articles+ search results
4,735 articles+ results
1 - 20
Next
Number of results to display per page
-
Florian Hubert, Tobias Bader, Larissa Wahl, Andreas Hofmann, Konstantin Lomakin, Mark Sippel, Nahum Travitzky, and Gerald Gold
- Applied Sciences, Vol 12, Iss 212, p 212 (2022)
- Subjects
-
printing, additive manufacturing (AM), ceramics, rectangular waveguides, rapid prototyping, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
Ceramic materials are chemical- and temperature-resistant and, therefore, enable novel application fields ranging from automotive to aerospace. With this in mind, this contribution focuses on developing an additive manufacturing approach for 3D-printed waveguides made of ceramic materials. In particular, a special design approach for ceramic waveguides, which introduces non-radiating slots into the waveguides sidewalls, and a customized metallization process, are presented. The developed process allows for using conventional stereolithographic desktop-grade 3D-printers. The proposed approach has, therefore, benefits such as low-cost fabrication, moderate handling effort and independence of the concrete waveguide geometry. The performance of a manufactured ceramic WR12 waveguide is compared to a commercial waveguide and a conventionally printed counterpart. For that reason, relevant properties, such as surface roughness and waveguide geometry, are characterized. Parsing the electrical measurements, the ceramic waveguide specimen features an attenuation coefficient of 30–60 dB/m within the E-Band. The measured attenuation coefficient is 200% and 300% higher compared to the epoxy resin and the commercial waveguide and is attributed to the increased surface roughness of the ceramic substrate.
- Full text View on content provider's site
-
Lucian Matei, Mihaiela Iliescu, Ilie Dumitru, Mihaela Racila, Glencora-Maria Benec Mincu, and Laurentiu Racila
- Applied Sciences, Vol 12, Iss 262, p 262 (2022)
- Subjects
-
overconstrained mechanisms, kinematical analysis, automotive application, virtual prototyping, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
The paper presents some possible applications started from a six revolute joints (6R) overconstrained mechanism. The spatial devices obtained are based on the 6R Wohlhart symmetric mechanism in a special spatial position, with three non-adjacent joints constrained to remain in a fixed plane. This special spatial disposition allows us to obtain some reconfigurable/foldable devices, with an estimated application in the automotive industry field.
- Full text View on content provider's site
-
Isad Saric, Enis Muratovic, Adil Muminovic, Adis J. Muminovic, Mirsad Colic, Muamer Delic, Nedim Pervan, and Elmedin Mesic
- Applied Sciences, Vol 12, Iss 353, p 353 (2022)
- Subjects
-
integrated intelligent CAD system, springs, parametric 3D modelling, FEM analysis, prototyping, C#, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
This paper presents the development and implementation of integrated intelligent CAD (computer aided design) system for design, analysis and prototyping of the compression and torsion springs. The article shows a structure of the developed system named Springs IICAD (integrated intelligent computer aided design). The system bounds synthesis and analysis design phases by means of the utilization of parametric 3D (three-dimensional) modeling, FEM (finite element method) analysis and prototyping. The development of the module for spring calculation and system integration was performed in the C# (C Sharp) programming language. Three-dimensional geometric modeling and structural analysis were performed in the CATIA (computer aided three-dimensional interactive application) software, while prototyping is performed with the Ultimaker 3.0 3D printer with support of Cura software. The developed Springs IICAD system interlinks computation module with the basic parametric models in such a way that spring calculation, shaping, FEM analysis and prototype preparation are performed instantly.
- Full text View on content provider's site
-
Nils König, Ferdinand Schockenhoff, Adrian König, and Frank Diermeyer
- Designs, Vol 6, Iss 2, p 2 (2022)
- Subjects
-
design method, joint design, segmentation, additive manufacturing, rapid prototyping, fused deposition modeling (FDM), Technology, Engineering design, and TA174
- Abstract
-
Rapid prototyping has become increasingly popular over the past years. However, its application is heavily confined to a part size that fits the small build volume of additive machines. This paper presents a universal design method to overcome this limitation while preserving the economic advantages of rapid prototyping over conventional processes. It segments large, thin-walled parts and joins the segments. The method aims to produce an assembly with minimal loss to the performance and characteristics of a solid part. Based on a set of requirements, a universal segmentation approach and a novel hybrid joint design combining adhesive bonding and press fitting are developed. This design allows for the force transmission, positioning, and assembly of the segments adaptive to their individual geometry. The method is tailored to fused deposition modeling (FDM) by minimizing the need for support structures and actively compensating for manufacturing tolerances. While a universal application cannot be guaranteed, the adaptive design was proven for a variety of complex geometries. Using automotive trim parts as an example, the usability, benefits, and novelty of the design method is presented. The method itself shows a high potential to overcome the build volume limitation for thin-walled parts in an economic manner.
- Full text View on content provider's site
-
Nectarios Vidakis, Markos Petousis, Athena Maniadi, and Emmanuel Arapis
- Electronics, Vol 11, Iss 12, p 12 (2022)
- Subjects
-
sculpture, arduino, marble, design, carving tool, prototyping, Electronics, and TK7800-8360
- Abstract
-
The art of sculpting is related to the processing of brittle materials, such as granite, marble, and stone, and is implemented using percussive hand tools or rotational roughing tools. The outcome of percussion carving is still directly related to the technique, experience, and capacity of the sculptor. Any attempt to automate the art of sculpturing is exhausted in the subtraction method of brittle materials using a rotating tool. In the process of percussion carving, there is no equivalent expertise. In this work, we present the design, manufacturing (3D printing and CNC machining), and use of a smart, percussion carving tool, either manually by the hand of a sculptor, adjusted in a percussive pneumatic hammer, or guided by a digitally driven machine. The scope is to measure and record the technological variables and sizes that describe and document the carving process through the sensors and electronic devices that the smart tool incorporates, the development and programming of which was implemented for the purposes of this work. The smart carving tool was meticulously tested in various carving stones and stressing scenarios to test the functionality and efficacy of the tool. All the tests were successfully implemented according to the specifications set.
- Full text View on content provider's site
-
Song-Pei Ye, Yi-Hua Liu, Chun-Yu Liu, Kun-Che Ho, and Yi-Feng Luo
- Electronics, Vol 11, Iss 43, p 43 (2022)
- Subjects
-
neural network, variable step size, maximum power point tracking, incremental conductance method, Electronics, and TK7800-8360
- Abstract
-
In conventional adaptive variable step size (VSS) maximum power point tracking (MPPT) algorithms, a scaling factor is utilized to determine the required perturbation step. However, the performance of the adaptive VSS MPPT algorithm is essentially decided by the choice of scaling factor. In this paper, a neural network assisted variable step size (VSS) incremental conductance (IncCond) MPPT method is proposed. The proposed method utilizes a neural network to obtain an optimal scaling factor that should be used in current irradiance level for the VSS IncCond MPPT method. Only two operating points on the characteristic curve are needed to acquire the optimal scaling factor. Hence, expensive irradiance and temperature sensors are not required. By adopting a proper scaling factor, the performance of the conventional VSS IncCond method can be improved, especially under rapid varying irradiance conditions. To validate the studied algorithm, a 400 W prototyping circuit is built and experiments are carried out accordingly. Comparing with perturb and observe (P&O), α-P&O, golden section and conventional VSS IncCond MPPT methods, the proposed method can improve the tracking loss by 95.58%, 42.51%, 93.66%, and 66.14% under EN50530 testing condition, respectively.
- Full text View on content provider's site
-
Inês Miranda, Andrews Souza, Paulo Sousa, João Ribeiro, Elisabete M. S. Castanheira, Rui Lima, and Graça Minas
- Journal of Functional Biomaterials, Vol 13, Iss 2, p 2 (2022)
- Subjects
-
polydimethylsiloxane, PDMS properties, PDMS applications, microfluidics, biomedical engineering, Biotechnology, TP248.13-248.65, Medicine (General), and R5-920
- Abstract
-
Polydimethylsiloxane (PDMS) is an elastomer with excellent optical, electrical and mechanical properties, which makes it well-suited for several engineering applications. Due to its biocompatibility, PDMS is widely used for biomedical purposes. This widespread use has also led to the massification of the soft-lithography technique, introduced for facilitating the rapid prototyping of micro and nanostructures using elastomeric materials, most notably PDMS. This technique has allowed advances in microfluidic, electronic and biomedical fields. In this review, an overview of the properties of PDMS and some of its commonly used treatments, aiming at the suitability to those fields’ needs, are presented. Applications such as microchips in the biomedical field, replication of cardiovascular flow and medical implants are also reviewed.
- Full text View on content provider's site
-
Antonella Sola, Yilin Sai, Adrian Trinchi, Clement Chu, Shirley Shen, and Shiping Chen
- Materials, Vol 15, Iss 85, p 85 (2022)
- Subjects
-
additive manufacturing, 3D printing, tag, traceability, provenance, anti-counterfeiting, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Additive manufacturing (AM) is rapidly evolving from “rapid prototyping” to “industrial production”. AM enables the fabrication of bespoke components with complicated geometries in the high-performance areas of aerospace, defence and biomedicine. Providing AM parts with a tagging feature that allows them to be identified like a fingerprint can be crucial for logistics, certification and anti-counterfeiting purposes. Whereas the implementation of an overarching strategy for the complete traceability of AM components downstream from designer to end user is, by nature, a cross-disciplinary task that involves legal, digital and technological issues, materials engineers are on the front line of research to understand what kind of tag is preferred for each kind of object and how existing materials and 3D printing hardware should be synergistically modified to create such tag. This review provides a critical analysis of the main requirements and properties of tagging features for authentication and identification of AM parts, of the strategies that have been put in place so far, and of the future challenges that are emerging to make these systems efficient and suitable for digitalisation. It is envisaged that this literature survey will help scientists and developers answer the challenging question: “How can we embed a tagging feature in an AM part?”.
- Full text View on content provider's site
-
Josué García-Ávila, Ciro A. Rodríguez, Adriana Vargas-Martínez, Erick Ramírez-Cedillo, and J. Israel Martínez-López
- Materials, Vol 15, Iss 256, p 256 (2022)
- Subjects
-
additive manufacturing, electronic skin, Low-Force Stereolithography, room-temperature-vulcanizing, RTV, single-walled carbon nanotubes, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
The strategy of embedding conductive materials on polymeric matrices has produced functional and wearable artificial electronic skin prototypes capable of transduction signals, such as pressure, force, humidity, or temperature. However, these prototypes are expensive and cover small areas. This study proposes a more affordable manufacturing strategy for manufacturing conductive layers with 6 × 6 matrix micropatterns of RTV-2 silicone rubber and Single-Walled Carbon Nanotubes (SWCNT). A novel mold with two cavities and two different micropatterns was designed and tested as a proof-of-concept using Low-Force Stereolithography-based additive manufacturing (AM). The effect SWCNT concentrations (3 wt.%, 4 wt.%, and 5 wt.%) on the mechanical properties were characterized by quasi-static axial deformation tests, which allowed them to stretch up to ~160%. The elastomeric soft material’s hysteresis energy (Mullin’s effect) was fitted using the Ogden–Roxburgh model and the Nelder–Mead algorithm. The assessment showed that the resulting multilayer material exhibits high flexibility and high conductivity (surface resistivity ~7.97 × 104 Ω/sq) and that robust soft tooling can be used for other devices.
- Full text View on content provider's site
-
Amin Javidanbardan, Ana M. Azevedo, Virginia Chu, and João P. Conde
- Micromachines, Vol 13, Iss 6, p 6 (2022)
- Subjects
-
micromachining strategies, micro/mesoscale milling, 3D microfluidic structure, PMMA, PDMS, surface quality, Mechanical engineering and machinery, and TJ1-1570
- Abstract
-
In recent years, there has been an increased interest in exploring the potential of micro-and mesoscale milling technologies for developing cost-effective microfluidic systems with high design flexibility and a rapid microfabrication process that does not require a cleanroom. Nevertheless, the number of current studies aiming to fully understand and establish the benefits of this technique in developing high-quality microsystems with simple integrability is still limited. In the first part of this study, we define a systematic and adaptable strategy for developing high-quality poly(methyl methacrylate) (PMMA)-based micromilled structures. A case study of the average surface roughness (Ra) minimization of a cuboid column is presented to better illustrate some of the developed strategies. In this example, the Ra of a cuboid column was reduced from 1.68 μm to 0.223 μm by implementing milling optimization and postprocessing steps. In the second part of this paper, new strategies for developing a 3D microsystem were introduced by using a specifically designed negative PMMA master mold for polydimethylsiloxane (PDMS) double-casting prototyping. The reported results in this study demonstrate the robustness of the proposed approach for developing microfluidic structures with high surface quality and structural integrability in a reasonable amount of time.
- Full text View on content provider's site
-
Dhanesh G. Kasi, Mees N. S. de Graaf, Paul A. Motreuil-Ragot, Jean-Phillipe M. S. Frimat, Michel D. Ferrari, Pasqualina M. Sarro, Massimo Mastrangeli, Arn M. J. M. van den Maagdenberg, Christine L. Mummery, and Valeria V. Orlova
- Micromachines, Vol 13, Iss 49, p 49 (2022)
- Subjects
-
SU-8, photoresist, polydimethylsiloxane (PDMS), maskless photolithography, grayscale photolithography, backside exposure, Mechanical engineering and machinery, and TJ1-1570
- Abstract
-
Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices.
- Full text View on content provider's site
-
Márton Tamás Birosz, Mátyás Andó, and Ferenc Safranyik
- Polymers, Vol 14, Iss 55, p 55 (2022)
- Subjects
-
FDM, 3D printing, additive manufacturing, shear test, adhesion, Organic chemistry, and QD241-441
- Abstract
-
Additive Manufacturing (AM) became a popular engineering solution not only for Rapid Prototyping (RP) as a part of product development but as an effective solution for producing complex geometries as fully functional components. Even the modern engineering tools, such as the different simulation software, have a shape optimization solution especially for parts created by AM. To extend the application of these methods in this work, the failure properties of the 3D-printed parts have been investigated via shear test measurements. The layer adhesion can be calculated based on the results, which can be used later for further numerical modeling. In conclusion, it can be stated that the layer formation and the structure of the infill have a great influence on the mechanical properties. The layers formed following the conventional zig-zag infill style show a random failure, and the layers created via extruded concentric circles show more predictable load resistance.
- Full text View on content provider's site
-
Robert Kazała, Sławomir Luściński, Paweł Strączyński, and Albena Taneva
- Processes, Vol 10, Iss 21, p 21 (2022)
- Subjects
-
Industry 4.0, Digital Twin, simulation modelling, Chemical technology, TP1-1185, Chemistry, and QD1-999
- Abstract
-
This article presents the most valuable and applicable open-source tools and communication technologies that may be employed to create models of production processes by applying the concept of Digital Twins. In recent years, many open-source technologies, including tools and protocols, have been developed to create virtual models of production systems. The authors present the evolution and role of the Digital Twin concept as one of the key technologies for implementing the Industry 4.0 paradigm in automation and control. Based on the presented structured review of valuable open-source software dedicated to various phases and tasks that should be realised while creating the whole Digital Twin system, it was demonstrated that the available solutions cover all aspects. However, the dispersion, specialisation, and lack of integration cause this software to usually not be the first choice to implement DT. Therefore, to successfully create full-fledged models of Digital Twins by proceeding with proposed open-source solutions, it is necessary to make additional efforts due to integration requirements.
- Full text View on content provider's site
14. ADDITIVE MANUFACTURING: WILL CHINA BECOME THE 3D PRINTING FACTORY OF THE WORLD IN THE NEAR FUTURE? [2022]
-
Răzvan Voinescu
- Revista de Economie Mondială, Vol 13, Iss 2, Pp 23-47 (2022)
- Subjects
-
additive manufacturing, 3d printing, china, Economics as a science, and HB71-74
- Abstract
-
Additive manufacturing - or three-dimensional (3D) printing - refers to a group of technologies characterised by an accelerating maturation trend, which allow the creation of three-dimensional objects based on digital models, by sequentially applying and integrating layers of various traditional and innovative materials, from metals, polymers and ceramics, to graphene and other nanomaterials and composites. The technologies have applications in a variety of industries, from consumer goods production, automotive and aircraft parts, architecture and construction, to medical services and devices, or research and defence. Globally, the additive manufacturing market, which includes equipment, materials and 3D printing as a service, as well as their applications for prototyping and rapid manufacturing, has been valued at USD 15.4billion in 2020, with existing projections reflecting a four-fold increase to USD 61.1 billion in 2027. By the same date, China – the current 'factory of the world' – is projected to have a significant but less than one-quarter share of the global market – USD14.5 billion – against the backdrop of existing gaps difficult to narrow down.
- Full text View on content provider's site
-
Krzysztof Szklanny, Marcin Wichrowski, and Alicja Wieczorkowska
- Sensors, Vol 22, Iss 14, p 14 (2022)
- Subjects
-
aphasia, assistive technology, storytelling, user-centered design, graphical user interface, usability tests, Chemical technology, and TP1-1185
- Abstract
-
Aphasia is a partial or total loss of the ability to articulate ideas or comprehend spoken language, resulting from brain damage, in a person whose language skills were previously normal. Our goal was to find out how a storytelling app can help people with aphasia to communicate and share daily experiences. For this purpose, the Aphasia Create app was created for tablets, along with Aphastory for the Google Glass device. These applications facilitate social participation and enhance quality of life by using visual storytelling forms composed of photos, drawings, icons, etc., that can be saved and shared. We performed usability tests (supervised by a neuropsychologist) on six participants with aphasia who were able to communicate. Our work contributes (1) evidence that the functions implemented in the Aphasia Create tablet app suit the needs of target users, but older people are often not familiar with tactile devices, (2) reports that the Google Glass device may be problematic for persons with right-hand paresis, and (3) a characterization of the design guidelines for apps for aphasics. Both applications can be used to work with people with aphasia, and can be further developed. Aphasic centers, in which the apps were presented, expressed interest in using them to work with patients. The Aphasia Create app won the Enactus Poland National Competition in 2015.
- Full text View on content provider's site
-
Davide Barasti, Martina Troscia, Domenico Lattuca, Alexandr Tardo, Igor Barsanti, and Paolo Pagano
- Sensors, Vol 22, Iss 246, p 246 (2022)
- Subjects
-
port community system, terminal operating system, navigation safety, logistics, e-freight, IoT-based monitoring, Chemical technology, and TP1-1185
- Abstract
-
Seaports are genuine, intermodal hubs connecting seaways to inland transport links, such as roads and railways. Seaports are located at the focal point of institutional, industrial, and control activities in a jungle of interconnected information systems. System integration is setting considerable challenges when a group of independent providers are asked to implement complementary software functionalities. For this reason, seaports are the ideal playground where software is highly composite and tailored to a large variety of final users (from the so-called port communities). Although the target would be that of shaping the Port Authorities to be providers of (digital) innovation services, the state-of-the-art is still that of considering them as final users, or proxies of them. For this reason, we show how a canonical cloud, virtualizing a distributed architecture, can be structured to host different, possibly overlapped, tenants, slicing the information system at the infrastructure, platform, and software layers. Resources at the infrastructure and platform layers are shared so that a variety of independent applications can make use of the local calculus and access the data stored in a Data Lake. Such a cloud is adopted by the Port of Livorno as a rapid prototyping framework for the development and deployment of ICT innovation services. In order to demonstrate the versatility of this framework, three case studies relating to as many prototype ICT services (Navigation Safety, e-Freight, and Logistics) released within three industrial tenants are here presented and discussed.
- Full text View on content provider's site
-
Yuanchi Zhang, Cairong Li, Wei Zhang, Junjie Deng, Yangyi Nie, Xiangfu Du, Ling Qin, and Yuxiao Lai
- Bioactive Materials, Vol 16, Iss , Pp 218-231 (2022)
- Subjects
-
Shape memory polyurethane, Magnesium, 3D printing, Robust bone regeneration, Tight-contact, Materials of engineering and construction. Mechanics of materials, TA401-492, Biology (General), and QH301-705.5
- Abstract
-
Patients with bone defects suffer from a high rate of disability and deformity. Poor contact of grafts with defective bones and insufficient osteogenic activities lead to increased loose risks and unsatisfied repair efficacy. Although self-expanding scaffolds were developed to enhance bone integration, the limitations on the high transition temperature and the unsatisfied bioactivity hindered greatly their clinical application. Herein, we report a near-infrared-responsive and tight-contacting scaffold that comprises of shape memory polyurethane (SMPU) as the thermal-responsive matrix and magnesium (Mg) as the photothermal and bioactive component, which fabricated by the low temperature rapid prototyping (LT-RP) 3D printing technology. As designed, due to synergistic effects of the components and the fabrication approach, the composite scaffold possesses a homogeneously porous structure, significantly improved mechanical properties and stable photothermal effects. The programmed scaffold can be heated to recover under near infrared irradiation in 60s. With 4 wt% Mg, the scaffold has the balanced shape fixity ratio of 93.6% and shape recovery ratio of 95.4%. The compressed composite scaffold could lift a 100 g weight under NIR light, which was more than 1700 times of its own weight. The results of the push-out tests and the finite element analysis (FEA) confirmed the tight-contacting ability of the SMPU/4 wt%Mg scaffold, which had a signficant enhancement compared to the scaffold without shape memory effects. Furthermore, The osteopromotive function of the scaffold has been demonstrated through a series of in vitro and in vivo studies. We envision this scaffold can be a clinically effective strategy for robust bone regeneration.
- Full text View on content provider's site
-
Hamza Ben Abdeljawed and Lilia El Amraoui
- Engineering Science and Technology, an International Journal, Vol 34, Iss , Pp 101092- (2022)
- Subjects
-
Digital signal processor, Universal motor, Speed control, Hardware architecture, PI controller, dSPACE MicroAutoBox, Engineering (General). Civil engineering (General), and TA1-2040
- Abstract
-
Universal motors are widely used in household appliances. When traditionally powered by AC, current harmonics are created which cause overheating of the windings and electromagnetic compatibility problems affecting the lifespan of the motor. Considering the remarkable comeback of DC power and its prospects in the electrification of homes, this paper proposes a control strategy for universal motors powered by DC using the rapid control prototyping feature offered by the dSPACE MicroAutoBox. A PI controller is designed using dominant-pole compensation method. The control strategy is simulated in Matlab/Simulink, then implemented in the MicroAutoBox via the Real-Time Interface. The simulation results are compared with those acquired by implementation through a laboratory test bench built around the MicroAutoBox and a dual full-bridge driver. The experimental results show that the designed PI controller managed to eliminate the static error and increased significantly the system dynamic performance by 26.5% in simulation and by 23.5% in practice. The robustness of the proposed control strategy against randomized load disturbances is proved by experimental tests. Furthermore, a significant improvement in power quality is reported.
- Full text View record in DOAJ
19. Low-fidelity design optimization and development of a VTOL swarm UAV with an open-source framework [2022]
-
Nikhil Sethi and Saurav Ahlawat
- Array, Vol 14, Iss , Pp 100183- (2022)
- Subjects
-
Drones, CFD, MDO, Aircraft design, Open source, PSO, Computer engineering. Computer hardware, TK7885-7895, Electronic computers. Computer science, and QA75.5-76.95
- Abstract
-
Hybrid configurations in aircraft design are highly favorable as they can achieve the appropriate trade-offs required to develop a generalized unmanned aerial system (UAS). Rapid prototyping of such systems at the student level is challenging because commercial software is expensive and difficult to interlink with other tools for creating a multi-disciplinary design. We address this challenge by conceptualizing an aircraft design framework made entirely of open-source software, libraries, and in-house code. We then use this framework to design an all-electric unmanned aerial system with transitioning Vertical Take-off and Landing (VTOL) and Fixed-Wing (FW) modes. The UAV is capable of long-range surveillance up to 100 Kilometers and carrying a maximum relief payload of 1 kg while operating in an ad-hoc wi-fi network with a swarm of similar UAVs. A low fidelity particle swarm optimization algorithm (PSO) and a comprehensive propulsion architecture is also incorporated and validated against commercial software. To validate the design, a prototype is fabricated from glass-fiber and XPS foam, integrated with appropriate sensors and tuned using ArduPilot software. The results show that low-fidelity design is a safe starting point for prototyping under constrained timelines. The study is concluded by discussing the technical challenges of using free software, and some practical considerations while flight testing a UAV with a hybrid configuration.
- Full text View record in DOAJ
20. Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning [2022]
-
Weidong Zhao, Yanling Yan, Xiangyu Chen, and Tie Wang
- The Innovation, Vol 3, Iss 4, Pp 100253- (2022)
- Subjects
-
nanoparticles, self-assembly, printing technology, patterned structure, functional devices, Science (General), and Q1-390
- Abstract
-
Functional nanoparticles (NPs) with unique photoelectric, mechanical, magnetic, and chemical properties have attracted considerable attention. Aggregated NPs rather than individual NPs are generally required for sensing, electronics, and catalysis. However, the transformation of functional NP aggregates into scalable, controllable, and affordable functional devices remains challenging. Printing is a promising additive manufacturing technology for fabricating devices from NP building blocks because of its capabilities for rapid prototyping and versatile multifunctional manufacturing. This paper reviews recent advances in NP patterning based on the combination of self-assembly and printing technologies (including two-, three-, and four-dimensional printing), introduces the basic characteristics of these methods, and discusses various fields of NP patterning applications. Public summary: • Nanoparticles (NPs) printing assembly is a good solution for patterned devices • NPs assembly can be combined with 2D, 3D, and 4D printing technologies • A variety of ink-dispersed NPs are available for printing assembly • NPs printing assembly technology is applied for nanosensing, energy storage, photodetector
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 20
Next