Martínez-Reina, C. Marlon and Amado-González, C. Eliseo
Revista Cubana de Química. ene-abr2013, Vol. 25 Issue 1, p9-19. 11p. 3 Color Photographs.
Subjects
POSTAGE stamps, NOBEL Prizes, NOBEL Prize in Chemistry, STAMP collecting, ANALYTICAL chemistry, ORGANIC chemistry awards, NATURAL products, BIOCHEMISTRY, and AWARDS
Abstract
Nobel Prizes in Chemistry and Philately, Part II, is a review of the stamps issued in different countries to commemorate the Nobel Prizes in analytical chemistry, organic chemistry, natural products and biochemistry. [ABSTRACT FROM AUTHOR]
PHOTONS, PHYSICAL organic chemistry, PHOTOCHEMISTRY, SUPRAMOLECULAR chemistry, and NUCLEAR spin
Abstract
This Perspective presents a review and survey of the science and philosophy of my research career over the past five decades at Columbia as a physical organic chemist and photochemist. I explore the role of paradigms, structure, and geometric thinking in my own cognitive and intellectual development. The Perspective describes my investigations of high energy content molecules in electronically excited states and the development of electronic spin and supramolecular photochemistry chemistry. Current research dealing with the nuclear spin chemistry of H2 incarcerated in buckyballs is illustrated. In the second part of this Perspective, I recount a personal role of the philosophy and history of science and the scientific communities' use of paradigms in their every day research and intellectual activities. Examples are given of the crucial role of geometry and structure in the rapid development of organic chemistry and physical organic chemistry over the past century. [ABSTRACT FROM AUTHOR]
Examines proposed partial least squares (PLS) multivariate statistical models for predicting concentration of hydrocarbon- and oxygen-containing functional groups for a calibration set of model homopolymers. Plasma-deposited films; Static secondary ion mass spectrometry (SIMS); PLS modeling; Preprocessing; Prediction of surface oxygen and hydrogen concentration.
COMPOSITION of water, POLYMERS, CATALYSTS, INORGANIC chemistry, and POWER resources
Abstract
The article discusses research on how the light-induced splitting of water into oxygen and hydrogen generates storable polymers and chemical fuels that could be used to address the world's energy demands. Particular attention is also given to the use of inorganic materials as semiconductor catalysts for such splits.
SUSTAINABILITY, COVID-19 pandemic, SUSTAINABLE chemistry, UNDERGRADUATES, PHYSICAL constants, and CHEMICAL laboratories
Abstract
In this section of Resonance, we invite readers to pose questions likely to be raised in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. Amidst the Covid-19 pandemic, we have planned a strategy for our institution which aims towards reuse and reduce principles of Green Chemistry. Organic preparations in the undergraduate curriculum can be utilized for other sister laboratory experiments such as recrystallization, determination of physical constants (m.pt) and detection of extra elements, detection of functional group and in qualitative analysis. The product of preparation can also be subjected to a second synthesis. This approach will reduce the amount of chemicals needed for carrying out experiments other than organic preparations. This paper illustrates a few organic preparations which can be reused for other companion laboratory exercises. This approach may set a model towards sustainability for other undergraduate laboratories. [ABSTRACT FROM AUTHOR]
Chalcones have been well examined in the extant literature and demonstrated antibacterial, antifungal, anti-inflammatory, and anticancer properties. A detailed evaluation of the purported health benefits of chalcone and its derivatives, including molecular mechanisms of pharmacological activities, can be further explored. Therefore, this review aimed to describe the main characteristics of chalcone and its derivatives, including their method synthesis and pharmacotherapeutics applications with molecular mechanisms. The presence of the reactive α,β-unsaturated system in the chalcone's rings showed different potential pharmacological properties, including inhibitory activity on enzymes, anticancer, anti-inflammatory, antibacterial, antifungal, antimalarial, antiprotozoal, and anti-filarial activity. Changing the structure by adding substituent groups to the aromatic ring can increase potency, reduce toxicity, and broaden pharmacological action. This report also summarized the potential health benefits of chalcone derivatives, particularly antimicrobial activity. We found that several chalcone compounds can inhibit diverse targets of antibiotic-resistance development pathways; therefore, they overcome resistance, and bacteria become susceptible to antibacterial compounds. A few chalcone compounds were more active than conventional antibiotics, like vancomycin and tetracycline. On another note, a series of pyran-fused chalcones and trichalcones can block the NF-B signaling complement system implicated in inflammation, and several compounds demonstrated more potent lipoxygenase inhibition than NSAIDs, such as indomethacin. This report integrated discussion from the domains of medicinal chemistry, organic synthesis, and diverse pharmacological applications, particularly for the development of new anti-infective agents that could be a useful reference for pharmaceutical scientists. [ABSTRACT FROM AUTHOR]