K, Ellard S, Muller C, Houyel L, Cohen L, Lyonnet S, Bajolle F, Amiel J, and Gordon CT
Human molecular genetics [Hum Mol Genet] 2023 Jan 13; Vol. 32 (3), pp. 353-356.
- Subjects
-
Humans, Heart Defects, Congenital, and Truncus Arteriosus, Persistent
- Full text View on content provider's site
-
Helman G, Mendes MI, Nicita F, Darbelli L, Sherbini O, Moore T, Derksen A, Amy Pizzino, Carrozzo R, Torraco A, Catteruccia M, Aiello C, Goffrini P, Figuccia S, Smith DEC, Hadzsiev K, Hahn A, Biskup S, Brösse I, Kotzaeridou U, Gauck D, Grebe TA, Elmslie F, Stals K, Gupta R, Bertini E, Thiffault I, Taft RJ, Schiffmann R, Brandl U, Haack TB, Salomons GS, Simons C, Bernard G, van der Knaap MS, Vanderver A, and Husain RA
Genetics in medicine : official journal of the American College of Medical Genetics [Genet Med] 2021 Dec; Vol. 23 (12), pp. 2352-2359. Date of Electronic Publication: 2021 Aug 27.
- Subjects
-
Cross-Sectional Studies, Disease Progression, Humans, Phenotype, Leukoencephalopathies diagnostic imaging, and Leukoencephalopathies genetics
- Abstract
-
Purpose: Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease.
Methods: A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts.
Results: We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile-onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile-onset and late-onset phenotypes.
Conclusion: We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile-onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome.
(© 2021. The Author(s), under exclusive licence to the American College of Medical Genetics and Genomics.)
-
Radio FC, Pang K, Ciolfi A, Levy MA, Hernández-García A, Pedace L, Pantaleoni F, Liu Z, de Boer E, Jackson A, Bruselles A, McConkey H, Stellacci E, Lo Cicero S, Motta M, Carrozzo R, Dentici ML, McWalter K, Desai M, Monaghan KG, Telegrafi A, Philippe C, Vitobello A, Au M, Grand K, Sanchez-Lara PA, Baez J, Lindstrom K, Kulch P, Sebastian J, Madan-Khetarpal S, Roadhouse C, MacKenzie JJ, Monteleone B, Saunders CJ, Jean Cuevas JK, Cross L, Zhou D, Hartley T, Sawyer SL, Monteiro FP, Secches TV, Kok F, Schultz-Rogers LE, Macke EL, Morava E, Klee EW, Kemppainen J, Iascone M, Selicorni A, Tenconi R, Amor DJ, Pais L, Gallacher L, Turnpenny PD, Stals K, Ellard S, Cabet S, Lesca G, Pascal J, Steindl K, Ravid S, Weiss K, Castle AMR, Carter MT, Kalsner L, de Vries BBA, van Bon BW, Wevers MR, Pfundt R, Stegmann APA, Kerr B, Kingston HM, Chandler KE, Sheehan W, Elias AF, Shinde DN, Towne MC, Robin NH, Goodloe D, Vanderver A, Sherbini O, Bluske K, Hagelstrom RT, Zanus C, Faletra F, Musante L, Kurtz-Nelson EC, Earl RK, Anderlid BM, Morin G, van Slegtenhorst M, Diderich KEM, Brooks AS, Gribnau J, Boers RG, Finestra TR, Carter LB, Rauch A, Gasparini P, Boycott KM, Barakat TS, Graham JM Jr, Faivre L, Banka S, Wang T, Eichler EE, Priolo M, Dallapiccola B, Vissers LELM, Sadikovic B, Scott DA, Holder JL Jr, and Tartaglia M
American journal of human genetics [Am J Hum Genet] 2021 Mar 04; Vol. 108 (3), pp. 502-516. Date of Electronic Publication: 2021 Feb 16.
- Subjects
-
Adolescent, Autism Spectrum Disorder genetics, Autism Spectrum Disorder pathology, Child, Child, Preschool, Chromosome Deletion, Chromosome Disorders physiopathology, DNA Methylation genetics, Epigenesis, Genetic genetics, Female, Haploinsufficiency genetics, Humans, Intellectual Disability genetics, Intellectual Disability physiopathology, Male, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders physiopathology, Phenotype, Young Adult, Chromosome Disorders genetics, Chromosomes, Human, Pair 1 genetics, Chromosomes, Human, X genetics, DNA-Binding Proteins genetics, and RNA-Binding Proteins genetics
- Abstract
-
Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals with truncating variants in SPEN to define a neurodevelopmental disorder presenting with features that overlap considerably with those of proximal del1p36 syndrome. The clinical profile of this disease includes developmental delay/intellectual disability, autism spectrum disorder, anxiety, aggressive behavior, attention deficit disorder, hypotonia, brain and spine anomalies, congenital heart defects, high/narrow palate, facial dysmorphisms, and obesity/increased BMI, especially in females. SPEN also emerges as a relevant gene for del1p36 syndrome by co-expression analyses. Finally, we show that haploinsufficiency of SPEN is associated with a distinctive DNA methylation episignature of the X chromosome in affected females, providing further evidence of a specific contribution of the protein to the epigenetic control of this chromosome, and a paradigm of an X chromosome-specific episignature that classifies syndromic traits. We conclude that SPEN is required for multiple developmental processes and SPEN haploinsufficiency is a major contributor to a disorder associated with deletions centromeric to the previously established 1p36 critical regions.
(Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Full text View on content provider's site
-
Barish S, Barakat TS, Michel BC, Mashtalir N, Phillips JB, Valencia AM, Ugur B, Wegner J, Scott TM, Bostwick B, Murdock DR, Dai H, Perenthaler E, Nikoncuk A, van Slegtenhorst M, Brooks AS, Keren B, Nava C, Mignot C, Douglas J, Rodan L, Nowak C, Ellard S, Stals K, Lynch SA, Faoucher M, Lesca G, Edery P, Engleman KL, Zhou D, Thiffault I, Herriges J, Gass J, Louie RJ, Stolerman E, Washington C, Vetrini F, Otsubo A, Pratt VM, Conboy E, Treat K, Shannon N, Camacho J, Wakeling E, Yuan B, Chen CA, Rosenfeld JA, Westerfield M, Wangler M, Yamamoto S, Kadoch C, Scott DA, and Bellen HJ
American journal of human genetics [Am J Hum Genet] 2020 Dec 03; Vol. 107 (6), pp. 1096-1112. Date of Electronic Publication: 2020 Nov 23.
- Subjects
-
Adolescent, Animals, Child, Child, Preschool, Drosophila Proteins genetics, Drosophila melanogaster, Female, Genes, Dominant, Genetic Variation, Haploinsufficiency, Humans, Infant, Male, Microscopy, Confocal, Neuroglia metabolism, Neurons metabolism, Protein Binding, Zebrafish, Zebrafish Proteins genetics, Chromosomal Proteins, Non-Histone genetics, Developmental Disabilities genetics, Mutation, Missense, Phenotype, and Tumor Suppressor Proteins genetics
- Abstract
-
SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.
(Copyright © 2020 American Society of Human Genetics. All rights reserved.)
- Full text View on content provider's site
-
Thomson SA, Pyle RL, Ahyong ST, Alonso-Zarazaga M, Ammirati J, Araya JF, Ascher JS, Audisio TL, Azevedo-Santos VM, Bailly N, Baker WJ, Balke M, Barclay MVL, Barrett RL, Benine RC, Bickerstaff JRM, Bouchard P, Bour R, Bourgoin T, Boyko CB, Breure ASH, Brothers DJ, Byng JW, Campbell D, Ceríaco LMP, Cernák I, Cerretti P, Chang CH, Cho S, Copus JM, Costello MJ, Cseh A, Csuzdi C, Culham A, D'Elía G, d'Udekem d'Acoz C, Daneliya ME, Dekker R, Dickinson EC, Dickinson TA, van Dijk PP, Dijkstra KB, Dima B, Dmitriev DA, Duistermaat L, Dumbacher JP, Eiserhardt WL, Ekrem T, Evenhuis NL, Faille A, Fernández-Triana JL, Fiesler E, Fishbein M, Fordham BG, Freitas AVL, Friol NR, Fritz U, Frøslev T, Funk VA, Gaimari SD, Garbino GST, Garraffoni ARS, Geml J, Gill AC, Gray A, Grazziotin FG, Greenslade P, Gutiérrez EE, Harvey MS, Hazevoet CJ, He K, He X, Helfer S, Helgen KM, van Heteren AH, Hita Garcia F, Holstein N, Horváth MK, Hovenkamp PH, Hwang WS, Hyvönen J, Islam MB, Iverson JB, Ivie MA, Jaafar Z, Jackson MD, Jayat JP, Johnson NF, Kaiser H, Klitgård BB, Knapp DG, Kojima JI, Kõljalg U, Kontschán J, Krell FT, Krisai-Greilhuber I, Kullander S, Latella L, Lattke JE, Lencioni V, Lewis GP, Lhano MG, Lujan NK, Luksenburg JA, Mariaux J, Marinho-Filho J, Marshall CJ, Mate JF, McDonough MM, Michel E, Miranda VFO, Mitroiu MD, Molinari J, Monks S, Moore AJ, Moratelli R, Murányi D, Nakano T, Nikolaeva S, Noyes J, Ohl M, Oleas NH, Orrell T, Páll-Gergely B, Pape T, Papp V, Parenti LR, Patterson D, Pavlinov IY, Pine RH, Poczai P, Prado J, Prathapan D, Rabeler RK, Randall JE, Rheindt FE, Rhodin AGJ, Rodríguez SM, Rogers DC, Roque FO, Rowe KC, Ruedas LA, Salazar-Bravo J, Salvador RB, Sangster G, Sarmiento CE, Schigel DS, Schmidt S, Schueler FW, Segers H, Snow N, Souza-Dias PGB, Stals R, Stenroos S, Stone RD, Sturm CF, Štys P, Teta P, Thomas DC, Timm RM, Tindall BJ, Todd JA, Triebel D, Valdecasas AG, Vizzini A, Vorontsova MS, de Vos JM, Wagner P, Watling L, Weakley A, Welter-Schultes F, Whitmore D, Wilding N, Will K, Williams J, Wilson K, Winston JE, Wüster W, Yanega D, Yeates DK, Zaher H, Zhang G, Zhang ZQ, and Zhou HZ
PLoS biology [PLoS Biol] 2018 Mar 14; Vol. 16 (3), pp. e2005075. Date of Electronic Publication: 2018 Mar 14 (Print Publication: 2018).
- Subjects
-
Biodiversity and Conservation of Natural Resources
- Full text
View/download PDF
-
Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, Bedossa P, Geier A, Beckebaum S, Newsome PN, Sheridan D, Sheikh MY, Trotter J, Knapple W, Lawitz E, Abdelmalek MF, Kowdley KV, Montano-Loza AJ, Boursier J, Mathurin P, Bugianesi E, Mazzella G, Olveira A, Cortez-Pinto H, Graupera I, Orr D, Gluud LL, Dufour JF, Shapiro D, Campagna J, Zaru L, MacConell L, Shringarpure R, Harrison S, and Sanyal AJ
Lancet (London, England) [Lancet] 2019 Dec 14; Vol. 394 (10215), pp. 2184-2196. Date of Electronic Publication: 2019 Dec 05.
- Subjects
-
Administration, Oral, Biomarkers analysis, Biopsy, Chenodeoxycholic Acid administration dosage, Chenodeoxycholic Acid therapeutic use, Double-Blind Method, Female, Humans, Liver Function Tests, Male, Middle Aged, Chenodeoxycholic Acid analogs derivatives, and Non-alcoholic Fatty Liver Disease drug therapy
- Abstract
-
Background: Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH.
Methods: In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH, non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2-F3, or F1 with at least one accompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpoints for the month-18 interim analysis were fibrosis improvement (≥1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2-F3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6.
Findings: Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1-F3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2-F3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1-F3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group).
Interpretation: Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes.
Funding: Intercept Pharmaceuticals.
(Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Full text View on content provider's site
-
Von Walden F, Gantelius S, Liu C, Borgström H, Björk L, Gremark O, Stål P, Nader GA, and PontéN E
Muscle & nerve [Muscle Nerve] 2018 Aug; Vol. 58 (2), pp. 277-285. Date of Electronic Publication: 2018 May 24.
- Subjects
-
Adolescent, Cell Count, Child, Collagen metabolism, Cytokines biosynthesis, Cytokines genetics, Female, Gene Expression Regulation, Humans, Male, Muscle Fibers, Skeletal pathology, RNA, Ribosomal genetics, Real-Time Polymerase Chain Reaction, Ribosomes genetics, Ribosomes pathology, Satellite Cells, Skeletal Muscle pathology, Brain Injuries pathology, Cerebral Palsy pathology, Extracellular Matrix pathology, Muscle, Skeletal pathology, and RNA, Ribosomal biosynthesis
- Abstract
-
Introduction: Children with cerebral palsy (CP) and acquired brain injury (ABI) commonly develop muscle contractures with advancing age. An underlying growth defect contributing to skeletal muscle contracture formation in CP/ABI has been suggested.
Methods: The biceps muscles of children and adolescents with CP/ABI (n = 20) and typically developing controls (n = 10) were investigated. We used immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blotting to assess gene expression relevant to growth and size homeostasis.
Results: Classical pro-inflammatory cytokines and genes involved in extracellular matrix (ECM) production were elevated in skeletal muscle of children with CP/ABI. Intramuscular collagen content was increased and satellite cell number decreased and this was associated with reduced levels of RNA polymerase I transcription factors, 45s pre-rRNA and 28S rRNA.
Discussion: The present study provides novel data suggesting a role for pro-inflammatory cytokines and reduced ribosomal production in the development/maintenance of muscle contractures, possibly underlying stunted growth and perimysial ECM expansion. Muscle Nerve 58: 277-285, 2018.
(© 2018 Wiley Periodicals, Inc.)
- Full text View on content provider's site
10. Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing. [2018]
-
Stals KL, Wakeling M, Baptista J, Caswell R, Parrish A, Rankin J, Tysoe C, Jones G, Gunning AC, Lango Allen H, Bradley L, Brady AF, Carley H, Carmichael J, Castle B, Cilliers D, Cox H, Deshpande C, Dixit A, Eason J, Elmslie F, Fry AE, Fryer A, Holder M, Homfray T, Kivuva E, McKay V, Newbury-Ecob R, Parker M, Savarirayan R, Searle C, Shannon N, Shears D, Smithson S, Thomas E, Turnpenny PD, Varghese V, Vasudevan P, Wakeling E, Baple EL, and Ellard S
Prenatal diagnosis [Prenat Diagn] 2018 Jan; Vol. 38 (1), pp. 33-43. Date of Electronic Publication: 2017 Dec 03.
- Subjects
-
Female, Genes, Recessive, Humans, Male, Pregnancy, Congenital Abnormalities genetics, Genetic Diseases, Inborn diagnosis, Parents, Prenatal Diagnosis methods, and Exome Sequencing
- Abstract
-
Objective: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred.
Method: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation.
Results: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum.
Conclusion: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.
(© 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.)
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 10
Next