articles+ search results
46 articles+ results
1 - 20
Next
Number of results to display per page
-
Stefano Alleva, Michele Gabrio Antonelli, Pierluigi Beomonte Zobel, and Francesco Durante
- Materials, Vol 13, Iss 5806, p 5806 (2020)
- Subjects
-
biomechanical design, ankle-foot prosthesis, experimental validation, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Powered ankle-foot prostheses for walking often have limitations in the range of motion and in push-off power, if compared to a lower limb of a healthy person. A new design of a powered ankle-foot prosthesis is proposed to obtain a wide range of motion and an adequate power for a push-off step. The design methodology for this prosthesis has three points. In the first one, a dimensionless kinematic model of the lower limb in the sagittal plane is built, through an experimental campaign with healthy subjects, to calculate the angles of lower limb during the gait. In the second point a multibody inverse dynamic model of the lower limb is constructed to calculate the foot-ground contact force, its point of application and the ankle torque too, entering as input data the calculated angles of the lower limb in the previous point. The third point requires, as input of the inverse dynamic model, the first dimensioning data of the ankle-foot prosthesis to obtain the load acting on the components of the prosthesis and the angle torque of the actuator during the gait cycle. Finally, an iteration cycle begins with the inverse dynamic model modifying the ankle torque and angle until these quantities during the gait are as close as possible to the physiological quantities. After the mechanical design and the construction of the prototype of the prosthesis, an experimental methodology was used for preliminary validation of the design. The preliminary tests in the laboratory on the prototype alone show that the range of motion of the ankle angle during the gait is close to a healthy person’s: 27.6° vs. 29°. The pushing force of the distal area of the prototype is 1.000 N, instead of 1.600 N, because a budget reduction forced us to choose components for the prototype with lower performance.
- Full text View on content provider's site
-
Juan Manuel Munoz-Guijosa, Rodrigo Zapata Martínez, Adrián Martínez Cendrero, and Andrés Díaz Lantada
- Materials, Vol 13, Iss 4, p 939 (2020)
- Subjects
-
rapid tooling, rapid prototyping, 3d printing, 3d printed molds, fiber-reinforced polymers (frps), biomedical devices, articular splints, computer-aided design (cad), Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Advances in additive manufacturing technologies and composite materials are starting to be combined into synergic procedures that may impact the biomedical field by helping to achieve personalized and high-performance solutions for low-resource settings. In this article, we illustrate the benefits of 3D-printed rapid molds, upon which composite fibers can be laminated in a direct and resource-efficient way, for the personalized development of articular splints. The rapid mold concept presented in this work allows for a flexible lamination and curing process, even compatible with autoclaves. We demonstrate the procedure by completely developing an autoclave-cured carbon fiber−epoxy composite ankle immobilizing, supporting, or protecting splint. These medical devices may support patients in their recovery of articular injuries and for promoting a more personalized medical care employing high-performance materials, whose mechanical response is analyzed and compared to that of commercial devices. In fact, this personalization is fundamental for enhanced ergonomics, comfort during rehabilitation, and overall aesthetics. The proposed design and manufacturing strategies may support the low-cost and user-centered development of a wide set of biomedical devices and help to delocalize the supply chain for involving local populations in the development of medical technology.
- Full text View on content provider's site
-
Alyssa Bellingham, Nicholas Bromhead, and Adam Fontecchio
- Materials, Vol 10, Iss 6, p 594 (2017)
- Subjects
-
electroluminescent, 3D-printing, rapid prototyping, light-emitting fibers, roll-to-roll process, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.
- Full text View on content provider's site
-
Toru Okabe, Edwin Martinez, Kelly Owen, Guo Lilly, Lawrence E. Murr, Sara M. Gaytan, Preston Greer, and Mari Koike
- Materials, Vol 4, Iss 10, Pp 1776-1792 (2011)
- Subjects
-
rapid prototyping, titanium alloy, mechanical properties, grindability, corrosion behavior, dental applications, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam ABÒ) in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast) were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought) was used as a control. The mechanical properties, corrosion properties and grindability (wear properties) were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05). The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.
- Full text View on content provider's site
5. Fracture Load of an Orthodontic Appliance for Robin Sequence Treatment in a Digital Workflow [2021]
-
Maite Aretxabaleta, Alexander B. Xepapadeas, Christian F. Poets, Bernd Koos, and Sebastian Spintzyk
- Materials, Vol 14, Iss 344, p 344 (2021)
- Subjects
-
additive manufacturing, subtractive manufacturing, vat polymerization, SLA, DLP, rapid prototyping, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
CAD/CAM technologies and materials have the potential to improve the treatment of Robin Sequence with orthodontic appliances (Tübingen palatal plate, TPP). However, studies on the provided suitability and safety are lacking. The present study evaluates CAD/CAM technologies and materials for implementation into the workflow for producing these orthodontic appliances (TPPs), manufactured by different techniques and materials: additive manufacturing (AM) and subtractive manufacturing (SM) technologies vs. conventional manufacturing. The fracture load was obtained in a universal testing machine, and the breaking behavior of each bunch, as well as the necessity of adding a safety wire, was evaluated. The minimum fracture load was used to calculate the safety factor (SF) provided by each material. Secondary factors included manufacturing time, material cost and reproducibility. Dental LT clear showed the highest fracture load and best breaking behavior among AM materials. The highest fracture load and safety factor were obtained with Smile polyether ether ketone (PEEK). For the prototyping stage, the use of a Freeprint tray (SF = 114.145) is recommended. For final manufacturing, either the cost-effective approach, Dental LT clear (SF = 232.13%), or the safest but most expensive approach, Smile PEEK (SF = 491.48%), can be recommended.
- Full text View on content provider's site
-
Mika Salmi
- Materials, Vol 14, Iss 191, p 191 (2021)
- Subjects
-
additive manufacturing, rapid manufacturing, rapid prototyping, 3D printing, medical, implants, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Additive manufacturing (AM, 3D printing) is used in many fields and different industries. In the medical and dental field, every patient is unique and, therefore, AM has significant potential in personalized and customized solutions. This review explores what additive manufacturing processes and materials are utilized in medical and dental applications, especially focusing on processes that are less commonly used. The processes are categorized in ISO/ASTM process classes: powder bed fusion, material extrusion, VAT photopolymerization, material jetting, binder jetting, sheet lamination and directed energy deposition combined with classification of medical applications of AM. Based on the findings, it seems that directed energy deposition is utilized rarely only in implants and sheet lamination rarely for medical models or phantoms. Powder bed fusion, material extrusion and VAT photopolymerization are utilized in all categories. Material jetting is not used for implants and biomanufacturing, and binder jetting is not utilized for tools, instruments and parts for medical devices. The most common materials are thermoplastics, photopolymers and metals such as titanium alloys. If standard terminology of AM would be followed, this would allow a more systematic review of the utilization of different AM processes. Current development in binder jetting would allow more possibilities in the future.
- Full text View on content provider's site
-
Sebastian Kreß, Roland Schaller-Ammann, Jürgen Feiel, Joachim Priedl, Cornelia Kasper, and Dominik Egger
- Materials, Vol 13, Iss 3011, p 3011 (2020)
- Subjects
-
biocompatibility, rapid prototyping, photopolymers, cell culture devices, 3D printing, stereolithography, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
3D printing is increasingly important for the rapid prototyping of advanced and tailor-made cell culture devices. In this context, stereolithography represents a method for the rapid generation of prototypes from photocurable polymers. However, the biocompatibility of commercially available photopolymers is largely unknown. Therefore, we evaluated the cytotoxicity of six polymers, two of them certified as biocompatible according to ISO 10993-5:2009, and we evaluated, if coating with Parylene, an inert polymer widely used in medical applications, might shield cells from the cytotoxic effects of a toxic polymer. In addition, we evaluated the processability, reliability, and consistency of the details printed. Human mesenchymal stem cells (MSCs) were used for cytotoxicity testing as they are widely used and promising for numerous applications in regenerative medicine. MSCs were incubated together with printed photopolymers, and the cytotoxicity was assessed. All photopolymers significantly reduced the viability of MSCs while the officially biocompatible resins displayed minor toxic effects. Further, coating with Parylene completely protected MSCs from toxic effects. In conclusion, none of the tested polymers can be fully recommended for rapid prototyping of cell culture devices. However, coating with Parylene can shield cells from toxic effects and thus might represent a viable option until more compatible materials are available.
- Full text View on content provider's site
-
Łukasz Gierz and Piotr Markowski
- Materials, Vol 13, Iss 3000, p 3000 (2020)
- Subjects
-
pneumatic seed drill, rapid prototyping, distribution head, diffuser, diffuser variant, distribution accuracy, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Due to the sustainable development of agriculture machines with large working widths of 4–6 m or even 9–12 m are increasingly often used for agrotechnical operations. The sowing machinery whose working widths are much bigger than the width of the seed box is equipped with a pneumatic system for transporting seeds from the seed box to coulters. One of the structural elements that affect the sowing accuracy in such seed drills is the distribution head with a diffuser. This article is about research on the influence of the distribution head deviation from the vertical position and constructional variants of the diffuser (the number of diffusion rings and the configuration of their position in the diffuser pipe, which is the distance between them) on the accuracy of distribution of a stream of rye and oat seeds (a seed-and-air stream), which differ in physical characteristics. The main elements, i.e., the innovative stream distributor in the head and the diffusion rings were made using an original design and the rapid prototyping method. The research proved that a change of 0–10° in the angle of the distribution head deviation from the vertical position significantly affected the sowing quality of oat seeds only. The position (density) of the diffusion rings in the lower section of the diffuser (near the supply elbow) was the most effective for both oat and rye seeds, where the average values of the coefficient of variation were 5.31% and 4.62%, respectively. The research results can be used to redesign the construction of the diffuser of the seed drill distribution head so as to reduce the resistance of transport of the seed-and-air mixture in order to improve seed sowing evenness.
- Full text View on content provider's site
-
Tomasz Kozior, Jerzy Bochnia, Paweł Zmarzły, Damian Gogolewski, and Thomas G. Mathia
- Materials, Vol 13, Iss 4372, p 4372 (2020)
- Subjects
-
freeform surface, 3D printing, waviness, rapid prototyping, surface topography, SLM technology, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
The paper presents the results of tests of surface waviness of samples made in the powder bed fusion technology. The models were built using 316L steel-based powder with high corrosion resistance. The samples were placed on the construction platform at three different angles (0°, 45°, 90°) in XZ plane. Then, using an optical profilometer, the parameters of the geometric structure of the surface of the primary profile and the separated waviness component were measured. Analyzing the results of the test, it can be stated that the orientation of model arrangement has an impact on the quality of the technological surface texture, what has significance impact on wear processes and mechanical properties.
- Full text View on content provider's site
-
Jorge Barrios-Muriel, Francisco Romero-Sánchez, Francisco Javier Alonso-Sánchez, and David Rodríguez Salgado
- Materials, Vol 13, Iss 2, p 295 (2020)
- Subjects
-
rapid prototyping, additive manufacturing, orthoses, prostheses, fused deposition modeling, laminated object manufacturing, selective laser sintering, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
In this work, the recent advances for rapid prototyping in the orthoprosthetic industry are presented. Specifically, the manufacturing process of orthoprosthetic aids are analysed, as thier use is widely extended in orthopedic surgery. These devices are devoted to either correct posture or movement (orthosis) or to substitute a body segment (prosthesis) while maintaining functionality. The manufacturing process is traditionally mainly hand-crafted: The subject’s morphology is taken by means of plaster molds, and the manufacture is performed individually, by adjusting the prototype over the subject. This industry has incorporated computer aided design (CAD), computed aided engineering (CAE) and computed aided manufacturing (CAM) tools; however, the true revolution is the result of the application of rapid prototyping technologies (RPT). Techniques such as fused deposition modelling (FDM), selective laser sintering (SLS), laminated object manufacturing (LOM), and 3D printing (3DP) are some examples of the available methodologies in the manufacturing industry that, step by step, are being included in the rehabilitation engineering market—an engineering field with growth and prospects in the coming years. In this work we analyse different methodologies for additive manufacturing along with the principal methods for collecting 3D body shapes and their application in the manufacturing of functional devices for rehabilitation purposes such as splints, ankle-foot orthoses, or arm prostheses.
- Full text View on content provider's site
-
Giovanni Spinelli, Patrizia Lamberti, Vincenzo Tucci, Rumiana Kotsilkova, Evgeni Ivanov, Dzhihan Menseidov, Carlo Naddeo, Vittorio Romano, Liberata Guadagno, Renata Adami, Darya Meisak, Dzmitry Bychanok, and Polina Kuzhir
- Materials, Vol 12, Iss 15, p 2369 (2019)
- Subjects
-
3D prototyping, 3D filaments, additive manufacturing, multi-wall carbon nanotubes, graphene platelets, PLA, thermal, electric and electromagnetic properties, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Electromagnetic and thermal properties of a non-conventional polymer nanocomposite based on thermoplastic Polylactic acid (PLA, Ingeo™) filled, in different weight percentage, with multi-walled carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), as well as a mixture of both fillers (MWCNTs/GNPs), are analyzed. The combination of notable electrical, thermal, and electromagnetic (EM) properties of the carbon fillers, in concentrations above the percolation threshold, together with the good processability of the PLA matrix gives rise to innovative filaments for 3D printing. In particular, the shielding efficiency (SE) in the frequency range 26−37 GHz of samples increases from 0.20 dB of unfilled PLA up to 13.4 dB for composites containing MWCNTs and GNPs, corresponding to 4% and 95% of SE, respectively. The thermal conductivity of the PLA loaded with 12 wt % of GNPs is 263% higher than that of the unfilled polymer, whereas an improvement of about 99% and 190% is detected for the PLA matrix loaded with MWCNTs and both fillers, respectively. The EM and thermal characterization is combined with a morphological investigation allowing us to correlate the dispersion states of the fillers within the polymer matrix with the observed EM and thermal properties. The EM and thermal characteristics exhibited by the nanocomposites make them suitable for packaging applications of electronic devices with electromagnetic interference (EMI) shielding and thermal dissipation features.
- Full text View on content provider's site
-
Dorit Nötzel, Ralf Eickhoff, and Thomas Hanemann
- Materials, Vol 11, Iss 8, p 1463 (2018)
- Subjects
-
3D printing, FFF, FDM, polymer-ceramic composite, ceramic printing, rapid prototyping, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
With respect to rapid prototyping of ceramic components, there are known only a few processes (stereo lithography, binder jetting). In this work, a new process chain is described in detail, showing that ceramics can be printed in a very cost-efficient way. We developed a ceramic–polymer composite as filament material that can be printed on a low-cost fused filament fabrication (FFF) desktop printer, even with very small nozzle sizes enabling very small geometric feature sizes. The thermal post-processing, with debinding and sintering, is very close to the ceramic injection molding (CIM) process chain.
- Full text View on content provider's site
-
Željka P. Kačarević, Patrick M. Rider, Said Alkildani, Sujith Retnasingh, Ralf Smeets, Ole Jung, Zrinka Ivanišević, and Mike Barbeck
- Materials, Vol 11, Iss 11, p 2199 (2018)
- Subjects
-
additive manufacturing, 3D scaffolds, inkjet, extrusion, stereolithography, laser-assisted, rapid prototyping, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Bioprinting is an emerging field in regenerative medicine. Producing cell-laden, three-dimensional structures to mimic bodily tissues has an important role not only in tissue engineering, but also in drug delivery and cancer studies. Bioprinting can provide patient-specific spatial geometry, controlled microstructures and the positioning of different cell types for the fabrication of tissue engineering scaffolds. In this brief review, the different fabrication techniques: laser-based, extrusion-based and inkjet-based bioprinting, are defined, elaborated and compared. Advantages and challenges of each technique are addressed as well as the current research status of each technique towards various tissue types. Nozzle-based techniques, like inkjet and extrusion printing, and laser-based techniques, like stereolithography and laser-assisted bioprinting, are all capable of producing successful bioprinted scaffolds. These four techniques were found to have diverse effects on cell viability, resolution and print fidelity. Additionally, the choice of materials and their concentrations were also found to impact the printing characteristics. Each technique has demonstrated individual advantages and disadvantages with more recent research conduct involving multiple techniques to combine the advantages of each technique.
- Full text View on content provider's site
-
Darío R. Quiñones, Jorge Ferragud-Agulló, Ricardo Pérez-Feito, Juan A. García-Manrique, Santiago Canals, and David Moratal
- Materials, Vol 11, Iss 9, p 1531 (2018)
- Subjects
-
brain, rapid prototyping, atlas, rat, magnetic resonance imaging, educative model, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
In biology and neuroscience courses, brain anatomy is usually explained using Magnetic Resonance (MR) images or histological sections of different orientations. These can show the most important macroscopic areas in an animals’ brain. However, this method is neither dynamic nor intuitive. In this work, an anatomical 3D printed rat brain with educative purposes is presented. Hand manipulation of the structure, facilitated by the scale up of its dimensions, and the ability to dismantle the “brain” into some of its constituent parts, facilitates the understanding of the 3D organization of the nervous system. This is an alternative method for teaching students in general and biologists in particular the rat brain anatomy. The 3D printed rat brain has been developed with eight parts, which correspond to the most important divisions of the brain. Each part has been fitted with interconnections, facilitating assembling and disassembling as required. These solid parts were smoothed out, modified and manufactured through 3D printing techniques with poly(lactic acid) (PLA). This work presents a methodology that could be expanded to almost any field of clinical and pre-clinical research, and moreover it avoids the need for dissecting animals to teach brain anatomy.
- Full text View on content provider's site
-
Josefa Predestinación García-Ruíz and Andrés Díaz Lantada
- Materials, Vol 11, Iss 1, p 23 (2017)
- Subjects
-
tissue engineering, scaffolds for tissue repair, stem cell niches, cell culture niches, stem cell conditioned medium, carbon fiber, rapid prototyping, additive manufacture, computer-aided design &, engineering, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
In this study, we present a novel approach towards the straightforward, rapid, and low-cost development of biomimetic composite scaffolds for tissue engineering strategies. The system is based on the additive manufacture of a computer-designed lattice structure or framework, into which carbon fibers are subsequently knitted or incorporated. The 3D-printed lattice structure acts as support and the knitted carbon fibers perform as driving elements for promoting cell colonization of the three-dimensional construct. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is also used for improving the scaffold’s response and promoting cell adhesion, proliferation, and viability. Cell culture results—in which scaffolds become buried in collagen type II—provide relevant information regarding the viability of the composite scaffolds used and the prospective applications of the proposed approach. In fact, the advanced composite scaffold developed, together with the conditioned medium functionalization, constitutes a biomimetic stem cell niche with clear potential, not just for tendon and ligament repair, but also for cartilage and endochondral bone formation and regeneration strategies.
- Full text View on content provider's site
-
Chee Kai Chua, Wai Yee Yeong, and Jia An
- Materials, Vol 10, Iss 3, p 243 (2017)
- Subjects
-
biomanufacturing, biofabrication, bioprinting, 3D printing, rapid prototyping, additive manufacturing, tissue engineering, drug delivery, implants, lab-on-chips, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.
- Full text View on content provider's site
-
Filipe Gomes Vieira, Alexandre S. Scari, Pedro Américo Almeida Magalhães Júnior, Jordana S. R. Martins, and Cristina Almeida Magalhães
- Materials, Vol 12, Iss 20, p 3427 (2019)
- Subjects
-
photoelasticity, stereolithography, stress analysis, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Digital photoelasticity is an important segment of optical metrology for stress analysis by digital photographic images. Advances in digital image processing, data acquisition, standard recognition and data storage allow the utilization of computer-aided techniques in the automation and improvement of the digital photoelastic technique. The objective of this study is to develop new techniques using 3D rapid prototyping with transparent resins in digital photoelasticity. Some innovations are proposed (e.g., a tapered roller bearing built with 3D rapid prototyping with transparent resin and the final assembly with the specimens prototyped separately). A metrology study is carried out with the new techniques developed.
- Full text View on content provider's site
-
Myeongjoo Seo, Suwon Hwang, Taeseung Hwang, and Junyeob Yeo
- Materials, Vol 12, Iss 18, p 2955 (2019)
- Subjects
-
laser, resin polymer, UV laser curing, laser nano welding, 3D printing process, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Recently, the rapid prototyping process was actively studied in industry and academia. The rapid prototyping process has various advantages such as a rapid processing speed, high processing freedom, high efficiency, and eco-friendly process compared to the conventional etching process. However, in general, it is difficult to directly apply to the fabrication of electric devices, as the molding made by the rapid prototyping process is usually a nonconductive polymer. Even when a conductive material is used for the rapid prototyping process, the molding is made by a single material; thus, its application is limited. In this study, we introduce a simple alternative process for the fabrication of a soft sensor using laser processing techniques. The UV laser curing of polymer resin and laser welding of nanowires are conducted and analyzed. Through the laser processing techniques, we can easily fabricate soft sensors, which is considered an alternative 3D printing process for the fabrication of soft sensors.
- Full text View on content provider's site
-
Jingjunjiao Long, Ashveen Nand, and Sudip Ray
- Materials, Vol 14, Iss 203, p 203 (2021)
- Subjects
-
3D-printing, additive manufacturing, spectroscopy, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Additive manufacturing (AM) is a rapidly expanding material production technique that brings new opportunities in various fields as it enables fast and low-cost prototyping as well as easy customisation. However, it is still hindered by raw material selection, processing defects and final product assessment/adjustment in pre-, in- and post-processing stages. Spectroscopic techniques offer suitable inspection, diagnosis and product trouble-shooting at each stage of AM processing. This review outlines the limitations in AM processes and the prospective role of spectroscopy in addressing these challenges. An overview on the principles and applications of AM techniques is presented, followed by the principles of spectroscopic techniques involved in AM and their applications in assessing additively manufactured parts.
- Full text View on content provider's site
20. Corrosion and Corrosion Protection of Additively Manufactured Aluminium Alloys—A Critical Review [2020]
-
Reynier I. Revilla, Donovan Verkens, Tim Rubben, and Iris De Graeve
- Materials, Vol 13, Iss 4804, p 4804 (2020)
- Subjects
-
metal additive manufacturing, aluminium alloys, corrosion behaviour, microstructure, corrosion protection, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Metal additive manufacturing (MAM), also known as metal 3D printing, is a rapidly growing industry based on the fabrication of complex metal parts with improved functionalities. During MAM, metal parts are produced in a layer by layer fashion using 3D computer-aided design models. The advantages of using this technology include the reduction of materials waste, high efficiency for small production runs, near net shape manufacturing, ease of change or revision of versions of a product, support of lattice structures, and rapid prototyping. Numerous metals and alloys can nowadays be processed by additive manufacturing techniques. Among them, Al-based alloys are of great interest in the automotive and aeronautic industry due to their relatively high strength and stiffness to weight ratio, good wear and corrosion resistance, and recycling potential. The special conditions associated with the MAM processes are known to produce in these materials a fine microstructure with unique directional growth features far from equilibrium. This distinctive microstructure, together with other special features and microstructural defects originating from the additive manufacturing process, is known to greatly influence the corrosion behaviour of these materials. Several works have already been conducted in this direction. However, several issues concerning the corrosion and corrosion protection of these materials are still not well understood. This work reviews the main studies to date investigating the corrosion aspects of additively manufactured aluminium alloys. It also provides a summary and outlook of relevant directions to be explored in future research.
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 20
Next