articles+ search results
5,521 articles+ results
1 - 100
Next
Number of results to display per page
1 - 100
Next
Number of results to display per page
1. Technologies for implementing of artificial intelligence as a service based on hardware accelerators [2023]
-
Artem Perepelitsyn, Yelyzaveta Kasapien, Herman Fesenko, and Vyacheslav Kharchenko
- Авіаційно-космічна техніка та технологія, Vol 0, Iss 6, Pp 57-65 (2023)
- Subjects
-
штучний інтелект, fpga, ші як сервіс, гетерогенні проєкти ші систем, апаратні прискорювачі ші, dpu, інструментальні засоби розробки ші, xrt, Motor vehicles. Aeronautics. Astronautics, and TL1-4050
- Abstract
-
The subject of study in this article is modern technologies, tools and methods of building AI systems as a service using FPGA as a platform. The goal is to analyze modern technologies and tools used to develop FPGA-based projects for systems that implement artificial intelligence as a service and to prepare a practical AI service prototype. Task: to analyze the evolution of changes in the products of leading manufacturers of programmable logic devices and experimental and practical examples of the implementation of the paradigm of continuous reprogramming of programmable logic; analyze the dynamics of changes in the development environment of programmable logic systems for AI; analyze the essential elements of building projects for AI systems using programmable logic. According to the tasks, the following results were obtained. The area of application of hardware implementation of artificial intelligence for on-board and embedded systems including airspace industry, smart cars and medical systems is analyzed. The process of programming FPGA accelerators for AI projects is analyzed. The analysis of the capabilities of FPGA with HBM for building projects that require enough of high speed memory is performed. Description languages, frameworks, the hierarchy of tools for building of hardware accelerators for AI projects are analyzed in detail. The stages of prototyping of AI projects using new FPGA development tools and basic DPU blocks are analyzed. The parameters of the DPU blocks were analyzed. Practical steps for building such systems are offered. The practical recommendations for optimizing the neural network for FPGA implementation are given. The stages of neural network optimization are provided. The proposed steps include pruning of branches with low priority and the use of fixed point computations with custom range based on the requirements of an exact neural network. Based on these solutions, a practical case of AI service was prepared, trained and tested. Conclusions. The main contribution of this study is that, based on the proposed ideas and solutions, the next steps to create heterogeneous systems based on the combination of three elements are clear: AI as a service, FPGA accelerators as a technology for improving performance, reliability and security, and cloud or Edge resources to create FPGA infrastructure and AI as service. The development of this methodological and technological basis is the direction of further R&D.
- Full text View record in DOAJ
-
Noah Sargent, Yuankang Wang, Daozheng Li, Yunhao Zhao, Xin Wang, and Wei Xiong
- Additive Manufacturing Letters, Vol 6, Iss , Pp 100133- (2023)
- Subjects
-
Directed energy deposition, entropy, grain refinement, alloy design, Industrial engineering. Management engineering, and T55.4-60.8
- Abstract
-
Additive manufacturing (AM) is a tool for rapid prototyping with complex geometry. However, the cyclic heating and cooling in laser melting processes often cause large columnar grains that dominate the as-printed microstructure, resulting in a strong texture and anisotropic properties that limit the application of AM. In this work, we apply powder-based directed energy deposition to discover new alloys using mixtures of Inconel 718 (IN718) and Stainless Steel 316L (SS316L). We discovered that the 77 wt.% IN718 alloy mixture, with the highest configurational entropy, demonstrated an intriguingly fine grain structure in the as-built condition and after homogenization at 1180°C. Residual stress from the laser melting process was identified as the primary cause of the observed grain refinement phenomenon. Although, a quantitative analysis of the changes in grain size after homogenization in the alloy mixtures of IN718 and SS316L requires further research. The discovery of this unique microstructural behavior shows how in-situ mixing of commercially available powders can be used to develop next-generation feedstock materials for AM and improve the understanding of fundamental process-microstructure-property relationships.
- Full text View record in DOAJ
-
Chunxu Li, Fengbo Sun, Jingjing Tian, Jiahao Li, Haidan Sun, Yong Zhang, Shigong Guo, Yuanhua Lin, Xiaodan Sun, and Yu Zhao
- Bioactive Materials, Vol 24, Iss , Pp 361-375 (2023)
- Subjects
-
3D printing, Zinc submicron particles, Osteoinductivity, Anti-inflammatory, Bone defect repair, Materials of engineering and construction. Mechanics of materials, TA401-492, Biology (General), and QH301-705.5
- Abstract
-
Long-term nonunion of bone defects has always been a major problem in orthopedic treatment. Artificial bone graft materials such as Poly (lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds are expected to solve this problem due to their suitable degradation rate and good osteoconductivity. However, insufficient mechanical properties, lack of osteoinductivity and infections after implanted limit its large-scale clinical application. Hence, we proposed a novel bone repair bioscaffold by adding zinc submicron particles to PLGA/β-TCP using low temperature rapid prototyping 3D printing technology. We first screened the scaffolds with 1 wt% Zn that had good biocompatibility and could stably release a safe dose of zinc ions within 16 weeks to ensure long-term non-toxicity. As designed, the scaffold had a multi-level porous structure of biomimetic cancellous bone, and the Young's modulus (63.41 ± 1.89 MPa) and compressive strength (2.887 ± 0.025 MPa) of the scaffold were close to those of cancellous bone. In addition, after a series of in vitro and in vivo experiments, the scaffolds proved to have no adverse effects on the viability of BMSCs and promoted their adhesion and osteogenic differentiation, as well as exhibiting higher osteogenic and anti-inflammatory properties than PLGA/β-TCP scaffold without zinc particles. We also found that this osteogenic and anti-inflammatory effect might be related to Wnt/β-catenin, P38 MAPK and NFkB pathways. This study lay a foundation for the follow-up study of bone regeneration mechanism of Zn-containing biomaterials. We envision that this scaffold may become a new strategy for clinical treatment of bone defects.
- Full text View on content provider's site
-
Tommaso Caldognetto, Andrea Petucco, Andrea Lauri, and Paolo Mattavelli
- HardwareX, Vol 14, Iss , Pp e00411- (2023)
- Subjects
-
Power electronics, Inverters, Rapid control prototyping, Experimental setups, Science (General), and Q1-390
- Abstract
-
A flexible power electronic converter embedding a rapid control prototyping platform suitable to be applied in research test setups and teaching laboratories is proposed and described in this paper. The electronic system is composed of three subsystems, namely, i) three half-bridge power boards, ii) a dc-link capacitor bank with a half-bridge power module for active dc-link control, iii) an interfacing board, called motherboard, to couple the power modules with a control unit, iv) a digital control unit with rapid control prototyping functionalities for controlling power electronic circuits. Power modules integrate sensors with related conditioning circuits, driving circuits for power switches, and protection circuits. Conversion circuits exploit GaN electronic switches for optimal performance. The architecture and implementation of the system are described in detail in this manuscript. Main applications are in the implementation of conversion circuits for supplying arbitrary ac or dc voltages or currents, testing of new control algorithms for power electronic converters, testing of systems of electronic converters in, for example, smart nanogrids or renewable energy applications, training of undergraduate and graduate students.
- Full text View on content provider's site
-
LI Qun xing
- 口腔疾病防治, Vol 31, Iss 6, Pp 381-388 (2023)
- Subjects
-
jaw defect, functional reconstruction, digital technology, computer-aided design, 3d printing, personalized surgical instruments, preoperative virtual surgery, immediate implantation, and Medicine
- Abstract
-
With the development of computer-aided surgery and rapid prototyping via 3D printing technology, digital surgery has rapidly advanced in clinical practice, especially in the field of oral and maxillofacial surgery. 3D printing technology has been applied to the functional restoration and reconstruction of the jawbone. Before surgery, a 3D digital model is constructed through software to plan the scope of the osteotomy, shape the bone graft and plan the placement of the implant. Additionally, 3D models of personalized surgical instrument guides are printed prior to surgery. With these 3D-printed models and guides, accurate excision of the jaw tumor, accurate placement of the grafted bone and precise placement of implants can be achieved during surgery. Postoperative evaluation of accuracy and function shows that 3D printing technology can aid in achieving the biomechanical goals of simultaneous implant placement in jaw reconstruction, and in combination with dental implant restoration, the technology can improve patients' postoperative occlusal and masticatory functions. Nevertheless, 3D printing technology still has limitations, such as time-consuming preparation before surgery. In the future, further development of 3D printing technology, optimization of surgical plans, and alternative biological materials are needed. Based on domestic and foreign literature and our research results, we have reviewed the process and clinical application prospects of jaw reconstruction via 3D printing technology to provide a reference for oral and maxillofacial surgeons.
- Full text View on content provider's site
-
Marc Schmitt
- Intelligent Systems with Applications, Vol 18, Iss , Pp 200188- (2023)
- Subjects
-
Artificial intelligence, Machine learning, AutoML, Business analytics, Data-driven decision making, Digital transformation, Cybernetics, Q300-390, Electronic computers. Computer science, and QA75.5-76.95
- Abstract
-
The realization that AI-driven decision-making is indispensable in today's fast-paced and ultra-competitive marketplace has raised interest in industrial machine learning (ML) applications significantly. The current demand for analytics experts vastly exceeds the supply. One solution to this problem is to increase the user-friendliness of ML frameworks to make them more accessible for the non-expert. Automated machine learning (AutoML) is an attempt to solve the problem of expertise by providing fully automated off-the-shelf solutions for model choice and hyperparameter tuning. This paper analyzed the potential of AutoML for applications within business analytics, which could help to increase the adoption rate of ML across all industries. The H2O AutoML framework was benchmarked against a manually tuned stacked ML model on three real-world datasets. The manually tuned ML model could reach a performance advantage in all three case studies used in the experiment. Nevertheless, the H2O AutoML package proved to be quite potent. It is fast, easy to use, and delivers reliable results, which come close to a professionally tuned ML model. The H2O AutoML framework in its current capacity is a valuable tool to support fast prototyping with the potential to shorten development and deployment cycles. It can also bridge the existing gap between supply and demand for ML experts and is a big step towards automated decisions in business analytics. Finally, AutoML has the potential to foster human empowerment in a world that is rapidly becoming more automated and digital.
- Full text View record in DOAJ
-
Galina Guentchev, Erika J. Palin, Jason A. Lowe, and Mark Harrison
- Climate Services, Vol 30, Iss , Pp 100352- (2023)
- Subjects
-
Upscaling, Scaling up, Climate services, Prototyping, Pilot projects, Meteorology. Climatology, QC851-999, Social sciences (General), and H1-99
- Abstract
-
Translating climate data and information for use in real-world applications often involves the development of climate service prototypes within the constraints of pilot or demonstration projects. However, these services rarely make the transition from prototype to fully-fledged, transferrable and/or repeatable climate services – that is, there are problems with upscaling them beyond the pilot/demonstrator phase.In this paper we are using the mainstream understanding of the three main types of upscaling: reaching many (horizontal), enhancing the enabling environment (vertical), and expanding the product or service’s features (functional). Through a review of the general upscaling literature, coupled with focused interviews with weather/climate services experts, we found that there are common barriers to, and enablers for, successful upscaling – many of which apply to the specific case of upscaling climate services. Barriers include problems with leadership (e.g. the absence of a long-term vision and/or strategy for upscaling); limited funding or lack of a business model for the service at scale; issues with the enabling environment for upscaling (e.g. poor policy context, inadequate governance systems); and poor user engagement.Lessons learned from the literature in the context of upscaling climate services include planning for it as early as possible in the prototyping process; including a monitoring, evaluation and learning approach to inform upscaling progress; taking actions to foster and enhance the enabling environment; and searching for a balance between generic solutions and fit-for-purpose products.
- Full text View record in DOAJ
8. Virtual and Physical Prototyping [2023]
- Subjects
-
additive manufacturing, 3d printing, materials mechanics, manufacturing engineering, industrial engineering, Science, Manufactures, and TS1-2301
- Full text View record in DOAJ
-
Zhao, Xiao Fan, Wimmer, Andreas, and Zaeh, Michael F.
- Rapid Prototyping Journal, 2023, Vol. 29, Issue 11, pp. 53-63.
-
Barrionuevo, Germán Omar, Ramos-Grez, Jorge Andrés, Walczak, Magdalena, Sánchez-Sánchez, Xavier, Guerra, Carolina, Debut, Alexis, and Haro, Edison
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 425-436.
-
Nachimuthu, Manikandan and P.K., Rajesh
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 437-446.
-
Singh, Rupinder, Das, Anish, and Anand, Arun
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 447-459.
-
Zhou, Yang, Qu, Wenying, Zhou, Fan, Li, Xinggang, Song, Lijun, and Zhu, Qiang
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 460-473.
-
Algunaid, Khalil Mustafa Abdulkarem and Liu, Jichang
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 474-487.
-
Kaweesa, Dorcas, Bobbio, Lourdes, Beese, Allison M., and Meisel, Nicholas Alexander
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 488-503.
16. A comprehensive review on surface quality improvement methods for additively manufactured parts [2023]
-
Hashmi, Abdul Wahab, Mali, Harlal Singh, and Meena, Anoj
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 504-557.
-
Chen, Bo, Wang, Tao, Xi, Xin, Tan, Caiwang, and Song, Xiaoguo
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 558-568.
-
Zhang, Mingkang, Xu, Meizhen, Li, Jinwei, Shi, Wenqing, and Chen, Yangzhi
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 569-581.
-
Badar, Faizan, Dean, Lionel T., Loy, Jennifer, Redmond, Michael, Vandi, Luigi-Jules, and Novak, James I.
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 582-593.
-
Raghavan, Srinivasan, Dzugan, Jan, Rzepa, Sylwia, Podany, Pavel, Soh, Norman, Hao, Lim Jia, and Khan, Niaz
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 594-611.
-
Sadeghi Borujeni, Shahrooz, Saluja, Gursimran Singh, and Ploshikhin, Vasily
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 612-625.
22. Impact of zirconia slurry in steel powder on melt pool characteristics in laser powder bed fusion [2023]
-
Davis, Taylor, Nelson, Tracy W., and Crane, Nathan B.
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 626-638.
-
Li, Wei, Lin, Xiaoshan, and Xie, Yi Min
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 639-654.
24. A view similarity-based shape complexity metric to guide part selection for additive manufacturing [2023]
-
Jayapal, Jayakrishnan, Kumaraguru, Senthilkumaran, and Varadarajan, Sudhir
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 3, pp. 655-672.
-
Zihua Zhang, Zhenjiang Zhu, Yongbing Feng, and Ran Li
- Advances in Mechanical Engineering, Vol 15 (2023)
- Subjects
-
Mechanical engineering and machinery and TJ1-1570
- Abstract
-
To overcome the inefficiency of slicing process of rapid prototyping based on STL models, an improved slicing algorithm is proposed. The method builds integral topology of STL models in advance using a Hash table, which enables to get contours directly, and then reduces the search range in slicing by establishing the slicing relation matrix, which can effectively reduce the time cost of slicing. It has been demonstrated that the algorithm has nearly linear time complexity. The method is proved to be effective and efficient through application cases, and the results show better performance than other existing algorithms, especially when the STL model is complex or large.
- Full text View on content provider's site
26. Simulation device for shoulder reductions: overview of prototyping, testing, and design instructions [2023]
-
Sorab Taneja, Will Tenpas, Mehul Jain, Peter Alfonsi, Abhinav Ratagiri, Ann Saterbak, and Jason Theiling
- Advances in Simulation, Vol 8, Iss 1, Pp 1-10 (2023)
- Subjects
-
Shoulder reduction, Simulation device, Traction-countertraction, External rotation maneuver, Computer applications to medicine. Medical informatics, and R858-859.7
- Abstract
-
Abstract Background Shoulder dislocations are common occurrences, yet there are few simulation devices to train medical personnel on how to reduce these dislocations. Reductions require a familiarity with the shoulder and a nuanced motion against strong muscle tension. The goal of this work is to describe the design of an easily replicated, low-cost simulator for training shoulder reductions. Materials and methods An iterative, stepwise engineering design process was used to design and implement ReducTrain. A needs analysis with clinical experts led to the selection of the traction-countertraction and external rotation methods as educationally relevant techniques to include. A set of design requirements and acceptance criteria was established that considered durability, assembly time, and cost. An iterative prototyping development process was used to meet the acceptance criteria. Testing protocols for each design requirement are also presented. Step-by-step instructions are provided to allow the replication of ReducTrain from easily sourced materials, including plywood, resistance bands, dowels, and various fasteners, as well as a 3D-printed shoulder model, whose printable file is included at a link in the Additional file 1: Appendix. Results A description of the final model is given. The total cost for all materials for one ReducTrain model is under US $200, and it takes about 3 h and 20 min to assemble. Based on repetitive testing, the device should not see any noticeable changes in durability after 1000 uses but may exhibit some changes in resistance band strength after 2000 uses. Discussion The ReducTrain device fills a gap in emergency medicine and orthopedic simulation. Its wide variety of uses points to its utility in several instructional formats. With the rise of makerspaces and public workshops, the construction of the device can be easily completed. While the device has some limitations, its robust design allows for simple upkeep and a customizable training experience. Conclusion A simplified anatomical design allows for the ReducTrain model to serve as a viable training device for shoulder reductions.
- Full text View on content provider's site
27. Studies on the Numerical Control Programming for Multi-Axis Machining of Turbomolecular Pump Rotor [2023]
-
Teng-Hui Chen, Jeng-Nan Lee, Ming-Jhang Shie, and Yu-Cheng Chen
- Electronics, Vol 12, Iss 1281, p 1281 (2023)
- Subjects
-
multi-axis machining, reverse engineering, rotor, turbomolecular pump (TMP), Electronics, and TK7800-8360
- Abstract
-
Turbomolecular pumps (TMPs), boasting advantageous high pumping rates, stability, and cleanliness, have been widely used in the semiconductor and photoelectric industries. In the aviation industry, the lightweight rotors of turbomolecular pumps can enhance the performance of generators. With technological advancements and increased industrial performance demands, various designs for turbomolecular pump rotors utilizing twisted and curved blade surfaces have been proposed. This increase in complexity runs parallel with machining difficulties. Contact and noncontact reverse engineering equipment was used to reconstruct a computer-aided design (CAD) model of turbomolecular pump rotors. The machining of thin and long blades, cutting tool arrangement, and toolpath was planned. Postprocessing was used to convert the toolpath into numerical control (NC) programming codes, which were combined with solid model cutting simulation software to verify the efficacy of the generated machining NC program for turbomolecular pump rotors. A five-axis horizontal machining center (CK type) with aluminum alloy AL6061-T6 was used to conduct actual machining tests measuring the efficiency of the machining methods. The rapid prototyping (RP) blocks can be creatively used as a jig and stuffed between the blades to suppress the chatter problem during processing, and the roughness of the surface of the blades can be reduced from 4.4 μm to 1.3 μm. The processed rotor can meet the flow test requirements, and the overall research can be used as a reference for the industry.
- Full text View on content provider's site
-
Tania Islam and Sayan Roy
- Electronics, Vol 12, Iss 1416, p 1416 (2023)
- Subjects
-
wireless body area network, WBAN, multiband antenna, specific absorption rate, SAR, phantom, Electronics, and TK7800-8360
- Abstract
-
In this work, we propose a novel multiband meander line antenna that can operate at three different frequency bands and offer suitable performance for wireless body area network (WBAN) applications. The net geometry of the antenna is 36 × 30 × 1.524 mm3. The proposed low-profile antenna is analytically modeled and designed in full wave ANSYS HFSS using Rogers TMM4 as the substrate, followed by in-lab prototyping. The designed antenna resonates at 4.5 GHz, 5 GHz, and 5.8 GHz and maintains positive gain, efficiency, and acceptable specific absorption rates at each resonant band. The effectiveness of the antenna for WBAN applications is demonstrated using an in-lab manufactured phantom. The fabrication process of the phantom is described, and dielectric characterization of the phantom mimicking different human tissue layers is presented. Considering results with and without human body phantoms available in the full wave ANSYS HFSS tool, a comparative analysis between simulated and measured antenna parameters concludes this work. Both the simulated and measured results show good agreement.
- Full text View on content provider's site
-
Jie Zhu, Jiangtao Yu, Yingcheng Wu, Yanhong Chao, Peiwen Wu, Linjie Lu, Linlin Chen, Jing He, and Wenshuai Zhu
- Green Chemical Engineering, Vol 4, Iss 1, Pp 73-80 (2023)
- Subjects
-
3D printing, Direct ink writing, Ceramic slurry, Kaolin, Adsorption, Chemical engineering, TP155-156, Biochemistry, and QD415-436
- Abstract
-
The construction of rapid prototyping for structured ceramics has a promoting effect on potential applications. In this work, engineering slurry with different formulations were used to develop aqueous colloidal ceramic slurry for direct ink writing (DIW). Optimized slurry of Formulation 5 possessed good printing effect for DIW with stable mechanical properties. Related characteristics, including shrinkage, compressive strength, rheological behavior, and chemical property, were also examined. DIW ceramics prepared from optimized slurry can be preliminarily applied to adsorption of Rhodamine B and chlortetracycline, and possessed the advantages of easy separation and operation compared with powder adsorbents. This work provides a strategy for the design of 3D-printed kaolin ceramic slurry, and also extends to potential application in adsorption.
- Full text View record in DOAJ
-
You-Lei Fu, Ruoqi Dai, Xiaoshun Xie, and Wu Song
- Heliyon, Vol 9, Iss 3, Pp e13624- (2023)
- Subjects
-
Prototype intervention, Usability testing, sEMG, Supine sitting posture, Comfort perception, Science (General), Q1-390, Social sciences (General), and H1-99
- Abstract
-
Employees who work long hours frequently complain of muscle fatigue caused by prolonged sitting. As a result, products that assist them when resting in a chair in a reclining position, in order to relieve fatigue and improve comfort are required. To ensure that the new product works as intended, a usability test based on prototyping must be developed. The research process was divided into three stages: firstly, the development of the perception assessment questionnaire; secondly, a validated factor analysis (CFA) was conducted on the perception assessment data of 26 subjects and the measurement model was fitted to verify the reliability and validity of the questionnaire; finally, the sEMG technique was used to verify the comfort level of 21 subjects. Based on usability experiments and an exploration of human factor relationships, this study develops a prototype testing model, which focuses on the comfort perception of body parts, as a means of promoting innovation in the design and manufacturing industry.
- Full text View on content provider's site
-
Ankita M Mohite, Lalita G Nanjannawar, Jiwanasha M Agrawal, Sangamesh Fulari, Shraddha Shetti, Vishwal Kagi, Amol Shirkande, and Sanjivani Gofane
- Journal of Clinical and Diagnostic Research, Vol 17, Iss 3, Pp ZC01-ZC05 (2023)
- Subjects
-
digital orthodontics, stereolithography, three-dimensional printing, and Medicine
- Abstract
-
Introduction: The digitalisation of dental models has made significant contribution to the current success of orthodontic practices. Rapid Prototyping (RP) is an innovative method of producing physical objects based on Computer-Aided Design (CAD) Computer-Aided Manufacturing (CAM). Aim: To compare the accuracy of the Three-Dimensional (3D) printed rapid prototyped models with orthodontic stone models across different ranges of crowding. Materials and Methods: A cross-sectional study carried out at the Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Sangli, Maharashtra, India during September 2019 to September 2020. A total of 36 rapid prototyped models were reconstructed from stone models using Light Emitting Diode (LED) scanner and Digital Light Processing (DLP) technology. Dental stone models and RP models were evaluated using digital caliper for different linear measurements and arch dimensions. The data was analysed using Statistical Package for Social Sciences (SPSS) version 26.0. To evaluate accuracy, t-test analyses and Bland-Altman plotting were performed. Results: T-test showed statistically non significant difference in all parameters of measurements of RP models when compared to stone models. According to Bland-Altman plotting. The mean difference between stone and RP models for the various degree of crowding was minimal and within ±0.07 mm in all planes. Conclusion: Discrepancy between dental plaster models and RP models were less than 0.5 mm which was considered clinically non significant. Suggesting that RP models can be effectively used as an alternative to stone models.
- Full text View record in DOAJ
-
Christina Myers, Lara Piccolo, and Trevor Collins
- Journal of Learning for Development, Vol 10, Iss 1 (2023)
- Subjects
-
Theory and practice of education and LB5-3640
- Abstract
-
Digital games can be used as educational tools for tackling structural inequalities and promoting social justice. Designing games with these purposes is often a complex task that requires a myriad of combined expertise, including games’ mechanics, software development, educational game design, pedagogy, and knowledge of the educational topic (which can target very specific social issues). Democratising the design of educational games is used to increase the agency and participation of diverse and novice groups throughout design processes - and can be used to improve the efficiency of such games as it directly leads to the inclusion of broad voices, knowledge, experiences and perspectives. This research adopted a Design-Based Research methodology to create, evaluate and validate 13 design principles to democratise the design of educational games for social change. Three research phases were implemented in turn: a preliminary research, prototyping and evaluation phase. The preliminary research phase was based on creating these principles by grounding them on fundamentals of Critical Pedagogy, a theory of education which presents pedagogical techniques to accelerate learning, engagement and social change. The prototyping phase was based on conducting semi-structured interviews to assess and improve these principles with educational and game design experts. During the evaluation phase, these principles were applied and evaluated during two weekend-long game design events, which were mostly attended by diverse groups who had never designed a digital game before. This research presents theoretical and practical contributions related to how to democratise educational game design for social change. It evidenced the relevance of facilitating design principles that addresses what could be done to trigger learning in games by presenting design principles; why this learning could be facilitated, from both educational and gaming perspectives; and how to implement these principles into an educational game.
- Full text View record in DOAJ
-
Weison Lin, Yajun Zhu, and Tughrul Arslan
- Journal of Low Power Electronics and Applications, Vol 13, Iss 21, p 21 (2023)
- Subjects
-
edge AI accelerator, CNN, dynamic reconfiguration, fault tolerance, Applications of electric power, and TK4001-4102
- Abstract
-
Edge AI accelerators are utilized to accelerate the computation in edge AI devices such as image recognition sensors on robotics, door lockers, drones, and remote sensing satellites. Instead of using a general-purpose processor (GPP) or graphic processing unit (GPU), an edge AI accelerator brings a customized design to meet the requirements of the edge environment. The requirements include real-time processing, low-power consumption, and resource-awareness, including resources on field programmable gate array (FPGA) or limited application-specific integrated circuit (ASIC) area. The system’s reliability (e.g., permanent fault tolerance) is essential if the devices target radiation fields such as space and nuclear power stations. This paper proposes a dynamic reconfigurable column streaming-based convolution engine (DycSe) with programmable adder modules for low-power and resource-aware edge AI accelerators to meet the requirements. The proposed DycSe design does not target the FPGA platform only. Instead, it is an intellectual property (IP) core design. The FPGA platform used in this paper is for prototyping the design evaluation. This paper uses the Vivado synthesis tool to evaluate the power consumption and resource usage of DycSe. Since the synthesis tool is limited to giving the final complete system result in the designing stage, we compare DycSe to a commercial edge AI accelerator for cross-reference with other state-of-the-art works. The commercial architecture shares the competitive performance within the low-power ultra-small (LPUS) edge AI scopes. The result shows that DycSe contains 3.56% less power consumption and slight resources (1%) overhead with reconfigurable flexibility.
- Full text View on content provider's site
-
Jan-Erik Rath, Robert Graupner, and Thorsten Schüppstuhl
- Machines, Vol 11, Iss 365, p 365 (2023)
- Subjects
-
fiber-reinforced plastic, composite, dieless forming, incremental forming, robotics, automation, Mechanical engineering and machinery, and TJ1-1570
- Abstract
-
The demand for lightweight materials, such as fiber-reinforced plastics (FRP), is constantly growing. However, current FRP production mostly relies on expensive molds representing the final part geometry, which is not economical for prototyping or highly individualized products, such as in the medical or sporting goods sector. Therefore, inspired by incremental sheet metal forming, we conduct a systematic functional analysis on new processing methods for shaping woven FRP without the use of molds. Considering different material combinations, such as dry fabric with thermoset resin, thermoset prepreg, thermoplastic commingled yarn weave and organo sheets, we propose potential technical implementations of novel dieless forming techniques, making use of simple robot-guided standard tools, such as hemispherical tool tips or rollers. Feasibility of selected approaches is investigated in basic practical experiments with handheld tools. Results show that the main challenge of dieless local forming, the conservation of already formed shapes while allowing drapability of remaining areas, is best fulfilled by local impregnation, consolidation and solidification of commingled yarn fabric, as well as concurrent forming of prepreg and metal wire mesh support material. Further research is proposed to improve part quality.
- Full text View on content provider's site
-
Cecilia Goracci, Jovana Juloski, Claudio D’Amico, Dario Balestra, Alessandra Volpe, Jelena Juloski, and Alessandro Vichi
- Materials, Vol 16, Iss 2166, p 2166 (2023)
- Subjects
-
3D printing, additive manufacturing, rapid prototyping, orthodontics, materials, review, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
The review aimed at analyzing the evidence available on 3D printable materials and techniques used for the fabrication of orthodontic appliances, focusing on materials properties that are clinically relevant. MEDLINE/PubMed, Scopus, and Cochrane Library databases were searched. Starting from an initial retrieval of 669 citations, 47 articles were finally included in the qualitative review. Several articles presented proof-of-concept clinical cases describing the digital workflow to manufacture a variety of appliances. Clinical studies other than these case reports are not available. The fabrication of aligners is the most investigated application of 3D printing in orthodontics, and, among materials, Dental LT Clear Resin (Formlabs) has been tested in several studies, although Tera Harz TC-85 (Graphy) is currently the only material specifically marketed for direct printing of aligners. Tests of the mechanical properties of aligners materials lacked homogeneity in the protocols, while biocompatibility tests failed to assess the influence of intraoral conditions on eluents release. The aesthetic properties of 3D-printed appliances are largely unexplored. The evidence on 3D-printed metallic appliances is also limited. The scientific evidence on 3D printable orthodontic materials and techniques should be strengthened by defining international standards for laboratory testing and by starting the necessary clinical trials.
- Full text View on content provider's site
-
Agnė Butkutė, Tomas Jurkšas, Tomas Baravykas, Bettina Leber, Greta Merkininkaitė, Rugilė Žilėnaitė, Deividas Čereška, Aiste Gulla, Mindaugas Kvietkauskas, Kristina Marcinkevičiūtė, Peter Schemmer, and Kęstutis Strupas
- Materials, Vol 16, Iss 2174, p 2174 (2023)
- Subjects
-
selective laser etching, 3D laser microfabrication, laser welding, glass microfluidics, femtosecond laser microprocessing, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Nowadays, lab-on-chip (LOC) devices are attracting more and more attention since they show vast prospects for various biomedical applications. Usually, an LOC is a small device that serves a single laboratory function. LOCs show massive potential for organ-on-chip (OOC) device manufacturing since they could allow for research on the avoidance of various diseases or the avoidance of drug testing on animals or humans. However, this technology is still under development. The dominant technique for the fabrication of such devices is molding, which is very attractive and efficient for mass production, but has many drawbacks for prototyping. This article suggests a femtosecond laser microprocessing technique for the prototyping of an OOC-type device—a liver-on-chip. We demonstrate the production of liver-on-chip devices out of glass by using femtosecond laser-based selective laser etching (SLE) and laser welding techniques. The fabricated device was tested with HepG2(GS) liver cancer cells. During the test, HepG2(GS) cells proliferated in the chip, thus showing the potential of the suggested technique for further OOC development.
- Full text View on content provider's site
-
Yuanyuan Wei, Tianle Wang, Yuye Wang, Shuwen Zeng, Yi-Ping Ho, and Ho-Pui Ho
- Micromachines, Vol 14, Iss 656, p 656 (2023)
- Subjects
-
microfluidics, laser ablation, thermal bonding, Mechanical engineering and machinery, and TJ1-1570
- Abstract
-
In this paper, we report a simple, rapid, low-cost, biocompatible, and detachable microfluidic chip fabrication method for customized designs based on Parafilm®. Here, Parafilm® works as both a bonding agent and a functional membrane. Its high ultimate tensile stress (3.94 MPa) allows the demonstration of high-performance actuators such as microvalves and micropumps. By laser ablation and the one-step bonding of multiple layers, 3D structured microfluidic chips were successfully fabricated within 2 h. The consumption time of this method (~2 h) was 12 times less than conventional photolithography (~24 h). Moreover, the shear stress of the PMMA–Parafilm®–PMMA specimens (0.24 MPa) was 2.13 times higher than that of the PDMS–PDMS specimens (0.08 MPa), and 0.56 times higher than that of the PDMS–Glass specimens (0.16 MPa), showing better stability and reliability. In this method, multiple easily accessible materials such as polymethylmethacrylate (PMMA), PVC, and glass slides were demonstrated and well-incorporated as our substrates. Practical actuation devices that required high bonding strength including microvalves and micropumps were fabricated by this method with high performance. Moreover, the biocompatibility of the Parafilm®-based microfluidic devices was validated through a seven-day E. coli cultivation. This reported fabrication scheme will provide a versatile platform for biochemical applications and point-of-care diagnostics.
- Full text View on content provider's site
-
Elise Hodson, Teija Vainio, Michel Nader Sayún, Martin Tomitsch, Ana Jones, Meri Jalonen, Ahmet Börütecene, Md Tanvir Hasan, Irina Paraschivoiu, Annika Wolff, Sharon Yavo-Ayalon, Sari Yli-Kauhaluoma, and Gareth W. Young
- Multimodal Technologies and Interaction, Vol 7, Iss 33, p 33 (2023)
- Subjects
-
smart city, social impact, evaluation, engagement, social sustainability, citizens, Technology, and Science
- Abstract
-
This study examines motivations, definitions, methods and challenges of evaluating the social impacts of smart city technologies and services. It outlines concepts of social impact assessment and discusses how social impact has been included in smart city evaluation frameworks. Thematic analysis is used to investigate how social impact is addressed in eight smart city projects that prioritise human-centred design across a variety of contexts and development phases, from design research and prototyping to completed and speculative projects. These projects are notable for their emphasis on human, organisational and natural stakeholders; inclusion, participation and empowerment; new methods of citizen engagement; and relationships between sustainability and social impact. At the same time, there are gaps in the evaluation of social impact in both the smart city indexes and the eight projects. Based on our analysis, we contend that more coherent, consistent and analytical approaches are needed to build narratives of change and to comprehend impacts before, during and after smart city projects. We propose criteria for social impact evaluation in smart cities and identify new directions for research. This is of interest for smart city developers, researchers, funders and policymakers establishing protocols and frameworks for evaluation, particularly as smart city concepts and complex technologies evolve in the context of equitable and sustainable development.
- Full text View on content provider's site
-
Katarzyna Bulanda, Mariusz Oleksy, and Rafał Oliwa
- Polymers, Vol 15, Iss 1565, p 1565 (2023)
- Subjects
-
MEM, blends, hybrid materials, additive manufacturing, design, Organic chemistry, and QD241-441
- Abstract
-
As part of this work, polymer composites based on polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) were obtained and used in 3D printing technology, particularly Melted Extrusion Modeling (MEM) technology. The influence of selected fillers on the properties of the obtained composites was investigated. For this purpose, modified fillers such as silica modified with alumina, bentonite modified with a quaternary ammonium salt, and hybrid lignin/silicon dioxide filler were introduced into the PC/ABS matrix. In the first part of this work, polymer blends and their composites containing 1.5–3 wt. of the filler were used to obtain the filament using the proprietary technological line. Moldings for testing the performance properties were obtained using additive manufacturing techniques and injection molding. In the subsequent part of this work, rheological properties (mass flow rate (MFR) and viscosity curves) and mechanical properties (Rockwell hardness and static tensile strength with Young’s modulus) were examined. The structures of the obtained composites were also determined by scanning electron microscopy (SEM/EDS). The obtained results confirmed the results obtained from a wide-angle X-ray scattering analysis (WAXS). In turn, the physicochemical properties were characterized on the basis of the results of tests using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Based on the obtained results, it was found that the introduced modified additives had a significant impact on the processing and functional properties of the tested composites.
- Full text View on content provider's site
-
Fedor Doronin, Georgy Rytikov, Andrey Evdokimov, Yury Rudyak, Irina Taranets, and Victor Nazarov
- Processes, Vol 11, Iss 774, p 774 (2023)
- Subjects
-
LDPE, PET, adhesion, additive manufacturing, electro-induced multi-gas treatment, free surface energy, Chemical technology, TP1-1185, Chemistry, and QD1-999
- Abstract
-
We investigated the effect of electro-induced multi-gas modification (EIMGM) duration on the adhesion and wear resistance of PET and LDPE polymer substrates used in the printing industry. It was found that EIMGM increases the polar component and the complete free surface energy from 26 to 57 mJ/m2 for LDPE and from 37 to 67 mJ/m2 for PET (due to the formation of oxygen-containing groups on the surface of the materials). Although the degree of textural and morphological heterogeneity of the modified LDPE increased more than twice compared to the initial state, it is not still suitable for application as a substrate in extrusion 3D printing. However, for PET, the plasma-chemical modification contributed to a significant increase (~5 times) in filament adhesion to its surface (due to chemical and morphological transformations of the surface layers) which allows for using the FFF technology for additive prototyping on the modified PET-substrates.
- Full text View on content provider's site
-
Saleh Atatreh, Mozah Saeed Alyammahi, Hayk Vasilyan, Tawaddod Alkindi, and Rahmat Agung Susantyoko
- Results in Engineering, Vol 17, Iss , Pp 100954- (2023)
- Subjects
-
Additive Manufacuring, 3D Printing, Infill Pattern, Tensile Strength, Fused Filament Fabrication, Material Extrusion, and Technology
- Abstract
-
Additive Manufacturing (AM) applications have expanded significantly from rapid prototyping to high-end products such as complex spare parts. AM has enabled advantages of reduced material usage, geometric freedom, and production automation, shaping the future of the manufacturing industries. With the rapid expansion of AM applications, feedstock materials have developed noticeably, from polymers and ceramics to metals and composites. The progress in metal feedstock material discoveries has empowered the exploration of implementing new AM technologies. Fused Filament Fabrication (FFF) is one of the most common and cost-effective material extrusion AM technologies. This study explores the effect of the infill pattern on the tensile mechanical properties of metal parts produced via FFF, using two feedstock materials, 17-PH stainless steel and copper. Two approaches are designed to investigate the results: experimental tensile test, and Finite Element Analysis (FEA) with digital twin reconstruction method. Results show that 17-4 PH Stainless Steel samples with a triangular infill exhibited a 42% drop in ultimate tensile strength compared to solid infill. However, it also revealed a 34% reduction in mass, cost saving of 36%, and a faster fabrication with a 25% reduction in lead time. At the same time, copper samples with triangular infill exhibited a 22% drop in ultimate tensile strength and a 12% mass reduction. However, it revealed a similar lead time with only a 3% reduction. A Scanning Electron Microscope (SEM) was used to investigate the parts’ internal structure and average pore size, to understand the failure mode of the test specimens.
- Full text View record in DOAJ
-
Tayyaba Sahar, Muhammad Rauf, Ahmar Murtaza, Lehar Asip Khan, Hasan Ayub, Syed Muslim Jameel, and Inam Ul Ahad
- Results in Engineering, Vol 17, Iss , Pp 100803- (2023)
- Subjects
-
Metal additive manufacturing (MAM), Laser powder bed fusion (L-PBF), Machine learning (ML), Process parameter optimization, Anomaly detection, and Technology
- Abstract
-
Metal Additive Manufacturing (MAM) applications are growing rapidly in high-tech industries such as biomedical and aerospace, and in many other industries including tooling, casting, automotive, oil and gas for production and prototyping. The onset of Laser Powder Bed Fusion (L-PBF) technology proved to be an efficient technique that can convert metal additive manufacturing into a reformed process if anomalies occurred during this process are eliminated. Industrial applications demand high accuracy and risk-free products whereas prototyping using MAM demand lower process and product development time. In order to address these challenges, Machine Learning (ML) experts and researchers are trying to adopt an efficient method for anomaly detection in L-PBF so that the MAM process can be optimized and desired final part properties can be achieved. This review provides an overview of L-PBF and outlines the ML methods used for anomaly detection in L-PBF. The paper also explains how ML methods are being used as a step forward toward enabling the real-time process control of MAM and the process can be optimized for higher accuracy, lower production time, and less material waste. Authors have a strong believe that ML techniques can reform MAM process, whereas research concerned to the anomaly detection using ML techniques is limited and needs attention.This review has been done with a hope that ML experts can easily find a direction and contribute in this field.
- Full text View record in DOAJ
43. Design and prototyping of a robotic hand for sign language using locally-sourced materials [2023]
-
Ibrahim A. Adeyanju, Sheriffdeen O. Alabi, Adebimpe O. Esan, Bolaji A. Omodunbi, Oluwaseyi O. Bello, and Samuel Fanijo
- Scientific African, Vol 19, Iss , Pp e01533- (2023)
- Subjects
-
Android, Communication, Deaf, Disability, Dumb, Hardware, and Science
- Abstract
-
People living with disability constitute a significant percentage of the world population. For many people with disabilities, assistance and support are prerequisites for participating in societal activities. This research work developed a hardware prototype of a robotic hand forfor sign language communication with persons living with hard-of-hearing disabilities (deaf and/or dumb). The prototype has three basic modules: the input unit, the control unit, and the robotic hand. The input unit is designed as an Android-based mobile application with speech recognition capabilities while the control unit is ATMEGA 2560 microcontroller board. The robotic hand is constructed using locally available materials (bathroom Slippers, expandable rubber, straw pipe, and tiny rope) together with three servo motors and is designed to look and perform movements similar to a human hand. The prototype was evaluated quantitatively in terms of empirical accuracy and response time. It was also evaluated qualitatively by thirty-five (35) users which included fifteen (15) experience ASL users, eighteen (18) non-experience ASL users, and two (2) ASL experts, who completed questionnaires to rate the prototype on a 5-point Likert scale in terms of five parameters: functionality, reliability, ease of use, efficiency, and portability. An accuracy of 78.43% with an average response time of 2 s was obtained from empirical experiments. Statistical analysis of user responses showed that 97%, 68%, 77%, 80%, and 83% of users rated the system as above average for functionality, reliability, ease of use, efficiency, and portability, respectively. The robotic hand effectively communicates American Sign Language which includes English Alphabets, numbers (1–9), and some selected common words, which can be demonstrated with a single hand for hard of hearing persons. To the best of our knowledge, this work is the first ASL robotic hand that is based on locally sourced cost-effective materials, and we build on flaws from existing literature, most of which are either template-based, not real-time, or expensive. In terms of future work, the prototype can be improved by extending the single robotic hand to a fully robotic body with two hands.
- Full text View record in DOAJ
-
Teng-Wen Chang, Hsin-Yi Huang, Cheng-Chun Hong, Sambit Datta, and Walaiporn Nakapan
- Sensors, Vol 23, Iss 2890, p 2890 (2023)
- Subjects
-
internet of things, prototyping process, energy-saving, interactive design, user behaviors, ambient agents, Chemical technology, and TP1-1185
- Abstract
-
In factories, energy conservation is a crucial issue. The co-fabrication space is a modern-day equivalent of a new factory type, and it makes use of Internet of Things (IoT) devices, such as sensors, software, and online connectivity, to keep track of various building features, analyze data, and produce reports on usage patterns and trends that can be used to improve building operations and the environment. The co-fabrication user requires dynamic and flexible space, which is different from the conventional user’s usage. Because the user composition in a co-fabrication space is dynamic and unstable, we cannot use the conventional approach to assess their usage and rentals. Prototyping necessitates a specifically designed energy-saving strategy. The research uses a “seeing–moving–seeing” design thinking framework, which enables designers to more easily convey their ideas to others through direct observation of the outcomes of their intuitive designs and the representation of their works through design media. The three components of human behavior, physical manufacture, and digital interaction are primarily the focus of this work. The computing system that connects the physical machine is created through communication between the designer and the digital interface, giving the designer control over the physical machine. It is an interactive fabrication process formed by behavior. The Sensible Energy System+ is an interactive fabrication process of virtual and real coexistence created by combining the already-existing technology, the prototype fabrication machine, and SENS. This process analyzes each step of the fabrication process and energy, fits it into the computing system mode to control the prototype fabrication machine, and reduces the problem between virtual and physical fabrication and energy consumption.
- Full text View on content provider's site
-
Will Y. Lin
- Sensors, Vol 23, Iss 2942, p 2942 (2023)
- Subjects
-
chatbot, Building Information Modeling (BIM), Natural Language Understanding (NLU), Chemical technology, and TP1-1185
- Abstract
-
Amidst the domestic labor shortage and worldwide pandemic in recent years, there has been an urgent need for a digital means that allows construction site workers, particularly site managers, to obtain information more efficiently in support of their daily managerial tasks. For workers who move around the site, traditional software applications that rely on a form-based interface and require multiple finger movements such as key hits and clicks can be inconvenient and reduce their willingness to use such applications. Conversational AI, also known as a chatbot, can improve the ease of use and usability of a system by providing an intuitive interface for user input. This study presents a demonstrative Natural Language Understanding (NLU) model and prototypes an AI-based chatbot for site managers to inquire about building component dimensions during their daily routines. Building Information Modeling (BIM) techniques are also applied to implement the answering module of the chatbot. The preliminary testing results show that the chatbot can successfully predict the intents and entities behind the inquiries raised by site managers with satisfactory accuracy for both intent prediction and the answer. These results provide site managers with alternative means to retrieve the information they need.
- Full text View on content provider's site
-
Sebastian Budzan, Roman Wyżgolik, Marek Kciuk, Krystian Kulik, Radosław Masłowski, Wojciech Ptasiński, Oskar Szkurłat, Mateusz Szwedka, and Łukasz Woźniak
- Sensors, Vol 23, Iss 3109, p 3109 (2023)
- Subjects
-
gesture recognition, neural networks, automatic guided vehicle, HMI, Chemical technology, and TP1-1185
- Abstract
-
In this paper, we present our investigation of the 2D Hand Gesture Recognition (HGR) which may be suitable for the control of the Automated Guided Vehicle (AGV). In real conditions, we deal with, among others, a complex background, changing lighting conditions, and different distances of the operator from the AGV. For this reason, in the article, we describe the database of 2D images created during the research. We tested classic algorithms and modified them by us ResNet50 and MobileNetV2 which were retrained partially using the transfer learning approach, as well as proposed a simple and effective Convolutional Neural Network (CNN). As part of our work, we used a closed engineering environment for rapid prototyping of vision algorithms, i.e., Adaptive Vision Studio (AVS), currently Zebra Aurora Vision, as well as an open Python programming environment. In addition, we shortly discuss the results of preliminary work on 3D HGR, which seems to be very promising for future work. The results show that, in our case, from the point of view of implementing the gesture recognition methods in AGVs, better results may be expected for RGB images than grayscale ones. Also using 3D imaging and a depth map may give better results.
- Full text View on content provider's site
47. Status of Food Additives in 3D Food Printing [2023]
-
Shasha ZHOU, Xiaoxi YANG, Cuiping LI, Mingru WANG, Qian LIU, Xiaoteng WANG, and Yumiao LANG
- Shipin gongye ke-ji, Vol 44, Iss 6, Pp 41-48 (2023)
- Subjects
-
3d printing, food, additives, rheological properties, processing characteristics, Food processing and manufacture, and TP368-456
- Abstract
-
As a new technology in the field of food science, three-dimensional (3D) printing technology has tremendous development potential due to its rapid prototyping capabilities, suitability for complex structures, and customization. Proteins, lipids, and other edible substances are generally used as materials in 3D food printing, but not all ingredients can be printed or processed well. 3D food printing technology, the properties of 3D printing materials, common food additives and their effects on rheological properties, processing properties, and nutritional properties of print materials are reviewed in this paper. This study would provide a scientific basis for the application of 3D food printing technology in the food field and theoretical references.
- Full text View on content provider's site
-
Dal Forno, Ana Julia, Bataglini, Walakis Vieira, Steffens, Fernanda, and Ulson de Souza, Antonio Augusto
- Research Journal of Textile and Apparel, 2021, Vol. 27, Issue 1, pp. 95-117.
-
Kojo Atta Aikins, Mustafa Ucgul, James B. Barr, Emmanuel Awuah, Diogenes L. Antille, Troy A. Jensen, and Jacky M. A. Desbiolles
- Agriculture, Vol 13, Iss 541, p 541 (2023)
- Subjects
-
calibration, DEM contact models, soil dynamics, soil failure, soil forces, cohesive and frictional soils, Agriculture (General), and S1-972
- Abstract
-
In agricultural machinery design and optimization, the discrete element method (DEM) has played a major role due to its ability to speed up the design and manufacturing process by reducing multiple prototyping, testing, and evaluation under experimental conditions. In the field of soil dynamics, DEM has been mainly applied in the design and optimization of soil-engaging tools, especially tillage tools and furrow openers. This numerical method is able to capture the dynamic and bulk behaviour of soils and soil–tool interactions. This review focused on the various aspects of the application of DEM in the simulation of tillage and furrow opening for tool design optimization. Different contact models, particle sizes and shapes, and calibration techniques for determining input parameters for tillage and furrow opening research have been reviewed. Discrete element method predictions of furrow profiles, disturbed soil surface profiles, soil failure, loosening, disturbance parameters, reaction forces, and the various types of soils modelled with DEM have also been highlighted. This pool of information consolidates existing working approaches used in prior studies and helps to identify knowledge gaps which, if addressed, will advance the current soil dynamics modelling capability.
- Full text View on content provider's site
50. Rapid Prototyping of H∞ Algorithm for Real-Time Displacement Volume Control of Axial Piston Pumps [2023]
-
Alexander Mitov, Tsonyo Slavov, and Jordan Kralev
- Algorithms, Vol 16, Iss 120, p 120 (2023)
- Subjects
-
H∞ algorithm, rapid prototyping, displacement volume control, axial piston pump, Industrial engineering. Management engineering, T55.4-60.8, Electronic computers. Computer science, and QA75.5-76.95
- Abstract
-
A system for the rapid prototyping of real-time control algorithms for open-circuit variable displacement axial-piston pumps is presented. In order to establish real-time control, and communication and synchronization with the programmable logic controller of an axial piston pump, the custom CAN communication protocol is developed. This protocol is realized as a Simulink® S-function, which is a part of main Simulink® model. This model works in real-time and allows for the implementation of rapid prototyping of various control strategies including advanced algorithms such as H∞ control. The aim of the algorithm is to achieve control system performance in the presence of various load disturbances with an admissible control signal rate and amplitude. In contrast to conventional systems, the developed solution suggests using an embedded approach for the prototyping of various algorithms. The obtained results show the advantages of the designed H∞ controller that ensure the robustness of a closed-loop system in the presence of significant load disturbances. These type of systems with displacement volume regulation are important for industrial hydraulic drive systems with relatively high power.
- Full text View on content provider's site
-
Ahmed G. Abdelaziz, Hassan Nageh, Sara M. Abdo, Mohga S. Abdalla, Asmaa A. Amer, Abdalla Abdal-hay, and Ahmed Barhoum
- Bioengineering, Vol 10, Iss 204, p 204 (2023)
- Subjects
-
tissue engineering and regenerative medicine, biopolymers, nanofabrication techniques, additive manufacturing, rapid prototyping, customized therapy 3D scaffolds, Technology, Biology (General), and QH301-705.5
- Abstract
-
Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol–gel techniques. Rapid prototyping technologies such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based BTE treatments in practice are discussed in-depth.
- Full text View on content provider's site
-
Babak Nemat, Mohammad Razzaghi, Kim Bolton, and Kamran Rousta
- Clean Technologies, Vol 5, Iss 17, Pp 297-328 (2023)
- Subjects
-
packaging design, packaging waste, sustainable behavior, sorting packaging waste, packaging functionality, emotional factor, Environmental technology. Sanitary engineering, TD1-1066, Environmental engineering, and TA170-171
- Abstract
-
It is widely acknowledged that environmental impacts from packaging waste depend on how consumers sort this waste fraction. In this research, “design for sustainable behavior” (DfSB) strategies are used to improve a cream packaging design that can support proper sorting of packaging waste as a sustainable behavior. The application of three DfSB strategies—“match”, “steer”, and “force”—was examined through circular interviews and practical experience with two groups of participants in Karlskrona, Sweden. Prototyping was used to provide a more realistic experiment and enhance communication during the interviews. The results show that consumer-packaging interaction during the usage phase is important to enhance proper sorting behavior. The results also show the potential of a user-centered design-based approach to study consumer-packaging interaction and to understand the challenges faced by users when sorting packaging waste. It also shows the possibility of packaging design to script consumer behavior and reveals details that are important when designing packaging that was not known. In this vein, packaging form, color, and haptic attributes are the most influential design attributes that can support packaging functionalities and script consumer sorting behavior.
- Full text View on content provider's site
-
Simon Orlob, Christoph Hobisch, Johannes Wittig, Daniel Auinger, Otto Touzil, Gabriel Honnef, Otmar Schindler, Philipp Metnitz, Georg Feigl, and Gerhard Prause
- Data in Brief, Vol 46, Iss , Pp 108767- (2023)
- Subjects
-
cardiopulmonary resuscitation, Mechanical ventilation, Mechanical chest-compression, Respiratory monitoring, Thiel embalmed cadaver, Biomechanics, Computer applications to medicine. Medical informatics, R858-859.7, Science (General), and Q1-390
- Abstract
-
The data presented in this article relate to the research article, “Reliability of mechanical ventilation during continuous chest compressions: a crossover study of transport ventilators in a human cadaver model of CPR” [1].This article contains raw data of continuous recordings of airflow, airway and esophageal pressure during the whole experiment. Data of mechanical ventilation was obtained under ongoing chest compressions and from repetitive measurements of pressure-volume curves. All signals are presented as raw time series data with a sample rate of 200Hz for flow and 500 Hz for pressure. Additionally, we hereby publish extracted time series recordings of force and compression depth from the used automated chest compression device. Concomitantly, we report tables with time stamps from our laboratory book by which the data can be sequenced into different phases of the study protocol.We also present a dataset of derived volumes which was used for statistical analysis in our research article together with the used exclusion list.The reported dataset can help to understand mechanical properties of Thiel-embalmed cadavers better and compare different models of cardiopulmonary resuscitation (CPR). Future research may use this data to translate our findings from bench to bedside. Our recordings may become useful in developing respiratory monitors for CPR, especially in prototyping and testing algorithms of such devices.
- Full text View on content provider's site
54. An Interference-Aware Resource-Allocation Scheme for Non-Cooperative Multi-Cell Environment [2023]
-
Zhe Wang, Guangjin Pan, Yanzan Sun, and Shunqing Zhang
- Electronics, Vol 12, Iss 868, p 868 (2023)
- Subjects
-
inter-cell interference, sub-channel allocation, interference prediction, Electronics, and TK7800-8360
- Abstract
-
Inter-cell interference cancellation has been investigated for several decades and has become an elementary technique for modern wireless networks. However, the existing interference cancellation mechanism rarely considers the historical channel variations and interference characteristics. In this paper, we propose an interference-aware prediction-based resource-allocation strategy to deal with multi-cell interference, where the historical noisy channel state and the acknowledgment feedback are fully utilized. Together with the predicted interference patterns, our proposed joint sub-channel allocation and rate selection mechanism can achieve better average throughput performance. Through the numerical as well as the prototyping results, we show that our proposed scheme is able to provide more than 9.7% and 8% average throughput improvement compared with many existing baselines.
- Full text View on content provider's site
55. Analysis and Design of Resonant DC/AC Converters with Energy Dosing for Induction Heating [2023]
-
Nikolay Madzharov and Nikolay Hinov
- Energies, Vol 16, Iss 1462, p 1462 (2023)
- Subjects
-
induction heating, energy dosing, resonant power converters, analysis, design and prototyping, and Technology
- Abstract
-
This article presents an analysis and methodology for designing resonant inverters with energy dosing for induction heating applications. These power topologies are characterized by the fact that the power consumption of the DC power source does not depend on the magnitude and changes of the load but is a function of the operating frequency, the value of the resonant capacitor and the DC supply voltage. Based on a description of the electromagnetic processes in the power circuit, analytical dependencies have been determined that describe the behavior of the studied power electronic devices. The expressions for the current of the AC circuit in the various stages of the converter’s operation are obtained, and on this basis an engineering methodology for design and prototyping is presented. The proposed methodology is verified through two specific numerical examples, simulation and experimental studies. In this way, the possibilities of these power electronic devices for self-adaptation to the needs and changes of the load, which is very important in the implementation of induction technologies, are demonstrated. Furthermore, the creation and testing of engineering methodologies for the design of power electronic devices are very useful for improving power electronics education.
- Full text View on content provider's site
56. Generalized Method of Mathematical Prototyping of Energy Processes for Digital Twins Development [2023]
-
Sergey Khalyutin, Igor Starostin, and Irina Agafonkina
- Energies, Vol 16, Iss 1933, p 1933 (2023)
- Subjects
-
mathematical prototyping method, energy processes, systems identification, symbolic regression, digital twins, and Technology
- Abstract
-
The use of digital twins in smart power systems at the stages of the life cycle is promising. The dynamics of such systems (smart energy renewable sources, smart energy hydrogen systems, etc.), are determined mainly by the physical and chemical processes occurring inside the systems. The basis for developing digital twins is reliable mathematical models of the systems. In the present paper, the authors present a method of energy processes mathematical prototyping—an overall approach to modeling processes of various physical and chemical natures based on modern non-equilibrium thermodynamics, mechanics, and electrodynamics. Controlled parameters are connected with measured ones by developing a theoretically correct system of process dynamics equations with accuracy up to the experimentally studied properties of substances and processes. Subsequent transformation into particular mathematical models of a specific class of systems makes this approach widely applicable. The properties of substances and processes are given in the form of functional dependencies on the state of the system up to experimentally determined constant coefficients. The authors consider algorithms for identifying the constant coefficients of the functions of substances and processes properties, which complement the proposed unified approach of designing models of various physical and chemical nature systems.
- Full text View on content provider's site
-
Martina Pelle, Francesco Causone, Laura Maturi, and David Moser
- Energies, Vol 16, Iss 1991, p 1991 (2023)
- Subjects
-
coloured BIPV, optimization, simulation, and Technology
- Abstract
-
Coloured building integrated photovoltaics (BIPVs) may contribute to meeting the decarbonisation targets of European and other countries. Nevertheless, their market uptake has been hindered by a lack of social acceptance, technical issues, and low economic profitability. Being able to assess in advance the influence of the coloured layers on a module’s power generation may help reduce the need for prototyping, thereby allowing optimisation of the product performance by reducing the time and costs of customised manufacturing. Therefore, this review aims at investigating the available literature on models and techniques used for assessing the influence of coloured layers on power generation in customised BIPV products. Existing models in the literature use two main approaches: (i) detailed optical modelling of the layers in the module’s stack, including coloured layers, and (ii) mathematical elaboration of the final product’s measured characteristics. Combining the two approaches can provide improved future models, which can accurately assess every single layer in the module’s stack starting from measured parameters obtained with simpler equipment and procedures.
- Full text View on content provider's site
-
Vasudev S. Mallan, Anitha Gopi, Chithra Reghuvaran, Aswani A. Radhakrishnan, and Alex James
- Frontiers in Neuroscience, Vol 17 (2023)
- Subjects
-
computing arrays, field programmable analog arrays, leaky integrate and fire neuron, tactile sensing system, field programmable gate arrays, Neurosciences. Biological psychiatry. Neuropsychiatry, and RC321-571
- Abstract
-
Intelligent sensor systems are essential for building modern Internet of Things applications. Embedding intelligence within or near sensors provides a strong case for analog neural computing. However, rapid prototyping of analog or mixed signal spiking neural computing is a non-trivial and time-consuming task. We introduce mixed-mode neural computing arrays for near-sensor-intelligent computing implemented with Field-Programmable Analog Arrays (FPAA) and Field-Programmable Gate Arrays (FPGA). The combinations of FPAA and FPGA pipelines ensure rapid prototyping and design optimization before finalizing the on-chip implementations. The proposed approach architecture ensures a scalable neural network testing framework along with sensor integration. The experimental set up of the proposed tactile sensing system in demonstrated. The initial simulations are carried out in SPICE, and the real-time implementation is validated on FPAA and FPGA hardware.
- Full text View on content provider's site
-
Jonathan Silcock, Iuri Marques, Janice Olaniyan, David K. Raynor, Helen Baxter, Nicky Gray, Syed T. R. Zaidi, George Peat, Beth Fylan, Liz Breen, Jonathan Benn, and David P. Alldred
- Health Expectations, Vol 26, Iss 1, Pp 399-408 (2023)
- Subjects
-
aged, deprescribing, frailty, polypharmacy, primary health care, referral and consultation, Medicine (General), R5-920, Public aspects of medicine, and RA1-1270
- Abstract
-
Abstract Background In older people living with frailty, polypharmacy can lead to preventable harm like adverse drug reactions and hospitalization. Deprescribing is a strategy to reduce problematic polypharmacy. All stakeholders should be actively involved in developing a person‐centred deprescribing process that involves shared decision‐making. Objective To co‐design an intervention, supported by a logic model, to increase the engagement of older people living with frailty in the process of deprescribing. Design Experience‐based co‐design is an approach to service improvement, which uses service users and providers to identify problems and design solutions. This was used to create a person‐centred intervention with the potential to improve the quality and outcomes of the deprescribing process. A ‘trigger film’ showing older people talking about their healthcare experiences was created and facilitated discussions about current problems in the deprescribing process. Problems were then prioritized and appropriate solutions were developed. The review located the solutions in the context of current processes and procedures. An ideal care pathway and a complex intervention to deliver better care were developed. Setting and Participants Older people living with frailty, their informal carers and professionals living and/or working in West Yorkshire, England, UK. Deprescribing was considered in the context of primary care. Results The current deprescribing process differed from an ideal pathway. A complex intervention containing seven elements was required to move towards the ideal pathway. Three of these elements were prototyped and four still need development. The complex intervention responded to priorities about (a) clarity for older people about what was happening at all stages in the deprescribing process and (b) the quality of one‐to‐one consultations. Conclusions Priorities for improving the current deprescribing process were successfully identified. Solutions were developed and structured as a complex intervention. Further work is underway to (a) complete the prototyping of the intervention and (b) conduct feasibility testing. Patient or Public Contribution Older people living with frailty (and their informal carers) have made a central contribution, as collaborators, to ensure that a complex intervention has the greatest possible potential to enhance the experience of deprescribing medicines.
- Full text
View/download PDF
-
Benjamin Torner, Duc Viet Duong, and Frank-Hendrik Wurm
- International Journal of Turbomachinery, Propulsion and Power, Vol 8, Iss 5, p 5 (2023)
- Subjects
-
roughness modelling, equivalent sand grain roughness, discrete porosity method, turbopump, cast iron roughness, Mechanical engineering and machinery, and TJ1-1570
- Abstract
-
The correct computation of flows over rough surfaces in technical systems, such as in turbomachines, is a significant issue for proper simulations of their performance data. Once the flow over rough surfaces is adequately computed in these machines, simulations become more trustworthy and can replace experimental prototyping. Roughness modelling approaches are often implemented in a solver to account for roughness effects in flow simulations. In these approaches, the equivalent sand roughness ks must be defined as a characteristic parameter of the rough surface. However, it is difficult to determine the corresponding ks-value for a surface roughness. In this context, this paper shows a novel and time-efficient numerical method, the discrete porosity method (DPM), which can be used to determine the ks-value of a rough surface. Applying this method, channel flow simulations were performed with an irregularly distributed cast iron surface from a turbopumps volute. After identifying the fully rough regime, the equivalent sand roughness was determined and a match with ks-values from literature data was found. Subsequently, the established ks-value for cast iron was used in a turbopump simulation with rough walls. The performance data of the pump were validated by experiments and a good agreement between the experimental and simulated performance data was found.
- Full text View on content provider's site
-
Chibuzor Udokwu, Robert Zimmermann, Alexander Norta, Patrick Brandtner, Alexandr Kormiltsyn, and Sunday Melitus Aroh
- Inventions, Vol 8, Iss 49, p 49 (2023)
- Subjects
-
luxury products, counterfeit, authentication, blockchain, NFT, Engineering machinery, tools, and implements, TA213-215, Technological innovations. Automation, and HD45-45.2
- Abstract
-
High-quality luxury products cater to a specific group of consumers due to their durability and the value attached to them. Counterfeiting luxury products has resulted in economic losses for both the producers and consumers. The market for counterfeit luxury products has continued to grow due to the difficulty in authenticating genuine luxury products. The traditional system of verification largely depends on the expert use of specialized equipment for visually inspecting physical luxury products and their associated certificates. This conventional process of authenticating luxury products is expensive, slow, and not easily accessible to consumers. Hence, there is a need for a digital verification approach for luxury products. Blockchain provides the potential for providing traceable and immutable information about a given luxury product. The focus of this paper is to develop a blockchain decentralized application (DApp) for authenticating luxury products in the class of luxury accessories such as jewelry across their respective lifecycles. To achieve this, qualitative analytics is applied to identify useful features for the digital authentication of luxury products. Blockchain requirement engineering modelling is then applied to explore the use of blockchain technologies to realize the features that guarantee transparency in the ownership and use of luxury products. Furthermore, this paper explores the existing blockchain technologies for realizing and implementing the developed requirements of the authentication DApp for luxury products. The selected blockchain technology stack is applied in prototyping authentication systems for luxury products. The implemented platform is simulated to demonstrate the operations carried out in authenticating luxury products.
- Full text View on content provider's site
62. Radio-Frequency Energy Harvesting Using Rapid 3D Plastronics Protoyping Approach: A Case Study [2023]
-
Xuan Viet Linh Nguyen, Tony Gerges, Pascal Bevilacqua, Jean-Marc Duchamp, Philippe Benech, Jacques Verdier, Philippe Lombard, Pangsui Usifu Linge, Fabien Mieyeville, Michel Cabrera, and Bruno Allard
- Journal of Low Power Electronics and Applications, Vol 13, Iss 19, p 19 (2023)
- Subjects
-
energy harvesting, 3D Plastronics, radio frequency, array of antenna, stereolithography, electroless deposition, Applications of electric power, and TK4001-4102
- Abstract
-
Harvesting of ambient radio-frequency energy is largely covered in the literature. The RF energy harvester is considered most of the time as a standalone board. There is an interest to add the RF harvesting function on an already-designed object. Polymer objects are considered here, manufactured through an additive process and the paper focuses on the rapid prototyping of the harvester using a plastronic approach. An array of four antennas is considered for circular polarization with high self-isolation. The RF circuit is obtained using an electroless copper metallization of the surface of a 3D substrate fabricated using stereolithography printing. The RF properties of the polymer resin are not optimal; thus, the interest of this work is to investigate the potential capabilities of such an implementation, particularly in terms of freedom of 3D design and ease of fabrication. The electromagnetic properties of the substrate are characterized over a band of 0.5–2.5 GHz applying the two-transmission-line method. A circular polarization antenna is experimented as a rapid prototyping vehicle and yields a gain of 1.26 dB. A lab-scale prototype of the rectifier and power management unit are experimented with discrete components. The cold start-up circuit accepts a minimum voltage of 180 mV. The main DC/DC converter operates under 1.4 V but is able to compensate losses for an input DC voltage as low as 100 mV (10 μW). The rectifier alone is capable of 3.5% efficiency at −30 dBm input RF power. The global system of circularly polarized antenna, rectifier, and voltage conversion features a global experimental efficiency of 14.7% at an input power of −13.5 dBm. The possible application of such results is discussed.
- Full text View on content provider's site
-
Daniel L. Winter, Hélène Lebhar, Joshua B. McCluskey, and Dominic J. Glover
- Journal of Nanobiotechnology, Vol 21, Iss 1, Pp 1-15 (2023)
- Subjects
-
Protein engineering, Protein–protein interactions, Nanostructures, Multimodal chromatography, Biotechnology, TP248.13-248.65, Medical technology, and R855-855.5
- Abstract
-
Abstract Background Protein nanostructures produced through the self-assembly of individual subunits are attractive scaffolds to attach and position functional molecules for applications in biomaterials, metabolic engineering, tissue engineering, and a plethora of nanomaterials. However, the assembly of multicomponent protein nanomaterials is generally a laborious process that requires each protein component to be separately expressed and purified prior to assembly. Moreover, excess components not incorporated into the final assembly must be removed from the solution and thereby necessitate additional processing steps. Results We developed an efficient approach to purify functionalized protein nanostructures directly from bacterial lysates through a type of multimodal chromatography (MMC) that combines size-exclusion, hydrophilic interaction, and ion exchange to separate recombinant protein assemblies from excess free subunits and bacterial proteins. We employed the ultrastable filamentous protein gamma-prefoldin as a material scaffold that can be functionalized with a variety of protein domains through SpyTag/SpyCatcher conjugation chemistry. The purification of recombinant gamma-prefoldin filaments from bacterial lysates using MMC was tested across a wide range of salt concentrations and pH, demonstrating that the MMC resin is robust, however the optimal choice of salt species, salt concentration, and pH is likely dependent on the protein nanostructure to be purified. In addition, we show that pre-processing of the samples with tangential flow filtration to remove nucleotides and metabolites improves resin capacity, and that post-processing with Triton X-114 phase partitioning is useful to remove lipids and any remaining lipid-associated protein. Subsequently, functionalized protein filaments were purified from bacterial lysates using MMC and shown to be free of unincorporated subunits. The assembly and purification of protein filaments with varying amounts of functionalization was confirmed using polyacrylamide gel electrophoresis, Förster resonance energy transfer, and transmission electron microscopy. Finally, we compared our MMC workflow to anion exchange chromatography with the purification of encapsulin nanocompartments containing a fluorescent protein as a cargo, demonstrating the versatility of the protocol and that the purity of the assembly is comparable to more traditional procedures. Conclusions We envision that the use of MMC will increase the throughput of protein nanostructure prototyping as well as enable the upscaling of the bioproduction of protein nanodevices. Graphic Abstract
- Full text View on content provider's site
64. Clinical Applications of Three-Dimensional Printing in Upper Extremity Surgery: A Systematic Review [2023]
-
Andrzej Hecker, Lukas Tax, Barbara Giese, Marlies Schellnegger, Anna-Lisa Pignet, Patrick Reinbacher, Nikolaus Watzinger, Lars-Peter Kamolz, and David Benjamin Lumenta
- Journal of Personalized Medicine, Vol 13, Iss 294, p 294 (2023)
- Subjects
-
3D printing, upper extremity, rapid prototyping, patient-specific, and Medicine
- Abstract
-
Three-dimensional printing for medical applications in surgery of the upper extremity has gained in popularity as reflected by the increasing number of publications. This systematic review aims to provide an overview of the clinical use of 3D printing in upper extremity surgery. Methods: We searched the databases PubMed and Web of Science for clinical studies that described clinical application of 3D printing for upper extremity surgery including trauma and malformations. We evaluated study characteristics, clinical entity, type of clinical application, concerned anatomical structures, reported outcomes, and evidence level. Results: We finally included 51 publications with a total of 355 patients, of which 12 were clinical studies (evidence level II/III) and 39 case series (evidence level IV/V). The types of clinical applications were for intraoperative templates (33% of a total of 51 studies), body implants (29%), preoperative planning (27%), prostheses (15%), and orthoses (1%). Over two third of studies were linked to trauma-related injuries (67%). Conclusion: The clinical application of 3D printing in upper extremity surgery offers great potential for personalized approaches to aid in individualized perioperative management, improvement of function, and ultimately help to benefit certain aspects in the quality of life.
- Full text View on content provider's site
65. Size Effect on the Post-Necking Behaviour of Dual-Phase 800 Steel: Modelling and Experiment [2023]
-
Lintao Zhang, Will Harrison, Shahin Mehraban, Stephen G. R. Brown, and Nicholas P. Lavery
- Materials, Vol 16, Iss 1458, p 1458 (2023)
- Subjects
-
dual-phase steel, aspect ratio, necking modes, fracture angle, rapid alloy prototyping, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
This work investigated the feasibility of using a miniaturised non-standard tensile specimen to predict the post-necking behaviour of the materials manufactured via a rapid alloy prototyping (RAP) approach. The experimental work focused on the determination of the Lankford coefficients (r-value) of dual-phase 800 (DP800) steel and the digital image correlation (DIC) for some cases, which were used to help calibrate the damage model parameters of DP800 steel. The three-dimensional numerical simulations focused on the influence of the size effect (aspect ratio, AR) on the post-necking behaviour, such as the strain/stress/triaxiality evolutions, fracture angles, and necking mode transitions. The modelling showed that although a good correlation can be found between the predicted and experimentally observed ultimate tensile strength (UTS) and total elongation. The standard tensile specimen with a gauge length of 80 mm exhibited a fracture angle of ∼55°, whereas the smaller miniaturised non-standard specimens with low ARs exhibited fractures perpendicular to the loading direction. This shows that care must be taken when comparing the post-necking behaviour of small-scale tensile tests, such as those completed as a part of a RAP approach, to the post-necking behaviours of standard full-size test specimens. However, the modelling work showed that this behaviour is well represented, demonstrating a transition between the fracture angles of the samples between 2.5 and 5. This provides more confidence in understanding the post-necking behaviour of small-scale tensile tests.
- Full text View on content provider's site
66. Fabrication of Hybrid Electrodes by Laser-Induced Forward Transfer for the Detection of Cu2+ Ions [2023]
-
Anca Florina Bonciu, Florin Andrei, and Alexandra Palla-Papavlu
- Materials, Vol 16, Iss 1744, p 1744 (2023)
- Subjects
-
laser transfer, LIFT, graphene oxide, PEDOT:PSS, hybrids, copper ions, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Composites based on poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)—graphene oxide (GO) are increasingly considered for sensing applications. In this work we aim at patterning and prototyping microscale geometries of PEDOT:PSS: GO composites for the modification of commercially available electrochemical sensors. Here, we demonstrate the laser-induced forward transfer of PEDOT:PSS: GO composites, a remarkably simple procedure that allows for the fast and clean transfer of materials with high resolution for a wide range of laser fluences (450–750 mJ/cm2). We show that it is possible to transfer PEDOT:PSS: GO composites at different ratios (i.e., 25:75 %wt and 50:50 %wt) onto flexible screen-printed electrodes. Furthermore, when testing the functionality of the PEDOT:PSS: GO modified electrodes via LIFT, we could see that both the PEDOT:PSS: GO ratio as well as the addition of an intermediate release layer in the LIFT process plays an important role in the electrochemical response. In particular, the ratio of the oxidation peak current to the reduction peak current is almost twice as high for the sensor with a 50:50 %et PEDOT:PSS: GO pixel. This direct transfer methodology provides a path forward for the prototyping and production of polymer: graphene oxide composite based devices.
- Full text View on content provider's site
-
Russell Galea, Pierre-Sandre Farrugia, Krzysztof K. Dudek, Daphne Attard, Joseph N. Grima, and Ruben Gatt
- Materials & Design, Vol 226, Iss , Pp 111596- (2023)
- Subjects
-
Perforations, Subtractive manufacturing, Negative Poisson’s ratio, 3D auxetic structures, Materials of engineering and construction. Mechanics of materials, and TA401-492
- Abstract
-
Prototyping of three-dimensional mechanical metamaterials that exhibit negative Poisson’s ratio is usually performed through additive manufacturing. Although this technique has a huge potential, its use to engineer mechanical metamaterials for consumer products is still challenging. In this work, a novel design method is being proposed where 3D auxetic metamaterials can be produced by introducing continuous voids of constant cross-sectional area. Such voids would be inserted at strategic positions in different perpendicular planes of a solid block to obtain a continuous three-dimensional mechanical metamaterial that can exhibit the desired mechanical characteristics. The use of continuous voids to design the 3D meatamaterial makes it possible to use additive manufacturing, subtractive manufacturing as well as casting to produce these systems. The proposed design method is explained by using continuous voids having a diamond shaped cross-sectional area. The resulting group of structures can be described as connected polygons and were found to exhibit a negative or zero Poisson’s ratio. The analysed systems were also found to have a strain independent Poisson’s ratio up to at least 7% strain. The proposed design method can thus facilitate the availability of three dimensional auxetic metamaterials in the consumer market which to date is conspicuous by their absence.
- Full text View on content provider's site
-
Francesca Usai, Giada Loi, Franca Scocozza, Massimo Bellato, Ignazio Castagliuolo, Michele Conti, and Lorenzo Pasotti
- Materials Today Bio, Vol 18, Iss , Pp 100526- (2023)
- Subjects
-
Bioprinting, Engineered living materials, Biosensors, Synthetic biology, Engineered bacteria, Medicine (General), R5-920, Biology (General), and QH301-705.5
- Abstract
-
The intertwined adoption of synthetic biology and 3D bioprinting has the potential to improve different application fields by fabricating engineered living materials (ELMs) with unnatural genetically-encoded sense & response capabilities. However, efforts are still needed to streamline the fabrication of sensing ELMs compatible with field use and improving their functional complexity. To investigate these two unmet needs, we adopted a workflow to reproducibly construct bacterial ELMs with synthetic biosensing circuits that provide red pigmentation as visible readout in response to different proof-of-concept chemical inducers. We first fabricated single-input/single-output ELMs and we demonstrated their robust performance in terms of longevity (cell viability and evolutionary stability >15 days, and long-term storage >1 month), sensing in harsh, non-sterile or nutrient-free conditions compatible with field use (soil, water, and clinical samples, including real samples from Pseudomonas aeruginosa infected patients). Then, we fabricated ELMs including multiple spatially-separated biosensor strains to engineer: level-bar materials detecting molecule concentration ranges, multi-input/multi-output devices with multiplexed sensing and information processing capabilities, and materials with cell-cell communication enabling on-demand pattern formation. Overall, we showed successful field use and multiplexed functioning of reproducibly fabricated ELMs, paving the way to a future automation of the prototyping process and boosting applications of such devices as in-situ monitoring tools or easy-to-use sensing kits.
- Full text View on content provider's site
-
Zachary Rivers, Joshua A. Roth, Winona Wright, Sun Hee Rim, Lisa C. Richardson, Cheryll C. Thomas, Julie S. Townsend, and Scott D. Ramsey
- MDM Policy & Practice, Vol 8 (2023)
- Subjects
-
Medicine (General) and R5-920
- Abstract
-
Background. The complexity of decision science models may prevent their use to assist in decision making. User-centered design (UCD) principles provide an opportunity to engage end users in model development and refinement, potentially reducing complexity and increasing model utilization in a practical setting. We report our experiences with UCD to develop a modeling tool for cancer control planners evaluating cancer survivorship interventions. Design. Using UCD principles (described in the article), we developed a dynamic cohort model of cancer survivorship for individuals with female breast, colorectal, lung, and prostate cancer over 10 y. Parameters were obtained from the National Program of Cancer Registries and peer-reviewed literature, with model outcomes captured in quality-adjusted life-years and net monetary benefit. Prototyping and iteration were conducted with structured focus groups involving state cancer control planners and staff from the Centers for Disease Control and Prevention and the American Public Health Association. Results. Initial feedback highlighted model complexity and unclear purpose as barriers to end user uptake. Revisions addressed complexity by simplifying model input requirements, providing clear examples of input types, and reducing complex language. Wording was added to the results page to explain the interpretation of results. After these updates, feedback demonstrated that end users more clearly understood how to use and apply the model for cancer survivorship resource allocation tasks. Conclusions. A UCD approach identified challenges faced by end users in integrating a decision aid into their workflow. This approach created collaboration between modelers and end users, tailoring revisions to meet the needs of the users. Future models developed for individuals without a decision science background could leverage UCD to ensure the model meets the needs of the intended audience. Highlights Model complexity and unclear purpose are 2 barriers that prevent lay users from integrating decision science tools into their workflow. Modelers could integrate the user-centered design framework when developing a model for lay users to reduce complexity and ensure the model meets the needs of the users.
- Full text View on content provider's site
-
Linda Sønstevold, Maciej Czerkies, Enrique Escobedo-Cousin, Slawomir Blonski, and Elizaveta Vereshchagina
- Micromachines, Vol 14, Iss 532, p 532 (2023)
- Subjects
-
polymethylpentene (PMP), cell culture, oxygen control, microfluidic device, organ-on-a-chip, Mechanical engineering and machinery, and TJ1-1570
- Abstract
-
The applicability of a gas-permeable, thermoplastic material polymethylpentene (PMP) was investigated, experimentally and analytically, for organ-on-a-chip (OoC) and long-term on-a-chip cell cultivation applications. Using a sealed culture chamber device fitted with oxygen sensors, we tested and compared PMP to commonly used glass and polydimethylsiloxane (PDMS). We show that PMP and PDMS have comparable performance for oxygen supply during 4 days culture of epithelial (A549) cells with oxygen concentration stabilizing at 16%, compared with glass control where it decreases to 3%. For the first time, transmission light images of cells growing on PMP were obtained, demonstrating that the optical properties of PMP are suitable for non-fluorescent, live cell imaging. Following the combined transmission light imaging and calcein-AM staining, cell adherence, proliferation, morphology, and viability of A549 cells were shown to be similar on PMP and glass coated with poly-L-lysine. In contrast to PDMS, we demonstrate that a film of PMP as thin as 0.125 mm is compatible with high-resolution confocal microscopy due to its excellent optical properties and mechanical stiffness. PMP was also found to be fully compatible with device sterilization, cell fixation, cell permeabilization and fluorescent staining. We envision this material to extend the range of possible microfluidic applications beyond the current state-of-the-art, due to its beneficial physical properties and suitability for prototyping by different methods. The integrated device and measurement methodology demonstrated in this work are transferrable to other cell-based studies and life-sciences applications.
- Full text View on content provider's site
-
Tram Thi Minh Tran, Callum Parker, Marius Hoggenmüller, Luke Hespanhol, and Martin Tomitsch
- Multimodal Technologies and Interaction, Vol 7, Iss 21, p 21 (2023)
- Subjects
-
prototyping, user evaluation, augmented reality, virtual reality, simulations, urban applications, Technology, and Science
- Abstract
-
Augmented reality (AR) has the potential to fundamentally change how people engage with increasingly interactive urban environments. However, many challenges exist in designing and evaluating these new urban AR experiences, such as technical constraints and safety concerns associated with outdoor AR. We contribute to this domain by assessing the use of virtual reality (VR) for simulating wearable urban AR experiences, allowing participants to interact with future AR interfaces in a realistic, safe and controlled setting. This paper describes two wearable urban AR applications (pedestrian navigation and autonomous mobility) simulated in VR. Based on a thematic analysis of interview data collected across the two studies, we find that the VR simulation successfully elicited feedback on the functional benefits of AR concepts and the potential impact of urban contextual factors, such as safety concerns, attentional capacity, and social considerations. At the same time, we highlight the limitations of this approach in terms of assessing the AR interface’s visual quality and providing exhaustive contextual information. The paper concludes with recommendations for simulating wearable urban AR experiences in VR.
- Full text View on content provider's site
-
Bogéa Ribeiro L and da Silva Filho M
- Neuropsychiatric Disease and Treatment, Vol Volume 19, Pp 415-424 (2023)
- Subjects
-
autism spectrum disorder, neuroimaging, early diagnoses, multiscale entropy., Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571, Neurology. Diseases of the nervous system, and RC346-429
- Abstract
-
Louise Bogéa Ribeiro,* Manoel da Silva Filho* Federal University of Pará, Assistive Prototyping Lab, Belém-PA, Brazil*These authors contributed equally to this workCorrespondence: Louise Bogéa Ribeiro, Federal University of Pará, Assistive Prototyping Lab, Governador José Malcher Ave, 1423, Belém-PA, 66060230, Brazil, Tel +55 (91) 992341623, Email Louisebr@ufpa.brAbstract: An abnormality in neural connectivity is linked to autism spectrum disorder (ASD). There is no way to test the concept of neural connectivity empirically. According to recent network theory and time series analysis findings, electroencephalography (EEG) can assess neural network architecture, a sign of activity in the brain. This systematic review aims to evaluate functional connectivity and spectral power using EEG signals. EEG records the brain activity of an individual by displaying wavy lines that depict brain cells’ communication through electrical impulses. EEG can diagnose various brain disorders, including epilepsy and related seizure illness, brain dysfunction, tumors, and damage. We found 21 studies using two of the most common EEG analysis methods: functional connectivity and spectral power. ASD and non-ASD individuals were found to differ significantly in all selected papers. Due to high heterogeneity in the outcomes, generalizations cannot be drawn, and no single method is currently beneficial as a diagnostic tool. For ASD subtype delineation, the lack of research prevented the evaluation of these techniques as diagnostic tools. These findings confirm the presence of abnormalities in the EEG in ASD, but they are insufficient to diagnose. Our study suggests that EEG is useful in diagnosing ASD by evaluating entropy in the brain. Researchers may be able to develop new diagnostic methods for ASD which focuses on particular stimuli and brainwaves if they conduct more extensive studies with higher numbers and more rigorous study designs.Keywords: autism spectrum disorder, neuroimaging, early diagnoses, multiscale entropy
- Full text View on content provider's site
73. Additive Manufactured Strain Sensor Using Stereolithography Method with Photopolymer Material [2023]
-
Ishak Ertugrul, Osman Ulkir, Sezgin Ersoy, and Minvydas Ragulskis
- Polymers, Vol 15, Iss 991, p 991 (2023)
- Subjects
-
additive manufacturing, photopolymer, strain sensor, soft application, stereolithography, 3D printing, Organic chemistry, and QD241-441
- Abstract
-
As a result of the developments in additive manufacturing (AM) technology, 3D printing is transforming from a method used only in rapid prototyping to a technique used to produce large-scale equipment. This study presents the fabrication and experimental studies of a 3D-printed strain sensor that can be used directly in soft applications. Photopolymer-based conductive and flexible ultraviolet (UV) resin materials are used in the fabrication of the sensor. A Stereolithography (SLA)-based printer is preferred for 3D fabrication. The bottom base of the sensor, which consists of two parts, is produced from flexible UV resin, while the channels that should be conductive are produced from conductive UV resin. In total, a strain sensor with a thickness of 2 mm was produced. Experimental studies were carried out under loading and unloading conditions to observe the hysteresis effect of the sensor. The results showed a close linear relationship between the strain sensor and the measured resistance value. In addition, tensile test specimens were produced to observe the behavior of conductive and non-conductive materials. The tensile strength values obtained from the test results will provide information about the sensor placement. In addition, the flexible structure of the strain sensor will ensure its usability in many soft applications.
- Full text View on content provider's site
-
Davide Mocerino, Maria Rosaria Ricciardi, Vincenza Antonucci, and Ilaria Papa
- Polymers, Vol 15, Iss 1008, p 1008 (2023)
- Subjects
-
additive manufacturing, 3D printing, auxetic structures, polymers, FDM, Organic chemistry, and QD241-441
- Abstract
-
Additive Manufacturing (AM) techniques have recently attracted the attention of scientists for the development of prototypes with complex or particular geometry in a fast and cheap way. Among the different AM processes, the Fused Deposition Modelling process (FDM) offers several advantages in terms of costs, implementation features and design freedom. Recently, it has been adopted to realise auxetic structures, which are characterised by negative Poisson ratio, enhanced mechanical properties, and a higher compression resistance than conventional structures. This review outlines the use of AM processes, in particular FDM, to design and obtain auxetic structures, with the final aim to exploit their applications in different fields. The first part of this work presents a brief classification of auxetic structures and materials. Subsequently, a summary of additive manufacturing processes is presented, focusing on the use of FDM and its limitations. Finally, the studies on the use of additive manufacturing to produce auxetic structures are shown, evidencing the potential of the concurrent combination of a fast prototyping technique such as FDM and the characteristics of polymer- and/or composite-based auxetic structures. Indeed, this new technological field opens the possibility of realising novel structures with integrated smart behaviour, multifunctional properties, compression resistance, and a tailored microstructure and shape.
- Full text View on content provider's site
-
Yetkin Öztürk, Murat Ayazoğlu, Çağrı Öztürk, Atakan Arabacı, Nuri Solak, and Serhat Özsoy
- Scientific Reports, Vol 13, Iss 1, Pp 1-10 (2023)
- Subjects
-
Medicine and Science
- Abstract
-
Abstract Patellar luxation with condylar defect is a challenging situation for reconstruction in humans. Patella reluxation, cartilage damage and pain are the most common complications. This study aims to present a new patient specific method of overformed implant design and clinical implantation that prevents luxation of patella without damaging the cartilage in a dog. Design processes are Computer Tomography, Computer Assisted Design, rapid prototyping of the bone replica, creation of the implant with surgeon’s haptic knowledge on the bone replica, 3D printing of the implant and clinical application. The implant was fully seated on the bone. Patella reluxation or implant-related bone problem was not observed 80 days after the operation. However, before the implant application, there were soft tissue problems due to previous surgeries. Three-point bending test and finite element analysis were performed to determine the biomechanical safety of the implant. The stress acting on the implant was below the biomechanical limits of the implant. More cases with long-term follow-up are needed to confirm the success of this method in patellar luxation. Compared with trochlear sulcoplasty and total knee replacement, there was no cartilage damage done by surgeons with this method, and the implant keeps the patella functionally in sulcus. This is a promising multidisciplinary method that can be applied to any part of the bone and can solve some orthopaedic problems with surgeon’s haptic knowledge.
- Full text View on content provider's site
-
Riccardo Trevisan, Emilio Ghiani, and Fabrizio Pilo
- Smart Cities, Vol 6, Iss 26, Pp 563-585 (2023)
- Subjects
-
smart governance, regulatory requirements, best practices, energy communities, citizen empowerment, Engineering (General). Civil engineering (General), and TA1-2040
- Abstract
-
Renewable energy communities, first outlined in the European Directives and recently transposed into the Italian regulatory framework, are introduced as innovative entities capable of fostering cooperation between active and passive users involved in the production, sharing, and use of locally produced energy according to innovative management schemes. Renewable energy communities empower the end-customers. Citizens and legal entities are committed to a rational and economical use of energy to achieve the community’s climate neutrality goals and pursue the ecological and energy transition objectives defined in the national recovery and resilience plan. In the future, a significant number of energy communities different actors participating from the residential, industrial, commercial, and tertiary sectors are expected to develop within city districts or in suburban settings. This paper proposes and develops a methodology capable of bridging the complexity that can characterise the prototyping, implementation, and management of an energy community within a positive energy district. The approach presented here can also be extended to other application contexts in urban or rural settings. Requirements and best practices for administrative, technical, and technological management have been identified to achieve this goal. Italy is one of the first states to embed in its regulatory framework the European Directives regarding renewable energy communities. These will have a significant impact on network management models and will provide new ways for creating social inclusion that may help achieve climate sustainability goals. A governance model has been formalised for the empowerment of energy community members, outlining a framework useful for planning the proper implementation of a renewable energy community according to current Italian regulations.
- Full text View on content provider's site
-
Nabil El Bazi, Mustapha Mabrouki, Oussama Laayati, Nada Ouhabi, Hicham El Hadraoui, Fatima-Ezzahra Hammouch, and Ahmed Chebak
- Sustainability, Vol 15, Iss 3470, p 3470 (2023)
- Subjects
-
multi-layered, digital twin, framework, asset lifecycle management, sustainable mine, Internet of Things, Environmental effects of industries and plants, TD194-195, Renewable energy sources, TJ807-830, Environmental sciences, and GE1-350
- Abstract
-
In the era of digitalization, many technologies are evolving, namely, the Internet of Things (IoT), big data, cloud computing, artificial intelligence (IA), and digital twin (DT) which has gained significant traction in a variety of sectors, including the mining industry. The use of DT in the mining industry is driven by its potential to improve efficiency, productivity, and sustainability by monitoring performance, simulating results, and predicting errors and yield. Additionally, the increasing demand for individualized products highlights the need for effective management of the entire product lifecycle, from design to development, modeling, simulating, prototyping, maintenance and troubleshooting, commissioning, targeting the market, use, and end-of-life. However, the problem to be overcome is how to successfully integrate DT into the mining business. This paper intends to shed light on the state of art of DT case studies focusing on concept, design, and development. The DT reference architecture model in Industry 4.0 and value-lifecycle-management-enabled DT are also discussed, and a proposition of a DT multi-layered architecture framework for the mining industry is explained to inspire future case studies.
- Full text View on content provider's site
78. Knowledge Mapping Analysis of Intelligent Ports: Research Facing Global Value Chain Challenges [2023]
-
Han-Teng Liao, Tsung-Ming Lo, and Chung-Lien Pan
- Systems, Vol 11, Iss 88, p 88 (2023)
- Subjects
-
system innovations, sustainable smart ports, strategic foresight, intelligent ports, global value chains, digital transformation, Systems engineering, TA168, Technology (General), and T1-995
- Abstract
-
Integrated technology management in building smart ports or intelligent ports is a crucial concern for global sustainable development, especially when human societies are facing increasing risks from climate change, sea-levels rising, and supply chain disruptions. By mapping the knowledge base of 103 papers on intelligent ports, retrieved in late December 2022 from the Web of Science, this study conducted a roadmapping exercise using knowledge mapping findings, assisted by Bibliometrix, VoSviewer, and customized Python scripts. The three structural (intellectual, social, and conceptual) aspects of knowledge structure reveal the significance of the internet of things (IoT), the fourth industrial revolution (Industry 4.0), digitalization and supply chains, and the need for digital transformation alignment across various stakeholders with Industry 4.0 practices. Furthermore, an even geographical distribution and institutional representation was observed across major continents. The results of the analysis of the conceptual structure demonstrated the existence of several established and emerging clusters of research, namely (1) industry data, IoT, and ICT, (2) industry 4.0, (3) smart airports, (4) automation; and (5) protocol and security. The overall empirical findings revealed the underlying technology and innovation management issues of digital transformation alignment across stakeholders in IoT, Industry 4.0, 5G, Big Data, and AI integrated solutions. In relation to roadmapping, this study proposed a socio-technical transition framework for prototyping ecosystem innovations surrounding smart sustainable ports, focusing on contributing to valuable carbon or greenhouse gas emission data governance, management, and services in global value chains.
- Full text View on content provider's site
-
Xiaojian Wu, Wei Liu, Jingpeng Jia, Xuemin Zhang, Larry Leifer, and Siyuan Hu
- Systems, Vol 11, Iss 89, p 89 (2023)
- Subjects
-
virtual simulation, online course platform, creative thinking, design guidelines, user interface, college students, Systems engineering, TA168, Technology (General), and T1-995
- Abstract
-
With the rapid development of science and technology, the ability to creative thinking has become an essential criterion for measuring talents. Current creative thinking courses for college students are affected by COVID-19 and are challenging to conduct. This study aimed to explore practical ways to teach creative thinking knowledge online and explored design opportunities for working on this teaching activity online. Through qualitative interviews, we found that the factors that influenced the design of the online virtual simulation course platform were focused on five dimensions: information presentation, platform characteristics, course assessment, instruction design, and presentation format. Through the analysis of user requirements, we obtained six corresponding design guidelines. Based on the knowledge system of design thinking, we set up eight modules in the course platform and developed a prototype including 100 user interfaces. We invited three experts and 30 users to conduct cognitive walk-through sessions and made design iterations based on the feedback. After user evaluation, dimensions of attractiveness, efficiency, dependability, and novelty reached excellent rating and were recognized by users.
- Full text View on content provider's site
-
Jinghua Xu, Kunqian Liu, Linxuan Wang, Hongshuai Guo, Jiangtao Zhan, Xiaojian Liu, Shuyou Zhang, and Jianrong Tan
- Visual Computing for Industry, Biomedicine, and Art, Vol 6, Iss 1, Pp 1-18 (2023)
- Subjects
-
Robustness optimization design, Rapid prototyping, Functional artifacts, Fuzzy decision-making, Infrared thermographs, Visualized computing digital twins, Drawing. Design. Illustration, NC1-1940, Computer applications to medicine. Medical informatics, R858-859.7, Computer software, and QA76.75-76.765
- Abstract
-
Abstract This study presents a robustness optimization method for rapid prototyping (RP) of functional artifacts based on visualized computing digital twins (VCDT). A generalized multiobjective robustness optimization model for RP of scheme design prototype was first built, where thermal, structural, and multidisciplinary knowledge could be integrated for visualization. To implement visualized computing, the membership function of fuzzy decision-making was optimized using a genetic algorithm. Transient thermodynamic, structural statics, and flow field analyses were conducted, especially for glass fiber composite materials, which have the characteristics of high strength, corrosion resistance, temperature resistance, dimensional stability, and electrical insulation. An electrothermal experiment was performed by measuring the temperature and changes in temperature during RP. Infrared thermographs were obtained using thermal field measurements to determine the temperature distribution. A numerical analysis of a lightweight ribbed ergonomic artifact is presented to illustrate the VCDT. Moreover, manufacturability was verified based on a thermal-solid coupled finite element analysis. The physical experiment and practice proved that the proposed VCDT provided a robust design paradigm for a layered RP between the steady balance of electrothermal regulation and manufacturing efficacy under hybrid uncertainties.
- Full text View on content provider's site
-
Dairabayeva, Damira, Perveen, Asma, and Talamona, Didier
- Rapid Prototyping Journal, 2023, Vol. 29, Issue 11, pp. 40-52.
-
Huang, Xina, Ding, Shoubin, Lang, Lihui, and Gong, Shuili
- Rapid Prototyping Journal, 2023, Vol. 29, Issue 2, pp. 209-217.
-
Ameri, Behnam, Taheri-Behrooz, Fathollah, Majidi, Hamid Reza, and Mohammad Aliha, Mohammad Reza
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 218-231.
84. Modeling SEBM process of tantalum lattices [2023]
-
Yue, Mingkai, Li, Meie, An, Ning, Yang, Kun, Wang, Jian, and Zhou, Jinxiong
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 232-245.
-
Wang, Xiaoqi, Cao, Jianfu, and Cao, Ye
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 246-258.
86. Force-flow guided reinforcement design of homogeneous mesoscale structure in additive manufacturing [2023]
-
Yu, Ying, Huang, Huan, Wang, Shuo, Li, Shuaishuai, and Wang, Yu
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 259-274.
87. Impact energy absorption and fracture mechanism of FFF made fiberglass reinforced polymer composites [2023]
-
Prajapati, Ashish R., Dave, Harshit K., and Raval, Harit K.
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 275-287.
-
Verma, Virendra Kumar, Kamble, Sachin S., and Ganapathy, L.
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 288-311.
-
Panchagnula, Jayaprakash Sharma and Simhambhatla, Suryakumar
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 312-323.
-
Riensche, Alex, Severson, Jordan, Yavari, Reza, Piercy, Nicholas L., Cole, Kevin D., and Rao, Prahalada
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 324-343.
-
Zhang, Guoquan, Wang, Yaohui, He, Jian, and Xiong, Yi
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 344-353.
-
Danielak, Anna, Chauhan, Siddharth Singh, Islam, Aminul, Andrzejewski, Jacek, and Pedersen, David Bue
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 354-365.
93. Evaluation of Cu-Ti dissimilar interface characteristics for wire arc additive manufacturing process [2023]
-
Mishra, Avinash, Paul, Amrit Raj, Mukherjee, Manidipto, Singh, Rabesh Kumar, and Sharma, Anuj Kumar
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 366-377.
-
Brauer, Cole and Aukes, Daniel
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 378-392.
-
Lavecchia, Fulvio, Pellegrini, Alessandro, and Galantucci, Luigi Maria
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 393-407.
96. The development of a radial based integrated network for the modelling of 3D fused deposition [2023]
-
AlAlaween, Wafa', Abueed, Omar, Gharaibeh, Belal, Alalawin, Abdallah, Mahfouf, Mahdi, Alsoussi, Ahmad, and Albashabsheh, Nibal
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 2, pp. 408-421.
97. Mechanical properties assessment of a 3D printed composite under torsional and perpendicular stress [2023]
-
Lovo, João Fiore Parreira, Gerlin Neto, Vicente, Piedade, Lucas Pereira, Massa, Renan Cesar, Pintão, Carlos Alberto, Foschini, Cesar Renato, and Fortulan, Carlos Alberto
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 1, pp. 1-8.
-
Candidori, Sara, Graziosi, Serena, Russo, Paola, Osouli, Kasra, De Gaetano, Francesco, Zanini, Alberto Antonio, and Costantino, Maria Laura
- Rapid Prototyping Journal, 2023, Vol. 29, Issue 11, pp. 7-20.
-
Mundada, Piyush Suresh, Yang, Che-Hao, and Chen, Roland K.
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 1, pp. 9-18.
100. Assessment and treatment of pectus deformities: a review of reverse engineering and 3D printing techniques [2023]
-
Mussi, Elisa, Servi, Michaela, Facchini, Flavio, Furferi, Rocco, and Volpe, Yary
- Rapid Prototyping Journal, 2022, Vol. 29, Issue 1, pp. 19-32.
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 100
Next