articles+ search results
51 articles+ results
1 - 20
Next
Number of results to display per page
-
Alleva S, Antonelli MG, Zobel PB, and Durante F
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Dec 19; Vol. 13 (24). Date of Electronic Publication: 2020 Dec 19.
- Abstract
-
Powered ankle-foot prostheses for walking often have limitations in the range of motion and in push-off power, if compared to a lower limb of a healthy person. A new design of a powered ankle-foot prosthesis is proposed to obtain a wide range of motion and an adequate power for a push-off step. The design methodology for this prosthesis has three points. In the first one, a dimensionless kinematic model of the lower limb in the sagittal plane is built, through an experimental campaign with healthy subjects, to calculate the angles of lower limb during the gait. In the second point a multibody inverse dynamic model of the lower limb is constructed to calculate the foot-ground contact force, its point of application and the ankle torque too, entering as input data the calculated angles of the lower limb in the previous point. The third point requires, as input of the inverse dynamic model, the first dimensioning data of the ankle-foot prosthesis to obtain the load acting on the components of the prosthesis and the angle torque of the actuator during the gait cycle. Finally, an iteration cycle begins with the inverse dynamic model modifying the ankle torque and angle until these quantities during the gait are as close as possible to the physiological quantities. After the mechanical design and the construction of the prototype of the prosthesis, an experimental methodology was used for preliminary validation of the design. The preliminary tests in the laboratory on the prototype alone show that the range of motion of the ankle angle during the gait is close to a healthy person's: 27.6° vs. 29°. The pushing force of the distal area of the prototype is 1.000 N, instead of 1.600 N, because a budget reduction forced us to choose components for the prototype with lower performance.
- Full text View on content provider's site
-
Munoz-Guijosa JM, Zapata Martínez R, Martínez Cendrero A, and Díaz Lantada A
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Feb 20; Vol. 13 (4). Date of Electronic Publication: 2020 Feb 20.
- Abstract
-
Advances in additive manufacturing technologies and composite materials are starting to be combined into synergic procedures that may impact the biomedical field by helping to achieve personalized and high-performance solutions for low-resource settings. In this article, we illustrate the benefits of 3D-printed rapid molds, upon which composite fibers can be laminated in a direct and resource-efficient way, for the personalized development of articular splints. The rapid mold concept presented in this work allows for a flexible lamination and curing process, even compatible with autoclaves. We demonstrate the procedure by completely developing an autoclave-cured carbon fiber-epoxy composite ankle immobilizing, supporting, or protecting splint. These medical devices may support patients in their recovery of articular injuries and for promoting a more personalized medical care employing high-performance materials, whose mechanical response is analyzed and compared to that of commercial devices. In fact, this personalization is fundamental for enhanced ergonomics, comfort during rehabilitation, and overall aesthetics. The proposed design and manufacturing strategies may support the low-cost and user-centered development of a wide set of biomedical devices and help to delocalize the supply chain for involving local populations in the development of medical technology.
- Full text View on content provider's site
-
Bellingham A, Bromhead N, and Fontecchio A
Materials (Basel, Switzerland) [Materials (Basel)] 2017 May 29; Vol. 10 (6). Date of Electronic Publication: 2017 May 29.
- Abstract
-
There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.
- Full text View on content provider's site
-
Koike M, Greer P, Owen K, Lilly G, Murr LE, Gaytan SM, Martinez E, and Okabe T
Materials (Basel, Switzerland) [Materials (Basel)] 2011 Oct 10; Vol. 4 (10), pp. 1776-1792. Date of Electronic Publication: 2011 Oct 10.
- Abstract
-
This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam AB Ò ) in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast) were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought) was used as a control. The mechanical properties, corrosion properties and grindability (wear properties) were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05). The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.
- Full text View on content provider's site
-
Kreß S, Schaller-Ammann R, Feiel J, Priedl J, Kasper C, and Egger D
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Jul 06; Vol. 13 (13). Date of Electronic Publication: 2020 Jul 06.
- Abstract
-
3D printing is increasingly important for the rapid prototyping of advanced and tailor-made cell culture devices. In this context, stereolithography represents a method for the rapid generation of prototypes from photocurable polymers. However, the biocompatibility of commercially available photopolymers is largely unknown. Therefore, we evaluated the cytotoxicity of six polymers, two of them certified as biocompatible according to ISO 10993-5:2009, and we evaluated, if coating with Parylene, an inert polymer widely used in medical applications, might shield cells from the cytotoxic effects of a toxic polymer. In addition, we evaluated the processability, reliability, and consistency of the details printed. Human mesenchymal stem cells (MSCs) were used for cytotoxicity testing as they are widely used and promising for numerous applications in regenerative medicine. MSCs were incubated together with printed photopolymers, and the cytotoxicity was assessed. All photopolymers significantly reduced the viability of MSCs while the officially biocompatible resins displayed minor toxic effects. Further, coating with Parylene completely protected MSCs from toxic effects. In conclusion, none of the tested polymers can be fully recommended for rapid prototyping of cell culture devices. However, coating with Parylene can shield cells from toxic effects and thus might represent a viable option until more compatible materials are available.
- Full text View on content provider's site
-
Barrios-Muriel J, Romero-Sánchez F, Alonso-Sánchez FJ, and Rodríguez Salgado D
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Jan 09; Vol. 13 (2). Date of Electronic Publication: 2020 Jan 09.
- Abstract
-
In this work, the recent advances for rapid prototyping in the orthoprosthetic industry are presented. Specifically, the manufacturing process of orthoprosthetic aids are analysed, as thier use is widely extended in orthopedic surgery. These devices are devoted to either correct posture or movement (orthosis) or to substitute a body segment (prosthesis) while maintaining functionality. The manufacturing process is traditionally mainly hand-crafted: The subject's morphology is taken by means of plaster molds, and the manufacture is performed individually, by adjusting the prototype over the subject. This industry has incorporated computer aided design (CAD), computed aided engineering (CAE) and computed aided manufacturing (CAM) tools; however, the true revolution is the result of the application of rapid prototyping technologies (RPT). Techniques such as fused deposition modelling (FDM), selective laser sintering (SLS), laminated object manufacturing (LOM), and 3D printing (3DP) are some examples of the available methodologies in the manufacturing industry that, step by step, are being included in the rehabilitation engineering market-an engineering field with growth and prospects in the coming years. In this work we analyse different methodologies for additive manufacturing along with the principal methods for collecting 3D body shapes and their application in the manufacturing of functional devices for rehabilitation purposes such as splints, ankle-foot orthoses, or arm prostheses.
- Full text View on content provider's site
-
Gierz Ł and Markowski P
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Jul 06; Vol. 13 (13). Date of Electronic Publication: 2020 Jul 06.
- Abstract
-
Due to the sustainable development of agriculture machines with large working widths of 4-6 m or even 9-12 m are increasingly often used for agrotechnical operations. The sowing machinery whose working widths are much bigger than the width of the seed box is equipped with a pneumatic system for transporting seeds from the seed box to coulters. One of the structural elements that affect the sowing accuracy in such seed drills is the distribution head with a diffuser. This article is about research on the influence of the distribution head deviation from the vertical position and constructional variants of the diffuser (the number of diffusion rings and the configuration of their position in the diffuser pipe, which is the distance between them) on the accuracy of distribution of a stream of rye and oat seeds (a seed-and-air stream), which differ in physical characteristics. The main elements, i.e., the innovative stream distributor in the head and the diffusion rings were made using an original design and the rapid prototyping method. The research proved that a change of 0-10° in the angle of the distribution head deviation from the vertical position significantly affected the sowing quality of oat seeds only. The position (density) of the diffusion rings in the lower section of the diffuser (near the supply elbow) was the most effective for both oat and rye seeds, where the average values of the coefficient of variation were 5.31% and 4.62%, respectively. The research results can be used to redesign the construction of the diffuser of the seed drill distribution head so as to reduce the resistance of transport of the seed-and-air mixture in order to improve seed sowing evenness.
- Full text View on content provider's site
-
Long J, Nand A, and Ray S
Materials (Basel, Switzerland) [Materials (Basel)] 2021 Jan 04; Vol. 14 (1). Date of Electronic Publication: 2021 Jan 04.
- Abstract
-
Additive manufacturing (AM) is a rapidly expanding material production technique that brings new opportunities in various fields as it enables fast and low-cost prototyping as well as easy customisation. However, it is still hindered by raw material selection, processing defects and final product assessment/adjustment in pre-, in- and post-processing stages. Spectroscopic techniques offer suitable inspection, diagnosis and product trouble-shooting at each stage of AM processing. This review outlines the limitations in AM processes and the prospective role of spectroscopy in addressing these challenges. An overview on the principles and applications of AM techniques is presented, followed by the principles of spectroscopic techniques involved in AM and their applications in assessing additively manufactured parts.
- Full text View on content provider's site
-
Marsalek P, Sotola M, Rybansky D, Repa V, Halama R, Fusek M, and Prokop J
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Dec 30; Vol. 14 (1). Date of Electronic Publication: 2020 Dec 30.
- Abstract
-
Flexible structures (FS) are thin shells with a pattern of holes. The stiffness of the structure in the normal direction is reduced by the shape of gaps rather than by the choice of the material based on mechanical properties such as Young's modulus. This paper presents virtual prototyping of 3D printed flexible structures with selected planar patterns using laboratory testing and computer modeling. The objective of this work is to develop a non-linear computational model evaluating the structure's stiffness and its experimental verification; in addition, we aimed to identify the best of the proposed patterns with respect to its stiffness: load-bearing capacity ratio. Following validation, the validated computational model is used for a parametric study of selected patterns. Nylon-Polyamide 12-was chosen for the purposes of this study as an appropriate flexible material suitable for 3D printing. At the end of the work, a computational model of the selected structure with modeling of load-bearing capacity is presented. The obtained results can be used in the design of external biomedical applications such as orthoses, prostheses, cranial remoulding helmets padding, or a new type of adaptive cushions. This paper is an extension of the conference paper: "Modeling and Testing of 3D Printed Flexible Structures with Three-pointed Star Pattern Used in Biomedical Applications" by authors Repa et al.
- Full text View on content provider's site
-
Vieira FG, Scari AS, Magalhães Júnior PAA, Martins JSR, and Magalhães CA
Materials (Basel, Switzerland) [Materials (Basel)] 2019 Oct 20; Vol. 12 (20). Date of Electronic Publication: 2019 Oct 20.
- Abstract
-
Digital photoelasticity is an important segment of optical metrology for stress analysis by digital photographic images. Advances in digital image processing, data acquisition, standard recognition and data storage allow the utilization of computer-aided techniques in the automation and improvement of the digital photoelastic technique. The objective of this study is to develop new techniques using 3D rapid prototyping with transparent resins in digital photoelasticity. Some innovations are proposed (e.g., a tapered roller bearing built with 3D rapid prototyping with transparent resin and the final assembly with the specimens prototyped separately). A metrology study is carried out with the new techniques developed.
- Full text View on content provider's site
-
Seo M, Hwang S, Hwang T, and Yeo J
Materials (Basel, Switzerland) [Materials (Basel)] 2019 Sep 12; Vol. 12 (18). Date of Electronic Publication: 2019 Sep 12.
- Abstract
-
Recently, the rapid prototyping process was actively studied in industry and academia. The rapid prototyping process has various advantages such as a rapid processing speed, high processing freedom, high efficiency, and eco-friendly process compared to the conventional etching process. However, in general, it is difficult to directly apply to the fabrication of electric devices, as the molding made by the rapid prototyping process is usually a nonconductive polymer. Even when a conductive material is used for the rapid prototyping process, the molding is made by a single material; thus, its application is limited. In this study, we introduce a simple alternative process for the fabrication of a soft sensor using laser processing techniques. The UV laser curing of polymer resin and laser welding of nanowires are conducted and analyzed. Through the laser processing techniques, we can easily fabricate soft sensors, which is considered an alternative 3D printing process for the fabrication of soft sensors.
- Full text View on content provider's site
12. Corrosion and Corrosion Protection of Additively Manufactured Aluminium Alloys-A Critical Review. [2020]
-
Revilla RI, Verkens D, Rubben T, and De Graeve I
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Oct 28; Vol. 13 (21). Date of Electronic Publication: 2020 Oct 28.
- Abstract
-
Metal additive manufacturing (MAM), also known as metal 3D printing, is a rapidly growing industry based on the fabrication of complex metal parts with improved functionalities. During MAM, metal parts are produced in a layer by layer fashion using 3D computer-aided design models. The advantages of using this technology include the reduction of materials waste, high efficiency for small production runs, near net shape manufacturing, ease of change or revision of versions of a product, support of lattice structures, and rapid prototyping. Numerous metals and alloys can nowadays be processed by additive manufacturing techniques. Among them, Al-based alloys are of great interest in the automotive and aeronautic industry due to their relatively high strength and stiffness to weight ratio, good wear and corrosion resistance, and recycling potential. The special conditions associated with the MAM processes are known to produce in these materials a fine microstructure with unique directional growth features far from equilibrium. This distinctive microstructure, together with other special features and microstructural defects originating from the additive manufacturing process, is known to greatly influence the corrosion behaviour of these materials. Several works have already been conducted in this direction. However, several issues concerning the corrosion and corrosion protection of these materials are still not well understood. This work reviews the main studies to date investigating the corrosion aspects of additively manufactured aluminium alloys. It also provides a summary and outlook of relevant directions to be explored in future research.
- Full text View on content provider's site
-
Cui Z, Hu X, Dong S, Yan S, and Zhao X
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Sep 28; Vol. 13 (19). Date of Electronic Publication: 2020 Sep 28.
- Abstract
-
The performance and service life of the nuclear emergency diesel engine shaft made of 12CrNi2 alloy steel is very important for the safety of nuclear power. Laser melting deposition (LMD) is a challenging camshaft-forming technology due to its high precision, rapid prototyping, and excellent parts performance. However, LMD is an unsteady process under the local action of laser, especially for curved surface forming, which is more likely to generate large residual stress on components, resulting in cracks and other defects. At present, the stress research on LMD curved surface forming is relatively insufficient. In the present paper, material parameter testing, high-temperature mechanical properties analysis, single-track sample preparation, and heat source checks are conducted. At the same time, the ABAQUS software and the DFLUX heat source subroutine are used to compile the curved double-ellipsoidal moving heat source, and the effects of the temperature-dependent thermophysical parameters and phase change latent heat on the temperature field are considered. A three-dimensional finite element model is established to analyze the thermal stress evolution and residual stress distribution of multi-track multi-layer on a curved surface by LMD, and the effect of the scanning method and interlayer cooling time on the residual stress of the formed components is studied. The results show that with the increase in temperature, the strength of the material reduces, and the fracture morphology of the material gradually transitions from ductile fracture to creep fracture. The material parameters provide a guarantee for the simulation, and the errors of the width and depth of the melt pool are 4% and 9.6%, respectively. The simulation and experiment fit well. After cooling, the maximum equivalent stress is 686 MPa, which appears at the junction of the substrate and the deposited layer. The larger residual stress is mainly concentrated in the lower part of the deposited layer, where the maximum circumferential stress and axial stress are the tensile stress. Compared with the axial parallel lap scanning method, the arc copying lap scanning method has a relatively smaller maximum thermal stress and residual stress after cooling. The residual stress in the deposited layer is increased to some extent with the increase in the interlayer cooling time.
- Full text View on content provider's site
-
Miao X, Wu M, Han J, Li H, and Ye X
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Sep 06; Vol. 13 (18). Date of Electronic Publication: 2020 Sep 06.
- Abstract
-
The titanium Ti6Al4V alloy has excellent properties, and is one of the most important and widely used metal materials in the field of modern high-tech. Selective laser melting (SLM) is an ideal process for the rapid prototyping of Ti6Al4V alloy components with complex structures, but the performances need to be further improved. In this paper, the relative density, hardness, and microstructure under different scanning conditions were first analyzed in order to clarify the role of rescanning process in improving the performances. Then, the effects of different scanning strategies on the residual stress were analyzed. The results show that the strategy of partition rescanning has the most significant effect on residual stress. Finally, the SLM experiments of aviation nozzle rings were carried out. The results show that the average residual stress of the Re-SLMed sample was reduced from 322 MPa to 254 MPa.
- Full text View on content provider's site
-
Fernández-Pacheco A, Skoric L, De Teresa JM, Pablo-Navarro J, Huth M, and Dobrovolskiy OV
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Aug 26; Vol. 13 (17). Date of Electronic Publication: 2020 Aug 26.
- Abstract
-
Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.
- Full text View on content provider's site
-
Wang Y, Cao X, Ma M, Lu W, Zhang B, and Guo Y
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Aug 24; Vol. 13 (17). Date of Electronic Publication: 2020 Aug 24.
- Abstract
-
A new gelatin methacrylamine (GelMA)-poly (ethylene glycol) diacrylate (PEGDA)-nano hydroxyapatite (nHA) composite hydrogel scaffold was developed using UV photo-crosslinking technology. The Ca 2+ from nHA can form a [HO]Ca 2+ [OH] bridging structure with the hydroxyl group in GelMA, thereby enhancing the stability. Compared with GelMA-PEGDA hydrogel, the addition of nHA can control the mechanical properties of the composite hydrogel and reduce the degradation rate. In vitro cell culture showed that osteoblast can adhere and proliferate on the surface of the hydrogel, indicating that the GelMA-PEGDA-nHA hydrogel had good cell viability and biocompatibility. Furthermore, GelMA-PEGDA-nHA has excellent injectability and rapid prototyping properties and is a promising 3D printed bone repair scaffold material.
- Full text View on content provider's site
-
Shulga E, Karamov R, S Sergeichev I, D Konev S, I Shurygina L, S Akhatov I, D Shandakov S, and G Nasibulin A
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Aug 05; Vol. 13 (16). Date of Electronic Publication: 2020 Aug 05.
- Abstract
-
3D printing using fused composite filament fabrication technique (FFF) allows prototyping and manufacturing of durable, lightweight, and customizable parts on demand. Such composites demonstrate significantly improved printability, due to the reduction of shrinkage and warping, alongside the enhancement of strength and rigidity. In this work, we use polypropylene filament reinforced by short glass fibers to demonstrate the effect of fiber orientation on mechanical tensile properties of the 3D printed specimens. The influence of the printed layer thickness and raster angle on final fiber orientations was investigated using X-ray micro-computed tomography. The best ultimate tensile strength of 57.4 MPa and elasticity modulus of 5.5 GPa were obtained with a 90° raster angle, versus 30.4 MPa and 2.5 GPa for samples with a criss-cross 45°, 135° raster angle, with the thinnest printed layer thickness of 0.1 mm.
- Full text View on content provider's site
-
Cano S, Lube T, Huber P, Gallego A, Naranjo JA, Berges C, Schuschnigg S, Herranz G, Kukla C, Holzer C, and Gonzalez-Gutierrez J
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Jul 15; Vol. 13 (14). Date of Electronic Publication: 2020 Jul 15.
- Abstract
-
The fused filament fabrication (FFF) of ceramics enables the additive manufacturing of components with complex geometries for many applications like tooling or prototyping. Nevertheless, due to the many factors involved in the process, it is difficult to separate the effect of the different parameters on the final properties of the FFF parts, which hinders the expansion of the technology. In this paper, the effect of the fill pattern used during FFF on the defects and the mechanical properties of zirconia components is evaluated. The zirconia-filled filaments were produced from scratch, characterized by different methods and used in the FFF of bending bars with infill orientations of 0°, ±45° and 90° with respect to the longest dimension of the specimens. Three-point bending tests were conducted on the specimens with the side in contact with the build platform under tensile loads. Next, the defects were identified with cuts in different sections. During the shaping by FFF, pores appeared inside the extruded roads due to binder degradation and or moisture evaporation. The changes in the fill pattern resulted in different types of porosity and defects in the first layer, with the latter leading to earlier fracture of the components. Due to these variations, the specimens with the 0° infill orientation had the lowest porosity and the highest bending strength, followed by the specimens with ±45° infill orientation and finally by those with 90° infill orientation.
- Full text View on content provider's site
-
Seo JM, Kwon KK, Song KY, Chu CN, and Ahn SH
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Jul 03; Vol. 13 (13). Date of Electronic Publication: 2020 Jul 03.
- Abstract
-
Glass is a well-known non-conductive material that has many useful properties, and considerable research has been conducted into making circuits on glass. Many deposition techniques have been studied, and laser-induced chemical liquid phase deposition (LCLD) is a well-known and cost-effective method for rapid prototyping of copper deposition on glass. However, the deposition results from the LCLD method on the surface of glass, which shows an issue in its detachment from the substrates because of the relatively low adhesion between deposited copper and the nontreated glass surface. This problem undermines the usability of deposited glass in industrial applications. In this study, the laser-induced backside wet etching (LIBWE) method was performed as a preceding process to fabricate microchannels, which were filled with copper by LCLD. Additional durable copper wire was produced as a result of the enhanced adhesion between the glass and the deposited copper. The adhesion was enhanced by a rough surface and metal layer, which are characteristics of LIBWE machining. Furthermore, the proposed method is expected to broaden the use of deposited glass in industrial applications, such as in stacked or covered multilayer structures with built-in copper wires, because the inserted copper can be physically protected by the microstructures.
- Full text View on content provider's site
-
Galeja M, Wypiór K, Wachowicz J, Kędzierski P, Hejna A, Marć M, Klewicz K, Gabor J, Okła H, and Swinarew AS
Materials (Basel, Switzerland) [Materials (Basel)] 2020 Jun 29; Vol. 13 (13). Date of Electronic Publication: 2020 Jun 29.
- Abstract
-
Polyoxymethylene (POM) is one of the most popular thermoplastic polymers used in the industry. Therefore, the interest in its potential applications in rapid prototyping is understandable. Nevertheless, its low dimensional stability causes the warping of 3D prints, limiting its applications. This research aimed to evaluate the effects of POM modification with ethylene-vinyl acetate (EVA) (2.5, 5.0, and 7.5 wt.%) on its processing (by melt flow index), structure (by X-ray microcomputed tomography), and properties (by static tensile tests, surface resistance, contact angle measurements, differential scanning calorimetry, and thermogravimetric analysis), as well as very rarely analyzed emissions of volatile organic compounds (VOCs) (by headspace analysis). Performed modifications decreased stiffness and strength of the material, simultaneously enhancing its ductility, which simultaneously increased the toughness even by more than 50% for 7.5 wt.% EVA loading. Such an effect was related to an improved linear flow rate resulting in a lack of defects inside the samples. The decrease of the melting temperature and the slight increase of thermal stability after the addition of EVA broadened the processing window for 3D printing. The 3D printing trials on two different printers showed that the addition of EVA copolymer increased the possibility of a successful print without defects, giving space for further development.
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 20
Next