Keywords: metallization; radio frequency performance; SLA reflector; three-dimensional printed Abstract A novel high precision and lightweight reflector antenna is proposed. The fabrication process of the reflector adopted Stereo Lithography Apparatus (SLA) printed and metallization. The proposed SLA Reflector (SLAR) antenna structure adopts three-dimensional-printed, which can design complex geometric shapes flexibly and rapid prototyping. That is a good substitute for the traditional method of millimeter wave reflector processing. In order to realize radio frequency (RF) characteristics perfectly, the metallization process of photosensitive resin was elaborated, which realized by first electroless nickel plating, then copper electroplating, and finally chromium electroplating on the protective layer. For verification, the designed reflector antenna was manufactured and measured. The reflectivity of SLAR was measured well by the bow method, which validates excellent fabrication accuracy and reliability. The gain and pattern were measured in the anechoic chamber. The results show that the proposed reflector antenna achieves the gain of 25dBi and the 3dB gain bandwidth of 43% over the full Ka-band. A good agreement can be observed between measurement and simulation. Biographical information: Liwei Guo received the B.E. degree in from the Guilin University of Electronic Technology, Guilin, China in 2006. She is currently pursuing the PhD degree in Guilin University of Electronic Technology, Guilin, China. Her current research interests include metasurfaces, millimeter-wave reflector antenna. Simin Li received the B.S. degree in wireless communication engineering from Nanjing University of Posts and Telecommunications, Nanjing, China, in 1984, and the M.S. and PhD degrees in electronics engineering from the University of Electronic Science and Technology of China, Chengdu, China, in 1989 and 2007, respectively. Dr. Li is currently the President and a Professor with Guangxi University of Science and Technology, Liuzhou, China. His current research interests include the design of electrically small antennas, antenna arrays for high-frequency communication systems, and wireless sensor networks. Xing Jiang received the Master's degree in electromagnetic field and microwave technology from Beijing Institute of Technology, Beijing, China, in 1986. Since 2000, she has been a Professor with the Guilin University of Electronic Technology, Guilin, China. She was sponsored by the National Natural Science Foundation of China and the Natural Science Foundation of Guangxi. Her research interests include smart communication system design, conformal antenna array, and bioelectromagnetics. Xin Liao received the B.E. degree from Chongqing University of Posts and Telecommunications, Chongqing, China, in 1990. He is currently a Lecturer with the Guilin University of Electronic Technology, Guilin, China. His research interests include Electromagnetic Compatibility and antenna measurement. Ying Zhang received the B.E. degree in Harbin Institute of Technology of optical instrument. Now she is a researcher at Beijing Simulation Center. Her research interest is the simulation of visible light/infrared guidance and control systems. Bin Shi is an associate researcher- in Beijing Simulation Center. Her research interest is the simulation of radio frequency target accuracy. Article Note: Funding information Guangxi Innovation Driven Development Special Fund Project, Grant/Award Number: GUIKEAA19254012; Innovation Project of Guangxi Graduate Education, Grant/Award Number: YCBZ2019051; National Natural Science Foundation of China, Grant/Award Numbers: 61761012, 61661011 Byline: Liwei Guo, Simin Li, Xing Jiang, Xin Liao, Ying Zhang, Bin Shi