Vladimir A. Ovchinnikov, Evgeny A. Kilmyashkin, Aleksey S. Knyazkov, Alena V. Ovchinnikova, Nikolay A. Zhalnin, and Evgeny S. Zykin
Инженерные технологии и системы, Vol 32, Iss 4, Pp 222-234 (2022)
Subjects
mineral fertilizers, energy-saving technologies, working tool, uniformity of distribution, 3d, cad model, prototyping, experimental research, Engineering (General). Civil engineering (General), TA1-2040, Technology (General), and T1-995
Abstract
Introduction. Improvement of the agro-industrial complex involves the creation of new and modernizations of existing working tools and machines. The important conditions for this are the application of modern technologies and ongoing cooperation with the actual manufacturing. The aim of the research is to develop an adaptive centrifugal working tool and improve the quality of mineral fertilization. Materials and Methods. The adaptive centrifugal working tool was developed and manufactured based on studying the state of the matter and requirements to machines for mineral fertilization. At all stages of the research, there were used computer-aided design and rapid prototyping methods based on additive technologies. Results. As a result of the use of the presented working tools, the machine operating width has increased by 10.0‒22.5%. Experimental working tools, in comparison with serial ones, allow decreasing uneven distribution of mineral fertilizers by 13.4% due to their redistribution from the central zone to the edges. Discussion and Conclusion. As a result of experimental studies, the efficiency of the developed adaptive centrifugal working tools has been proved. It allows increasing uniformity of mineral fertilizer distribution and the machine operating width. Modern design methods make it possible to considerably reduce time and costs.
Putu Hadi Setyarini, Elvin Stefano, and Slamet Wahyudi
Rekayasa Mesin, Vol 13, Iss 1, Pp 275-281 (2022)
Subjects
electroless nickel plating, acrylonitrile butadiene styrene, rapid prototyping, Mechanical engineering and machinery, and TJ1-1570
Abstract
Electroless plating on Acrylonitrile Butadiene Styrene (ABS) is a metallization process that involves a reduction and oxidation reaction between the nickel source and the substrate material. The purpose of this research is to determine the ability of nickel deposition in the nickel electroless plating process with a specific etching time variation. This nickel electroless procedure begins with a chromic acid etching process that can last anywhere from 15 to 55 minutes and is useful for increasing roughness and creating submicroscopic cavities. After the etching process is finished, the surface roughness test is performed with a Mitutoyo SJ-210. Additionally, the activation step is carried out for 5 minutes in order for the polymer to become a conductor, allowing the plating process to proceed. The electroless plating process was then carried out for 55 and 75 minutes, with the goal of depositing nickel metal on the ABS surface. The coating results were analyzed using Fourier Transform Infrared (FTIR) spectroscopy IRSpirit/ATR-S serial No. A224158/Shimadzu to determine the functional groups formed both before and after the coating process, X-Ray Diffraction (XRD) to determine the character of the crystal structure, and phase analysis of a solid material using PANalytical type E'xpert Pro, To determine the surface morphology, the Zeiss EVO MA 10 was used to perform scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) at 1000x magnification. The test findings demonstrate that, based on a range of investigations, etching variations of 15,25,35,45, and 55 minutes etching time 55 minutes are the best nickel deposited substrates, as evidenced by EDS data, where this treatment has the largest weight fraction of nickel. As a result, the longer the etching period, the rougher the surface becomes, affecting the capacity of nickel deposition to increase. Furthermore, it can be demonstrated in this investigation that the nickel deposited is in an amorphous form.
Shubhaani Singh, Pankaj Dhawan, and Mansi Nautiyal
Frontiers in Biomedical Technologies, Vol 9, Iss 3 (2022)
Subjects
Rapid Prototyping, 3Dimentional Printing, Stereolithography, Selective Laser Sintering, Fused Deposition Method, Inkjet-Based System, Medical technology, and R855-855.5
Abstract
Purpose: Rapid Prototyping (RP) methods have for quite some time been utilized to construct complex 3-Dimensional (3D) models in the field of medicine since the 1900s. This paper intends to offer a thorough audit of different RP strategies, especially in Prosthodontics that are relied upon to carry numerous enhancements to this field. Materials and Methods: A pursuit was made using the Google scholar web and the PubMed database as a search engine. The keywords; ‘RP’, ‘rapid prototyping’, ‘3D printing’, ‘dentistry’ and ‘prosthodontics’, ‘stereolithography’, ‘selective laser sintering’, ‘fused deposition method’, and ‘inkjet-based system’ were looked at in the title/abstract of distributions. References of selected articles were additionally looked into for conceivable incorporation in the study. The selected articles utilized RP procedures in different fields of dentistry through various methods. Nonetheless, distributions concerning the dental utilization of RP advancements are as yet uncommon. Results: Although the concept of layering 3D objects is almost as old as human civilization, this technology has only lately been applied to the construction of 3D complex models in dentistry. Many additional methods appear to be on the horizon that could alter standard dentistry practises in the near future. More unit hours should be included in dentistry curriculums to familiarise dental professionals with the various advantages of this unique technology. Conclusion: Lately, RP using the property of adding substances or layering strategies have advanced quickly in different fields of dentistry as they can overcome known disadvantages of subtractive and regular procedures. RP has as of late proposed effective uses in different fields of dentistry, like fabrication of implant surgical guides, structures for Removable Partial Dentures (RPDs), Fixed Partial Dentures (FPDs), wax designs for the dental prosthesis, maxillofacial prosthesis, zirconia prosthesis, and molds for metal castings now as well for complete dentures.
Daniel Ibañez, Vicente Guallart, and Michael Salka
Agathón, Vol 11, Iss online (2022)
Subjects
pedagogical prototyping, living labs, immersive education, nature-based solutions, circular bioeconomy, Architecture, and NA1-9428
Abstract
Emerging designers and makers of the built environment have an outstanding responsibility and potential to mitigate and adapt to global climate change, environmental pollution, biodiversity loss, and resource depletion. This paper overviews how the Institute for Advanced Architecture of Catalonia – Valldaura Labs (VL) educates incipient practitioners in interdisciplinary strategies for unifying the constructed and natural worlds through pedagogical prototyping and learning by living. VL is a living lab sited 10 km from Barcelona’s centre in the Collserola Natural Park, hosting the immersive Master in Advanced Ecological Buildings & Biocities (MAEBB), which culminates in the annual autonomous design and fabrication of a self-sufficient building. The methods and projects of VL provide best practices of reference for realising holistically integrated ecological and technological landscapes.
In this paper, Rapid Control Prototyping (RCP) of five-level Modular Multilevel Converter (MMC) based Induction Motor (IM) drive performance is observed with different switching frequencies. The Semikron based MMC Stacks with two half-bridge each are tested with the switching logic generated by phase and level shifted based Sinusoidal Pulse Width Modulation (SPWM) technique. The switching logic is generated by the Typhoon Hardware in Loop (HIL) 402. The disadvantages of Multilevel Converter like not so good output quality, less modularity, not scalable and high voltage and current rating demand for the power semiconductor switches can be overcome by using MMC. In this work, the IM drive is fed by MMC and the experimentally the performance is observed. The performance of the Induction Motor in terms of speed is observed with different switching frequencies of 2.5kHz, 5kHz, 7.5kHz, 10kHz, 12.5kHz and the results are tabulated in terms of Total Harmonic Distortion (THD) of input voltage and current to the Induction Motor Drive. The complete model is developed using Typhoon HIL 2021.2 Version Real-Time Simulation Software.
The present research addresses a comparative analysis among Additive (ARP) and Subtractive (SRP) rapid prototyping techniques, aiming to determine which approach presents greater technical and economic viability for physical prototype manufacturing. The Analytic Hierarchy Process (AHP) multi-criteria decision method was used to categorize and quantify the analysis criteria. The analyzed Rapid Prototyping (RP) techniques were the Computer Numerical Control (CNC) milling as SRP technique and the Fused Deposition Modeling (FDM) process as ARP. The SRP rapid prototyping technique is the most suitable alternative for manufacturing prototypes, according to the analyzed evaluation criteria.
Lisa Alice Hwang, Chi-Yuan Chang, Wei-Chia Su, Chi-Wha Chang, and Chien-Yu Huang
BMC Oral Health, Vol 22, Iss 1, Pp 1-8 (2022)
Subjects
Autotransplantation, Rapid prototyping, Root canal treatment, Dentistry, and RK1-715
Abstract
Abstract Background Autotransplantation is a beneficial treatment with a high success rate for young patients. However, most adult patients require root canal treatment (RCT) of the donor teeth after the autotransplantation procedure, which causes a prolonged treatment time and additional expenses and increases the rate of future tooth fracture. Rapid prototyping (RP)-assisted autotransplantation shortens the extra-alveolar time and enables a superior clinical outcome. However, no cohort studies of the application of this method on adult populations have been reported. Methods This study is a retrospective cohort study. All patients underwent autotransplantation from 2012 to 2020 in the Kaohsiung and Chia-Yi branches of Chang Gung Memorial Hospital, and the procedure and clinical outcomes were analysed. Differences in clinical outcomes, age, sex, extra-alveolar time, fixation method, and RCT rate were compared between the two groups. Results We enrolled 21 patients, 13 treated using the conventional method and 8 treated using the RP-based technique. The RCT rates of the conventional group and RP group were 92.3% and 59%, respectively. The mean age of the two groups was significantly different (28.8 ± 10 vs. 21.6 ± 2.1); after performing subgroup analysis by excluding all of the patients aged > 40 years, we found that the RCT rates were still significantly different (91.0% vs. 50%). The mean extra-alveolar time was 43 s in the RP group, and the autotransplantation survival rate in both groups was 100%. Conclusions Rapid prototyping-assisted autotransplantation was successfully adopted for all patients in our study population. By shortening the extra-alveolar time, only 50% of the patients required a root canal treatment with a 100% autotransplantation survival rate. Trial Registration : Retrospectively registered.
Emre Yildiz, Charles Møller, Arne Bilberg, and Jonas Kjær Rask
Complex Systems Informatics and Modeling Quarterly, Vol 0, Iss 29, Pp 1-16 (2021)
Subjects
virtual factory, digital twin, virtual prototyping, virtual reality, simulation and modeling, industry 4.0, Information technology, and T58.5-58.64
Abstract
Shortening lifecycles and increasing complexity make product and production lifecycle processes more challenging than ever for manufacturing enterprises. Virtual Prototyping (VP) technologies promise a viable solution to handle such challenges in reducing time and physical builds as well as increasing quality. In previous studies, the Digital Twin (DT) based Virtual Factory (VF) concept showed significant potential to handle co-evolution by integrating 3D factory and product models with immersive and interactive 3D Virtual Reality (VR) simulation technology as well as real-time bidirectional data synchronisation between virtual and physical production systems. In this article, we present an extension to the paper “Demonstrating and Evaluating the Digital Twin Based Virtual Factory for Virtual Prototyping” presented at CARV2021. The study presents an evaluation by industry experts of the DT based VF concept for VP in the context of New Product Introduction (NPI) processes. The concept is demonstrated in two cases: wind turbine blade manufacturing and nacelle assembly operations at Vestas Wind Systems A/S. The study shows that the VF provides an immersive virtual environment, which allows the users to reduce the time needed for prototyping. The industry experts propose several business cases for the introduced solution and find that the phases that would have the most gain are the later ones (production) where the product design is more mature.
National Land Agency received requests for land rights every day. The letters can be submitted through two stages of acceptance and archiving. Still using conventional systems makes data retrieval requires relatively more time. This research aims to design and build an information system data archiving for incoming request at the National Land Agency. The software has been designed with login feature, data management land owners and land owner data search and print feature data. Analysis of system requirements using object-oriented method which uses the use-case diagram in order to illustrate the functionality of the system and some of the criteria of non-functional requirements are also outlined. The next step was the coding implementation and evaluation of the system built. The system development method used was the prototyping method. The selection of this method was intended, therefore the client can get a clear picture of the system being built. Evaluation was conducted in the developer and the user environment. The evaluation in the user environment was done by distributing questionnaires covering three parameters namely the usefulness of the application, ease of use and user satisfaction. The results showed that the information systems built have a useful value (85.7%) and are easy to use (100%), therefore it satisfied the users.
Mihai Dragusanu, Danilo Troisi, Alberto Villani, Domenico Prattichizzo, and Monica Malvezzi
Frontiers in Robotics and AI, Vol 9 (2022)
Subjects
wearable device, exoskeleton, differential mechanism, prototyping, rehabilitation, Mechanical engineering and machinery, TJ1-1570, Electronic computers. Computer science, and QA75.5-76.95
Abstract
Exoskeletons and more in general wearable mechatronic devices represent a promising opportunity for rehabilitation and assistance to people presenting with temporary and/or permanent diseases. However, there are still some limits in the diffusion of robotic technologies for neuro-rehabilitation, notwithstanding their technological developments and evidence of clinical effectiveness. One of the main bottlenecks that constrain the complexity, weight, and costs of exoskeletons is represented by the actuators. This problem is particularly evident in devices designed for the upper limb, and in particular for the hand, in which dimension limits and kinematics complexity are particularly challenging. This study presents the design and prototyping of a hand finger exoskeleton. In particular, we focus on the design of a gear-based differential mechanism aimed at coupling the motion of two adjacent fingers and limiting the complexity and costs of the system. The exoskeleton is able to actuate the flexion/extension motion of the fingers and apply bidirectional forces, that is, it is able to both open and close the fingers. The kinematic structure of the finger actuation system has the peculiarity to present three DoFs when the exoskeleton is not worn and one DoF when it is worn, allowing better adaptability and higher wearability. The design of the gear-based differential is inspired by the mechanism widely used in the automotive field; it allows actuating two fingers with one actuator only, keeping their movements independent.
Bastian Vögeli, Luca Schulz, Shivani Garg, Katia Tarasava, James M. Clomburg, Seung Hwan Lee, Aislinn Gonnot, Elamar Hakim Moully, Blaise R. Kimmel, Loan Tran, Hunter Zeleznik, Steven D. Brown, Sean D. Simpson, Milan Mrksich, Ashty S. Karim, Ramon Gonzalez, Michael Köpke, and Michael C. Jewett
Nature Communications, Vol 13, Iss 1, Pp 1-10 (2022)
Subjects
Science
Abstract
An attractive route for carbon-negative synthesis of biochemical products is the reverse β-oxidation pathway coupled to the Wood-Ljungdahl pathway. Here the authors use a high-throughput in vitro prototyping workflow to screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity.
Nyokro Hidayat Purba Wijayakusuma, Yudha Saintika, and Irwan Susanto
Journal of Information Systems and Informatics, Vol 3, Iss 3, Pp 471-482 (2021)
Subjects
website e-commerce, metode prototyping, kedai kopi kontekstual, Mathematics, QA1-939, Electronic computers. Computer science, and QA75.5-76.95
Abstract
Bisnis kedai kopi telah mengalami kemajuan yang sangat pesat. Adanya trend nongkrong membuat bisnis kedai kopi meningkatkan pelayanan untuk kepuasan pelanggan. Kualitas pelayanan, produk, dan pengalaman pemasaran memiliki dampak penting dalam memenuhi kepuasan konsumen. Kedai Kopi Kontekstual merupakan kedai kopi yang berlokasi di Banyumas. Kedai Kopi Kontekstual masih dalam proses bertumbuh dan berkembang. Asset yang dimiliki Kedai Kopi Kontekstual cukup besar yaitu kebun kopi, mesin roasting, dan SDM. Melalui asset tersebut pemilik berharap dapat menjangkau pasar nasional. Kondisi pasar yang terbatas membuat Kedai Kopi Kontekstual perlu melakukan upaya jaringan pemasaran yang lebih luas. Sebagai upaya pengembangan pasar Kedai Kopi Kontekstual membutuhkan fasilitasi sistem dalam yang mampu mengakomodasikan penjualan dan sistem transaksi. Metode prototyping merupakan salah satu pendekatan dalam rekayasa perangkat lunak yang mendemonstrasikan bagaimana mengembangkan sistem secara sederhana, memberikan akses kepada pengguna konsep dasar sistem serta pengujian. UML digunakan sebagai rancangan gambaran sistem secara keseluruhan, website berbasis online menggunakan bahasa pemrograman visual studio code, javascript (framework ReactJS), Node Js dan database MySQL. Tujuan dari perancangan website adalah memperluas jangkauan pemasaran, brandawareness, dan meningkatkan pengetahuan calon pelanggan terhadap Kedai Kopi Kontekstual. Hasil dari penelitian ini adalah berhasil membuat rancangan website yang sesuai dengan kebutuhan Kedai Kopi Kontekstual.
Hui Zhang, Min Cai, Zhiguo Liu, He Liu, Ya Shen, and Xiangya Huang
Medicina, Vol 58, Iss 953, p 953 (2022)
Subjects
autotransplantation of teeth, computer-aided rapid prototyping, virtual simulation, 3-dimensional printing, Medicine (General), and R5-920
Abstract
The use of computer-aided rapid prototyping (CARP) models was considered to reduce surgical trauma and improve outcomes when autotransplantation of teeth (ATT) became a viable alternative for dental rehabilitation. However, ATT is considered technique-sensitive due to its series of complicated surgical procedures and unfavorable outcomes in complex cases. This study reported a novel autotransplantation technique of a 28-year-old patient with an unrestorable lower first molar (#36) with double roots. Regardless of a large shape deviation, a lower third molar (#38) with a completely single root formation was used as the donor tooth. ATT was performed with a combined use of virtual simulation, CARP model-based rehearsed surgery, and tooth replica-guided surgery. A 3D virtual model of the donor and recipient site was generated from cone-beam computed tomographic (CBCT) radiographs prior to surgery for direct virtual superimposition simulation and CARP model fabrication. The virtual simulation indicated that it was necessary to retain cervical alveolar bone during the surgical socket preparation, and an intensive surgical rehearsal was performed on the CARP models. The donor tooth replica was used during the procedure to guide precise socket preparation and avoid periodontal ligament injury. Without an additional fitting trial and extra-alveolar storage, the donor tooth settled naturally into the recipient socket within 30 s. The transplanted tooth showed excellent stability and received routine root canal treatment three weeks post-surgery, and the one-year follow-up examination verified the PDL healing outcome and normal functioning. Patient was satisfied with the transplanted tooth. This cutting-edge technology combines virtual simulation, digital surgery planning, and guided surgery implementation to ensure predictable and minimally invasive therapy in complex cases.
Titus Issac, Salaja Silas, and Elijah Blessing Rajsingh
Journal of King Saud University: Computer and Information Sciences, Vol 34, Iss 6, Pp 3685-3702 (2022)
Subjects
Tissue P System, Wireless Sensor Network, Multi-Objective problem, Task Assignment, Decision Support System, Parallel computing, Electronic computers. Computer science, and QA75.5-76.95
Abstract
The contemporary wireless sensor applications employ a Heterogeneous Wireless Sensor Network (HeWSN) to achieve its multi-objective missions. Modern wireless nodes constituting the HeWSN are more versatile in terms of its capabilities, functionalities, and applications. Assigning tasks in a dynamic HeWSN environment are challenging due to its inherent heterogeneous properties and capabilities. The investigation of existing task assignment algorithms reveals (i) the majority of the existing task assignment algorithms were designed for the homogeneous environment, (ii) most of the nature-inspired algorithms were built for centralized architecture. Scheduling tasks by existing task assignment algorithms lead to underutilization of resources as well as to the rapid depletion of network resources. To this end, a novel, distributed, heterogeneous task assignment algorithm adhering the modern sensors capabilities, functionalities and sensor application to attain sustainable computing is required. Based on the investigation, Tissue P-System inspired task assignment algorithm for the distributed heterogeneous WSN has been modelled. The experimental analyses of the proposed method have been self-evaluated as well as compared with the corresponding recent benchmark algorithms under various conditions and its performance metrics are analysed.
Schmidt-Speicher Leona M., Mellert Tobias, Hurtado Rivera Andrea C., Länge Kerstin, Ahrens Ralf, and Guber Andreas E.
Current Directions in Biomedical Engineering, Vol 7, Iss 2, Pp 255-259 (2021)
Subjects
rapid prototyping, additive manufacturing, microfluidic systems, lab-on-a-chip, plant-on-a-chip, and Medicine
Abstract
To shorten the production time for PDMS-moulds by additive manufacturing (AM) several 3D printers have been investigated in comparison to standard micro-milling by producing benchmark structures. These are evaluated regarding their shape accuracy, the transparency of the casted PDMS which is linked to the surface quality of the mould, and the production time until the moulds are ready to use. Even though the additively manufactured moulds showed significantly better surface quality and shorter production time, the necessary shape accuracy for non-square-structures or structures with < 250 μm edge length could not be achieved due to limiting factors like nozzle diameter, size of the digital micromirror device or spot size of the LCD-panel.