articles+ search results
6,811 articles+ results
1 - 10
Next
Number of results to display per page
-
Ozer T, Agir I, and Henry CS
Talanta [Talanta] 2022 Sep 01; Vol. 247, pp. 123544. Date of Electronic Publication: 2022 May 16.
- Subjects
-
Electrodes, Ion-Selective Electrodes, Ions, Potassium, Potentiometry, Printing, Three-Dimensional, Sodium, Internet of Things, and Robotics
- Abstract
-
We report automated fabrication of solid-contact sodium-selective (Na + -ISEs) and potassium-selective electrodes (K + -ISEs) using a 3D printed liquid handling robot controlled with Internet of Things (IoT) technology. The printing system is affordable and can be customized for the use with micropipettes for applications such as drop-casting, biological assays, sample preparation, rinsing, cell culture, and online analyte monitoring using multi-well plates. The robot is more compact (25 × 30 × 35 cm) and user-friendly than commercially available systems and does not require mechatronic experience. For fabrication of ion-selective electrodes, a carbon black intermediate layer and ion-selective membrane were successively drop-cast on the surface of stencil-printed carbon electrode using the dispensing robot. The 3D-printed robot increased ISE robustness while decreasing the modification time by eliminating manual steps. The Na + -ISEs and K + -ISEs were characterized for their potentiometric responses using a custom-made, low-cost (<$25) multi-channel smartphone-based potentiometer capable of signal processing and wireless data transmission. The electrodes showed Nernstian responses of 58.2 ± 2.6 mV decade -1 and 56.1 ± 0.7 mV decade -1 for Na + and K + , respectively with an LOD of 1.0 × 10 -5 M. We successfully applied the ISEs for multiplexed detection of Na + and K + in urine and artificial sweat samples at clinically relevant concentration ranges. The 3D-printed pipetting robot cost $100 and will pave the way for more accessible mass production of ISEs for those who cannot afford the expensive commercial robots.
(Copyright © 2022 Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Amrein P, Jia F, Zaitsev M, and Littin S
Magnetic resonance in medicine [Magn Reson Med] 2022 Sep; Vol. 88 (3), pp. 1465-1479. Date of Electronic Publication: 2022 May 08.
- Subjects
-
Equipment Design, Phantoms, Imaging, Software, Algorithms, and Magnetic Resonance Imaging methods
- Abstract
-
Purpose: An automated algorithm for generating realizable MR gradient and shim coil layouts based on the boundary element method is presented here. The overall goal is to reduce postprocessing effort and thus enable for rapid prototyping of new coil designs. For a given surface mesh and target field, the algorithm generates a connected, non-overlapping wire path.
Methods: The proposed algorithm consists of several steps: Stream function optimization, two-dimensional surface projection, potential discretization, topological contour sorting, opening and interconnecting contours, and finally adding non-overlapping return paths. Several technical parameters such as current strength, inductance and field accuracy are assessed for quality control.
Results: The proposed method is successfully demonstrated in four different examples. All exemplary results demonstrate high accuracy with regard to reaching the respective target field. The optimal discretization for a given stream function is found by generating multiple layouts while varying the input parameter values.
Conclusion: The presented algorithm allows for a rapid generation of interconnected coil layouts with high flexibility and low discretization error. This enables to reduce the overall post-processing effort. The source code of this work is publicly available ( https://github.com/Philipp-MR/CoilGen).
(© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)
- Full text View on content provider's site
-
Dunleavy K, Bishop M, Coffman A, Reidy J, and Kane A
International journal of occupational safety and ergonomics : JOSE [Int J Occup Saf Ergon] 2022 Sep; Vol. 28 (3), pp. 1829-1839. Date of Electronic Publication: 2021 Jul 07.
- Subjects
-
Animals, Aquaculture, Ergonomics methods, Farmers, Feasibility Studies, Humans, Pilot Projects, Seafood, Bivalvia, Low Back Pain therapy, Occupational Diseases prevention control, and Self-Management
- Abstract
-
Objectives. Lower back pain (LBP) is extremely prevalent in seafood harvesters who often have limited or no access to ergonomic consultation, occupational health support and rehabilitation services. This pilot study aimed to describe a participatory ergonomic approach and determine the feasibility and extent of adoption of self-management strategies in clam farmers with LBP. Methods. A rapid prototype participatory ergonomic approach was used to develop context-specific self-management strategies. Options to adjust lifting and repetitive stress were introduced using video clips, demonstrations and discussions in the workplace. Workers chose and implemented three strategies for 8 weeks with weekly reminders. Survey and qualitative data from focus groups were analyzed. Results. Team strategies were the most popular, but individual options were used more often. Strategies were considered feasible, acceptable and relatively easy to use. Strategies were implemented relatively consistently, and most improved productivity with decreased pain. Challenges for uptake included changing habit, culture and team dynamics. Conclusions. Participatory rapid prototyping provided a feasible and efficient option to introduce strategies for clam farmers with small teams, variable work processes and workloads, and time restrictions. Strategies were considered acceptable and easy to use, and most increased productivity. These methods show potential for future research.
-
Vedran U, Kavit A, Igor B, and Damir K
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery [Eur Arch Otorhinolaryngol] 2022 Aug; Vol. 279 (8), pp. 4173-4180. Date of Electronic Publication: 2022 Mar 22.
- Abstract
-
Purpose: Midface reconstruction poses a complex set of challenges for reconstructive surgeons. The optimal midface reconstruction must possess a durable underlying bone construct capable of integrating dental implants. Facial contour is restored by the overlying microvascular soft tissue reconstruction with reestablishment of the oral cavity. A plethora of microvascular flaps used in clinical practice have been described including those harvested from the iliac crest, scapula, fibula, forearm and back (latissimus dorsi). The objective was to share our experiences with each of these treatment options that have continued to evolve over time for the benefit of patients.
Methods: Our institution has over three decades of experience in reconstructing complex midface defects and this article summarizes midface reconstruction from an evolutionary perspective (for type II, III and IV defect; Browns classification, Supplementary Table I). We broadly divide this into (i) flaps supplied by the subscapular system (ii) autologous reconstruction with titanium mesh and (iii) fibula microvascular flaps using 3D planning.
Results: The advantages and disadvantages for each approach are discussed (Supplementary Table II).
Conclusion: In the future, it is expected that 3D planning coupled with rapid prototyping, intraoperative navigation and CT imaging will become standard procedural practice.
(© 2022. Crown.)
- Full text View on content provider's site
5. Accelerating prototyping experiments for traveling wave structures for lossless ion manipulations. [2022]
-
Kinlein ZR, Anderson GA, and Clowers BH
Talanta [Talanta] 2022 Jul 01; Vol. 244, pp. 123446. Date of Electronic Publication: 2022 Apr 04.
- Abstract
-
Traveling wave structures for lossless ion manipulation (TW-SLIM) has proven a valuable tool for the separation and study of gas-phase ions. Unfortunately, many of the traditional components of TW-SLIM experiments manifest practical and financial barriers to the technique's broad implementation. To this end, a series of technological innovations and methodologies are presented which enable for simplified SLIM experimentation and more rapid TW-SLIM prototyping. In addition to the use of multiple independent board sets that comprise the present SLIM system, we introduce a low-cost, multifunctional traveling wave generator to produce TW within the TW-SLIM. This square-wave producing unit proved effective in realizing TW-SLIM separations compared to traditional approaches. Maintaining a focus on lowering barriers to implementation, the present set of experiments explores the use of on-board injection (OBI) methods, which offer potential alternatives to ion funnel traps. These OBI techniques proved feasible and the ability of this simplified TW-SLIM platform to enhance ion accumulation was established. Further experimentation regarding ion accumulation revealed a complexity to ion accumulation within TW-SLIM that has yet to be expounded upon. Lastly, the ability of the presented TW-SLIM platform to store ions for extended periods (1 s) without significant loss (<10%) was demonstrated. The aforementioned experiments clearly establish the efficacy of a simplified TW-SLIM platform which promises to expand adoption and experimentation of the technique.
(Copyright © 2022 Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Zhang Y, Wang Y, Xu L, Lou C, Ouyang Q, and Qian L
Methods (San Diego, Calif.) [Methods] 2022 Jul; Vol. 203, pp. 70-77. Date of Electronic Publication: 2021 Jun 04.
- Subjects
-
DNA, Luciferases, Luminescence, Mycobacterium tuberculosis genetics, and RNA, Guide genetics
- Abstract
-
The wide application of molecular beacon probes in specific DNA detection, especially in the fast prototyping of pathogen DNA detection kits in point-of-care diagnostics, has been hindered by the nonflexible choice of target sequences and the unstable fluorophore output. We developed an in vitro DNA detection system consisting of a pair of dCas9 proteins linked to split halves of luciferase, named the Paired dCas9 (PC) reporter. Co-localization of the reporter pair to a ~46 bp target sequence defined by two single guide RNAs (sgRNAs) activated luciferase which subsequently generated highly intensified luminescent signals. Combined with an array design and statistical analyses, the PC reporter system could be programmed to access sequence information across the entire genome of the pathogenic Mycobacterium tuberculosis H37Rv strain. These findings suggest great potential for the PC reporter in effective and affordable in vitro nucleic acid detection technologies. In this article we highlighted the systems design from our previous researchworkon the PC reporter (Zhang et al, 2015)with a focuson methodology.
(Copyright © 2021 Elsevier Inc. All rights reserved.)
- Full text View on content provider's site
7. Additive manufacturing in respiratory sciences - Current applications and future prospects. [2022]
-
Bock S, Rades T, Rantanen J, and Scherließ R
Advanced drug delivery reviews [Adv Drug Deliv Rev] 2022 Jul; Vol. 186, pp. 114341. Date of Electronic Publication: 2022 May 13.
- Subjects
-
Drug Delivery Systems, Humans, and Bioprinting methods
- Abstract
-
Additive Manufacturing (AM) comprises a variety of techniques that enable fabrication of customised objects with specific attributes. The versatility of AM procedures and constant technological improvements allow for their application in the development of medicinal products and medical devices. This review provides an overview of AM applications related to respiratory sciences. For this purpose, both fields of research are briefly introduced and the potential benefits of integrating AM to respiratory sciences at different levels of pharmaceutical development are highlighted. Tailored manufacturing of microstructures as a particle design approach in respiratory drug delivery will be discussed. At the dosage form level, we exemplify AM as an important link in the iterative loop of data driven inhaler design, rapid prototyping and in vitro testing. This review also presents the application of bioprinting in the respiratory field for design of biorelevant in vitro cellular models, followed by an overview of AM-related processes in preventive and therapeutic care. Finally, this review discusses future prospects of AM as a component in a digital health environment.
(Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Lim SW, Choi IS, Lee BN, Ryu J, Park HJ, and Cho JH
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics [Am J Orthod Dentofacial Orthop] 2022 Jul; Vol. 162 (1), pp. 108-121. Date of Electronic Publication: 2022 Mar 11.
- Abstract
-
This case report describes the successful orthodontic treatment of an 11-year-old girl with skeletal Class II malocclusion and congenitally missing mandibular second premolars. To resolve her upper lip protrusion and restore the missing mandibular premolars, extraction of the maxillary first premolars and subsequent autotransplantation of the extracted premolars onto the site of the missing mandibular second premolars were performed. To ensure the success of the autotransplantation and subsequent orthodontic treatment, an orthodontic force was preapplied on the donor teeth, and the recipient sockets were prepared with the aid of replica teeth. Thereafter, comprehensive orthodontic treatment was performed to close the extraction space in the maxilla and align the mandibular dentition, including the transplants. The patient achieved a functional occlusion with an improved facial profile. Results of the orthodontic treatment and autotransplantation were stable during the 5-year follow-up. On the basis of this report, a management protocol for a biomechanically enhanced autotransplantation procedure was suggested. This approach would enable an effective treatment procedure, thereby increasing the usefulness of autotransplantation.
(Copyright © 2022 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.)
- Full text View on content provider's site
-
Zhuang M, Chen Z, Wang H, Tang H, He J, Qin B, Yang Y, Jin X, Yu M, Jin B, Li T, and Kettunen L
Journal of digital imaging [J Digit Imaging] 2022 Jun 29. Date of Electronic Publication: 2022 Jun 29.
- Abstract
-
The development of medical image analysis algorithm is a complex process including the multiple sub-steps of model training, data visualization, human-computer interaction and graphical user interface (GUI) construction. To accelerate the development process, algorithm developers need a software tool to assist with all the sub-steps so that they can focus on the core function implementation. Especially, for the development of deep learning (DL) algorithms, a software tool supporting training data annotation and GUI construction is highly desired. In this work, we constructed AnatomySketch, an extensible open-source software platform with a friendly GUI and a flexible plugin interface for integrating user-developed algorithm modules. Through the plugin interface, algorithm developers can quickly create a GUI-based software prototype for clinical validation. AnatomySketch supports image annotation using the stylus and multi-touch screen. It also provides efficient tools to facilitate the collaboration between human experts and artificial intelligent (AI) algorithms. We demonstrate four exemplar applications including customized MRI image diagnosis, interactive lung lobe segmentation, human-AI collaborated spine disc segmentation and Annotation-by-iterative-Deep-Learning (AID) for DL model training. Using AnatomySketch, the gap between laboratory prototyping and clinical testing is bridged and the development of MIA algorithms is accelerated. The software is opened at https://github.com/DlutMedimgGroup/AnatomySketch-Software .
(© 2022. The Author(s).)
- Full text View on content provider's site
10. Oculofacial Prosthetic Rehabilitation Complemented With Temporary Fillers and Neurotoxin. [2022]
-
Schnorr NGP, Salazar-Gamarra R, Latuff DC, and Dib LL
The Journal of craniofacial surgery [J Craniofac Surg] 2022 Jun 27. Date of Electronic Publication: 2022 Jun 27.
- Abstract
-
Abstract: Surgical treatment of head and neck cancer causes severe tissue loss, therefore, deformities and psychosocial consequences. In cases involving orbit exenteration, satisfactory reconstruction can only be achieved with prosthetic replacement, despite successful reconstructive plastic surgery. Extraoral implants, 3D scanning, and prototyping technologies have contributed to increase satisfactory aesthetic results of oculofacial prosthesis. However, to achieve prosthetic rehabilitation refinement, patients' biological tissues have been treated with injectable cosmetic adjuncts methods as complements to results. This study aimed to describe the use of botulinum toxin type A, hyaluronic acid, and calcium hydroxyapatite previously to oculofacial prostheses manufacturing, in 5 oncologic patients of a rehabilitation unit. Outcomes produced by additional cosmetic methods on tissues, prostheses planning, and overall facial rehabilitation were observed and registered by photographs. Botulinum toxin type A, hyaluronic acid, and calcium hydroxyapatite has shown to be useful in improving asymmetries, volumizing surgical depressions and dissembling atrophic scars. Presenting an additional resource to improve overall results, enabling the manufacturing of smaller, thinner, and better-fitting oculofacial prostheses. Limitations as chronic infection and necrosis episodes, related to filler injection into previously irradiated sites, were described. The temporary effect of the materials used generates a need for reapplications but increases the safety of such procedures and enables patients' cancer treatment follow-up.
(Copyright © 2022 by Mutaz B. Habal, MD.)
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 10
Next