articles+ search results
5,178 articles+ results
1 - 10
Next
Number of results to display per page
-
Issac, Titus, Silas, Salaja, and Blessing Rajsingh, Elijah
- Journal of King Saud University: Computer and Information Sciences. June, 2022, Vol. 34 Issue 6, p3685.
- Subjects
-
Algorithm, Sensors -- Analysis, Wireless sensor networks -- Analysis, and Algorithms -- Analysis
- Abstract
-
Keywords Tissue P System; Wireless Sensor Network; Multi-Objective problem; Task Assignment; Decision Support System; Parallel computing; Sustainable computing Abstract The contemporary wireless sensor applications employ a Heterogeneous Wireless Sensor Network (HeWSN) to achieve its multi-objective missions. Modern wireless nodes constituting the HeWSN are more versatile in terms of its capabilities, functionalities, and applications. Assigning tasks in a dynamic HeWSN environment are challenging due to its inherent heterogeneous properties and capabilities. The investigation of existing task assignment algorithms reveals (i) the majority of the existing task assignment algorithms were designed for the homogeneous environment, (ii) most of the nature-inspired algorithms were built for centralized architecture. Scheduling tasks by existing task assignment algorithms lead to underutilization of resources as well as to the rapid depletion of network resources. To this end, a novel, distributed, heterogeneous task assignment algorithm adhering the modern sensors capabilities, functionalities and sensor application to attain sustainable computing is required. Based on the investigation, Tissue P-System inspired task assignment algorithm for the distributed heterogeneous WSN has been modelled. The experimental analyses of the proposed method have been self-evaluated as well as compared with the corresponding recent benchmark algorithms under various conditions and its performance metrics are analysed. Author Affiliation: Karunya Institute of Technology & Sciences, Coimbatore, Tamil Nadu 641 114, India * Corresponding author. Article History: Received 18 November 2019; Revised 11 June 2020; Accepted 21 June 2020 (footnote) Peer review under responsibility of King Saud University. Byline: Titus Issac [titusissac@gmail.com] (*), Salaja Silas, Elijah Blessing Rajsingh
2. Accelerating prototyping experiments for traveling wave structures for lossless ion manipulations. [2022]
-
Kinlein ZR, Anderson GA, and Clowers BH
Talanta [Talanta] 2022 Jul 01; Vol. 244, pp. 123446. Date of Electronic Publication: 2022 Apr 04.
- Abstract
-
Traveling wave structures for lossless ion manipulation (TW-SLIM) has proven a valuable tool for the separation and study of gas-phase ions. Unfortunately, many of the traditional components of TW-SLIM experiments manifest practical and financial barriers to the technique's broad implementation. To this end, a series of technological innovations and methodologies are presented which enable for simplified SLIM experimentation and more rapid TW-SLIM prototyping. In addition to the use of multiple independent board sets that comprise the present SLIM system, we introduce a low-cost, multifunctional traveling wave generator to produce TW within the TW-SLIM. This square-wave producing unit proved effective in realizing TW-SLIM separations compared to traditional approaches. Maintaining a focus on lowering barriers to implementation, the present set of experiments explores the use of on-board injection (OBI) methods, which offer potential alternatives to ion funnel traps. These OBI techniques proved feasible and the ability of this simplified TW-SLIM platform to enhance ion accumulation was established. Further experimentation regarding ion accumulation revealed a complexity to ion accumulation within TW-SLIM that has yet to be expounded upon. Lastly, the ability of the presented TW-SLIM platform to store ions for extended periods (1 s) without significant loss (<10%) was demonstrated. The aforementioned experiments clearly establish the efficacy of a simplified TW-SLIM platform which promises to expand adoption and experimentation of the technique.
(Copyright © 2022 Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Lim SW, Choi IS, Lee BN, Ryu J, Park HJ, and Cho JH
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics [Am J Orthod Dentofacial Orthop] 2022 Jul; Vol. 162 (1), pp. 108-121. Date of Electronic Publication: 2022 Mar 11.
- Abstract
-
This case report describes the successful orthodontic treatment of an 11-year-old girl with skeletal Class II malocclusion and congenitally missing mandibular second premolars. To resolve her upper lip protrusion and restore the missing mandibular premolars, extraction of the maxillary first premolars and subsequent autotransplantation of the extracted premolars onto the site of the missing mandibular second premolars were performed. To ensure the success of the autotransplantation and subsequent orthodontic treatment, an orthodontic force was preapplied on the donor teeth, and the recipient sockets were prepared with the aid of replica teeth. Thereafter, comprehensive orthodontic treatment was performed to close the extraction space in the maxilla and align the mandibular dentition, including the transplants. The patient achieved a functional occlusion with an improved facial profile. Results of the orthodontic treatment and autotransplantation were stable during the 5-year follow-up. On the basis of this report, a management protocol for a biomechanically enhanced autotransplantation procedure was suggested. This approach would enable an effective treatment procedure, thereby increasing the usefulness of autotransplantation.
(Copyright © 2022 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.)
- Full text View on content provider's site
-
Gan R, Cabezas MD, Pan M, Zhang H, Hu G, Clark LG, Jewett MC, and Nicol R
ACS synthetic biology [ACS Synth Biol] 2022 Jun 17; Vol. 11 (6), pp. 2108-2120. Date of Electronic Publication: 2022 May 12.
- Subjects
-
Gene Library, Protein Biosynthesis, Synthetic Biology, High-Throughput Screening Assays, and Microfluidics methods
- Abstract
-
Engineering regulatory parts for improved performance in genetic programs has played a pivotal role in the development of the synthetic biology cell programming toolbox. Here, we report the development of a novel high-throughput platform for regulatory part prototyping and analysis that leverages the advantages of engineered DNA libraries, cell-free protein synthesis (CFPS), high-throughput emulsion droplet microfluidics, standard flow sorting adapted to screen droplet reactions, and next-generation sequencing (NGS). With this integrated platform, we screened the activity of millions of genetic parts within hours, followed by NGS retrieval of the improved designs. This in vitro platform is particularly valuable for engineering regulatory parts of nonmodel organisms, where in vivo high-throughput screening methods are not readily available. The platform can be extended to multipart screening of complete genetic programs to optimize yield and stability.
- Full text View on content provider's site
-
De Buck S, Van De Bruaene A, Budts W, and Suetens P
International journal of computer assisted radiology and surgery [Int J Comput Assist Radiol Surg] 2022 Jun 08. Date of Electronic Publication: 2022 Jun 08.
- Abstract
-
Purpose: Virtual reality (VR) can provide an added value for diagnosis and/or intervention planning. Several VR software implementations have been proposed but they are often application dependent. Previous attempts for a more generic solution incorporating VR in medical prototyping software (MeVisLab) were still lacking functionality precluding easy and flexible development.
Methods: We propose an alternative solution that uses rendering to a graphical processing unit (GPU) texture to enable rendering arbitrary Open Inventor scenes in a VR context. It facilitates flexible development of user interaction and rendering of more complex scenes involving multiple objects. We tested the platform in planning a transcatheter cardiac stent placement procedure.
Results: This approach proved to enable development of a particular implementation that facilitates planning of percutaneous treatment of a sinus venosus atrial septal defect. The implementation showed it is intuitive to plan and verify the procedure using VR.
Conclusion: An alternative implementation for linking OpenVR with MeVisLab is provided that offers more flexible development of VR prototypes which can facilitate further clinical validation of this technology in various medical disciplines.
(© 2022. CARS.)
- Full text View on content provider's site
-
Vögeli B, Schulz L, Garg S, Tarasava K, Clomburg JM, Lee SH, Gonnot A, Moully EH, Kimmel BR, Tran L, Zeleznik H, Brown SD, Simpson SD, Mrksich M, Karim AS, Gonzalez R, Köpke M, and Jewett MC
Nature communications [Nat Commun] 2022 Jun 01; Vol. 13 (1), pp. 3058. Date of Electronic Publication: 2022 Jun 01.
- Subjects
-
Autotrophic Processes, Fermentation, Oxidation-Reduction, Carbon Cycle, and Escherichia coli metabolism
- Abstract
-
Carbon-negative synthesis of biochemical products has the potential to mitigate global CO 2 emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols. With a high-throughput in vitro prototyping workflow, we screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity. Implementation of these pathways into Escherichia coli generates designer strains for the selective production of butanoic acid (4.9 ± 0.1 gL -1 ), as well as hexanoic acid (3.06 ± 0.03 gL -1 ) and 1-hexanol (1.0 ± 0.1 gL -1 ) at the best performance reported to date in this bacterium. We also generate Clostridium autoethanogenum strains able to produce 1-hexanol from syngas, achieving a titer of 0.26 gL -1 in a 1.5 L continuous fermentation. Our strategy enables optimization of r-BOX derived products for biomanufacturing and industrial biotechnology.
(© 2022. The Author(s).)
- Full text View on content provider's site
-
O'Connor S, Mathew S, Dave F, Tormey D, Parsons U, Gavin M, Nama PM, Moran R, Rooney M, McMorrow R, Bartlett J, and Pillai SC
Results in engineering [Results Eng] 2022 Jun; Vol. 14, pp. 100452. Date of Electronic Publication: 2022 May 18.
- Abstract
-
The use of personal protective equipment (PPE) has become essential to reduce the transmission of coronavirus disease 2019 (COVID-19) as it prevents the direct contact of body fluid aerosols expelled from carriers. However, many countries have reported critical supply shortages due to the spike in demand during the outbreak in 2020. One potential solution to ease pressure on conventional supply chains is the local fabrication of PPE, particularly face shields, due to their simplistic design. The purpose of this paper is to provide a research protocol and cost implications for the rapid development and manufacturing of face shields by individuals or companies with minimal equipment and materials. This article describes a best practice case study in which the establishment of a local manufacturing hub resulted in the swift production of 12,000 face shields over a seven-week period to meet PPE shortages in the North-West region of Ireland. Protocols and processes for the design, materials sourcing, prototyping, manufacturing, and distribution of face shields are described. Three types of face shields were designed and manufactured, including Flat, Laser-cut, and 3D-printed models. Of the models tested, the Flat model proved the most cost-effective (€0.51/unit), while the Laser-cut model was the most productive (245 units/day). The insights obtained from this study demonstrate the capacity for local voluntary workforces to be quickly mobilised in response to a healthcare emergency, such as the COVID-19 pandemic.
(© 2022 The Authors.)
-
Piadyk Y, Steers B, Mydlarz C, Salman M, Fuentes M, Khan J, Jiang H, Ozbay K, Bello JP, and Silva C
Sensors (Basel, Switzerland) [Sensors (Basel)] 2022 May 17; Vol. 22 (10). Date of Electronic Publication: 2022 May 17.
- Subjects
-
Humans, Intelligence, and Software
- Abstract
-
Sensor networks have dynamically expanded our ability to monitor and study the world. Their presence and need keep increasing, and new hardware configurations expand the range of physical stimuli that can be accurately recorded. Sensors are also no longer simply recording the data, they process it and transform into something useful before uploading to the cloud. However, building sensor networks is costly and very time consuming. It is difficult to build upon other people's work and there are only a few open-source solutions for integrating different devices and sensing modalities. We introduce REIP, a Reconfigurable Environmental Intelligence Platform for fast sensor network prototyping. REIP's first and most central tool, implemented in this work, is an open-source software framework, an SDK, with a flexible modular API for data collection and analysis using multiple sensing modalities. REIP is developed with the aim of being user-friendly, device-agnostic, and easily extensible, allowing for fast prototyping of heterogeneous sensor networks. Furthermore, our software framework is implemented in Python to reduce the entrance barrier for future contributions. We demonstrate the potential and versatility of REIP in real world applications, along with performance studies and benchmark REIP SDK against similar systems.
- Full text View on content provider's site
-
Mohd Asri MA, Mak WC, Norazman SA, and Nordin AN
Lab on a chip [Lab Chip] 2022 May 03; Vol. 22 (9), pp. 1779-1792. Date of Electronic Publication: 2022 May 03.
- Subjects
-
Electrodes, Glucose, Gold chemistry, Hydrogen Peroxide, Silver, Electrochemical Techniques, and Microfluidics
- Abstract
-
We present a low-cost, accessible, and rapid fabrication process for electrochemical microfluidic sensors. This work leverages the accessibility of consumer-grade electronic craft cutters as the primary tool for patterning of sensor electrodes and microfluidic circuits, while commodity materials such as gold leaf, silver ink pen, double-sided tape, plastic transparency films, and fabric adhesives are used as its base structural materials. The device consists of three layers, the silver reference electrode layer at the top, the PET fluidic circuits in the middle and the gold sensing electrodes at the bottom. Separation of the silver reference electrode from the gold sensing electrodes reduces the possibility of cross-contamination during surface modification. A novel approach in mesoscale patterning of gold leaf electrodes can produce generic designs with dimensions as small as 250 μm. Silver electrodes with dimensions as small as 385 μm were drawn using a plotter and a silver ink pen, and fluid microchannels as small as 300 μm were fabricated using a sandwich of iron-on adhesives and PET. Device layers are then fused together using an office laminator. The integrated microfluidic electrochemical platform has electrode kinetics/performance of Δ Ep = 91.3 mV, Ipa / Ipc = 0.905, characterized by cyclic voltammetry using a standard ferrocyanide redox probe, and this was compared against a commercial screen-printed gold electrode (Δ Ep = 68.9 mV, Ipa / Ipc = 0.984). To validate the performance of the integrated microfluidic electrochemical platform, a catalytic hydrogen peroxide sensor and enzyme-coupled glucose biosensors were developed as demonstrators. Hydrogen peroxide quantitation achieves a limit of detection of 0.713 mM and sensitivity of 78.37 μA mM -1 cm -2 , while glucose has a limit of detection of 0.111 mM and sensitivity of 12.68 μA mM -1 cm -2 . This rapid process allows an iterative design-build-test cycle in under 2 hours. The upfront cost to set up the system is less than USD 520, with each device costing less than USD 0.12, making this manufacturing process suitable for low-resource laboratories or classroom settings.
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 10
Next