RAPID prototyping, NUMERICAL control of machine tools, and MACHINING
Abstract
To overcome the limitations of the layered manufacturing process, hybrid rapid-prototyping systems that allow material removal and deposition are being introduced. This approach should benefit from the advantages of conventional layered manufacturing and traditional CNC machining processes. To realize these advantages, however, an intelligent process plan must be generated. In the hybrid rapid-prototyping process, a part is decomposed into thick-layered 3D shapes, such that each layer can be machined and stacked easily. When each layer is generated from the part’s shape, the build orientation is an important factor to be considered, because it greatly influences the lead-time, the machining accuracy, and the number of tool-accessible features in each setup. In this paper, an algorithm to determine the build orientation is described. It considers the deposition process attributes and the machining process attributes simultaneously. [Copyright &y& Elsevier]
AEROFOILS, ENGINEERING, WIND turbines, ENGINEERING students, and TURBINES
Abstract
A practical project undertaken by many first-year Engineering students at Lancaster University is to design, build and test a model wind turbine. Until recently it was difficult to produce convincing aerofoil shapes at small scale, but the recent acquisition of a fused-deposition modeller (FDM) has provided an opportunity to improve the accuracy of the model aerofoils that students can produce. This paper discusses the design method and tools used by the students, and the production of test blades. Particular note is made of the effects of the FDM construction on the blades, including the orientation of build and resulting surface finish, structural issues, and cost. Samples of graphics from student reports are presented, including some results for the efficiency of the turbines. [ABSTRACT FROM AUTHOR]
A. Matos, Marina, Rocha, Ana Maria A. C., Costa, Lino, Pereira, Ana I., and Universidade do Minho
Subjects
3D Printing, Additive Manufacturing, Build Orientation, and Multi-objective Optimization
Abstract
Over the years, rapid prototyping technologies have grown and have been implemented in many 3D model production companies. A variety of different additive manufacturing (AM) techniques are used in rapid prototyping. AM refers to a process by which digital 3D design data is used to build up a component in layers by depositing material. Several high-quality parts are being created in various engineering materials, including metal, ceramics, polymers and their combinations in the form of composites, hybrids, or functionally classified materials. The orientation of 3D models is very important since it can have a great influence on the surface quality characteristics, such as process planning, post-processing, processing time and cost. Thus, the identification of the optimal build orientation for a part is one of the main issues in AM. The quality measures to optimize the build orientation problem may include the minimization of the surface roughness, build time, need of supports, maximize of the part stability in building process or part accuracy, among others. In this paper, a multi-objective approach was applied to a computer-aided design model using MATLAB® multi-objective genetic algorithm, aiming to optimize the support area, the staircase effect and the build time. Preliminary results show the effectiveness of the proposed approach.
AlRedha, Sultan, Shterenlikht, Anton, Mostafavi, Mahmoud, Van Gelderen, Derreck, Lopez-Botello, Omar Eduardo, Reyes, Luis Arturo, Zambrano, Patricia, and Garza, Carlos
FRACTURE toughness, MELTING, BULK solids, LASERS, FRACTOGRAPHY, and METALLOGRAPHY
Abstract
Purpose: A key challenge found in additive manufacturing is the difficulty to produce components with replicable microstructure and mechanical performance in distinct orientations. This study aims to investigate the influence of build orientation on the fracture toughness of additively manufactured AlSi10Mg specimens. Design/methodology/approach: The AlSi10Mg specimens were manufactured using the selective laser melting (SLM) technology. The fracture toughness was experimentally determined (under ASTM E399-09) using C(T) specimens manufactured in different orientations. The microstructure of the specimens was examined using metallography to determine the effects of grain orientation on fracture toughness. Findings: The fracture toughness magnitude of manufactured specimens ranged between 36 and 50 MPam, which closely matched conventional bulk material and literature values regarding AlSi10Mg components. The C(T) specimens printed in the T-L orientation yielded the highest fracture toughness. The grain orientation and fracture toughness values confirm the anisotropic nature of SLM parts where the T-L-oriented specimen obtained the highest KIC value. A clear interaction between the melt pool boundaries and micro-slipping during the loading application was observed. Originality/value: The novelty of this paper consists in elucidating the relationship between grain orientation and fracture toughness of additively manufactured AlSi10Mg specimens because of the anisotropy generated by the different melting pool boundaries and orientations in SLM. The findings show that melt pool boundaries can behave as easier pathways for cracks to propagate and subsequently reduce the fracture toughness of specimens with cracks perpendicular to the build direction. [ABSTRACT FROM AUTHOR]
RESPONSE surfaces (Statistics), SURFACE finishing, and SURFACE roughness
Abstract
Purpose: The advancement of additive manufacturing technologies has resulted in producing parts of high quality and reduced manufacturing time. This paper aims to achieve a simultaneous optimal solution for build time and surface roughness as the output data and also to find the best values for the input data consisting of build orientation, extrusion width, layer thickness, infill percentage and raster angle. Design/methodology/approach: For this purpose, the effects of process parameters on the response variables were investigated by the design of experiments approach to develop empirical models using response surface methodology. The experimental parts of this research were conducted using an inexpensive and locally assembled fused filament fabrication (FFF) machine. A total of 50 runs for 4 different geometries, namely, cylinder, prism, 3DBenchy and twist gear vase, were performed using the rotatable central composite design, and each process parameters were investigated in two levels to develop empirical models. Also, a novel optimization method, namely, the posterior-based method, was accomplished to find the best values for the response variables. Findings: The results demonstrated that not only the build orientation and layer thickness have notable effects on both response variables but also build time is dependent on extrusion width and infill percentage. Low infill percentage and high extrusion width resulted in increasing build time. By reducing layer thickness and infill percentage while increasing extrusion width, parts of high-quality surface finish and reduced built time were produced. Optimum process parameters were found to be of build direction of 0°, extrusion width of 0.61 mm, layer thickness of 0.22 mm, infill percentage of 20% and raster angle of 0°. Originality/value: Through the developed empirical models and by minimizing build orientation and layer thickness, and also considerations for process parameters, parts of high-quality surface finish and reduced built time could be produced on FFF machines. To compensate for increased build time because of reduction in layer thickness, extrusion width and infill percentage must have their maximum and minimum value, respectively. [ABSTRACT FROM AUTHOR]
ARTIFICIAL saliva, GEOMETRY, RAPID prototyping, DETERIORATION of materials, TRANSVERSAL lines, and SHAPE memory polymers
Abstract
Additive manufacturing of polymers has evolved from rapid prototyping to the production of functional components/parts with applications in distinct areas, ranging from health to aeronautics. The possibility of producing complex customized geometries with less environmental impact is one of the critical factors that leveraged the exponential growth of this processing technology. Among the several processing parameters that influence the properties of the parts, the geometry (shape factor) is amid less reported. Considering the geometric complexity of the mouth, including the uniqueness of each teething, this study can contribute to a better understanding of the performance of polymeric devices used in the oral environment for preventive, restorative, and regenerative therapies. Thus, this work aims to evaluate 3D printed poly(ε-caprolactone) mechanical properties with different build orientations and geometries. Longitudinal and transversal toolpaths produced specimens with parallelepiped and tubular geometry. Moreover, as it is intended to develop devices for dentistry, the influence of artificial saliva on mechanical properties was determined. The research concluded that the best mechanical properties are obtained for parallelepiped geometry with a longitudinal impression and that aging in artificial saliva negatively influences all the mechanical properties evaluated in this study. [ABSTRACT FROM AUTHOR]
FIBERS, TEMPERATURE control, THREE-dimensional printing, HEAT transfer, and MECHANICAL properties of condensed matter
Abstract
Purpose: The performance of the parts obtained by fused filament fabrication (FFF) is strongly dependent on the extent of bonding between adjacent filaments developing during the deposition stage. Bonding depends on the properties of the polymer material and is controlled by the temperature of the filaments when they come into contact, as well as by the time required for molecular diffusion. In turn, the temperature of the filaments is influenced by the set of operating conditions being used for printing. This paper aims at predicting the degree of bonding of realistic 3D printed parts, taking into consideration the various contacts arising during its fabrication, and the printing conditions selected. Design/methodology/approach: A computational thermal model of filament cooling and bonding that was previously developed by the authors is extended here, to be able to predict the influence of the build orientation of 3D printed parts on bonding. The quality of a part taken as a case study is then assessed in terms of the degree of bonding, i.e. the percentage of volume exhibiting satisfactory bonding between contiguous filaments. Findings: The complexity of the heat transfer arising from the changes in the thermal boundary conditions during deposition and cooling is well demonstrated for a case study involving a realistic 3D part. Both extrusion and build chamber temperature are major process parameters. Originality/value: The results obtained can be used as practical guidance towards defining printing strategies for 3D printing using FFF. Also, the model developed could be directly applied for the selection of adequate printing conditions. [ABSTRACT FROM AUTHOR]
POLYLACTIC acid, STRAIN rate, STRAINS & stresses (Mechanics), DIGITAL image correlation, TAGUCHI methods, and FUSED deposition modeling
Abstract
Purpose: This paper aims to investigate the effects of build parameters and strain rate on the mechanical properties of three-dimensional (3D) printed polylactic acid (PLA) by integrating digital image correlation and desirability function analysis. The build parameters included in this paper are the infill density, build orientation and layer height. These findings provide a framework for systematic mechanical characterization of 3D-printed PLA and potential ways of choosing process parameters to maximize performance for a given design. Design/methodology/approach: The Taguchi method was used to shortlist a set of 18 different combinations of build parameters and testing conditions. Accordingly, 18 specimens were 3D printed using those combinations and put through a series of uniaxial tensions tests with digital image correlation. The mechanical properties deduced for all 18 tests were then used in a desirability function analysis where the mechanical properties were optimized to determine the ideal combination of build parameters and strain rate loading conditions. Findings: By comparing the tensile mechanical experimental properties results between Taguchi's recommended parameters and the optimal parameter found from the response table of means, the composite desirability had increased by 2.08%. The tensile mechanical properties of the PLA specimens gradually decrease with an increase in the layer height, while they increase with increasing the infill densities. On the other hand, the mechanical properties have been affected by the build orientation and the strain rate in similar increasing/decreasing trends. Additionally, the obtained optimized results suggest that changing the infill density has a notable impact on the overall result, with a contribution of 48.61%. DIC patterns on the upright samples revealed bimodal strain patterns rendering them more susceptible to failures because of printing imperfections. Originality/value: These findings provide a framework for systematic mechanical characterization of 3D-printed PLA and potential ways of choosing process parameters to maximize performance for a given design. [ABSTRACT FROM AUTHOR]