articles+ search results
1,116 articles+ results
1 - 10
Next
Number of results to display per page
1 - 10
Next
Number of results to display per page
-
Thiele, Maike, Rose, Thomas, Lõkov, Märt, Stadtfeld, Sophia, Tshepelevitsh, Sofja, Parman, Elisabeth, Opara, Karina, Wölper, Christoph, Leito, Ivo, Grimme, Stefan, and Niemeyer, Jochen
Chemistry - A European Journal . Jan2023, Vol. 29 Issue 2, p1-10. 10p.
- Subjects
-
BRONSTED acids, PHOSPHORIC acid, PHASE-transfer catalysis, COVALENT bonds, QUINOLINE, ACIDS, FLUORINATION, and CATALYSIS
- Abstract
-
The linking of phosphoric acids via covalent or mechanical bonds has proven to be a successful strategy for the design of novel organocatalysts. Here, we present the first systematic investigation of singly‐linked and macrocyclic bisphosphoric acids, including their synthesis and their application in phase‐transfer and Brønsted acid catalysis. We found that the novel bisphosphoric acids show dramatically increased enantioselectivities in comparison to their monophosphoric acid analogues. However, the nature, length and number of linkers has a profound influence on the enantioselectivities. In the asymmetric dearomative fluorination via phase‐transfer catalysis, bisphosphoric acids with a single, rigid bisalkyne‐linker give the best results with moderate to good enantiomeric excesses. In contrast, bisphosphoric acids with flexible linkers give excellent enantioselectivities in the transfer‐hydrogenation of quinolines via cooperative Brønsted acid catalysis. In the latter case, sufficiently long linkers are needed for high stereoselectivities, as found experimentally and supported by DFT calculations. [ABSTRACT FROM AUTHOR]
- Full text View on content provider's site
-
Wu, Xianyuan, De bruyn, Mario, Hulan, Julia Michaela, Brasil, Henrique, Sun, Zhuohua, and Barta, Katalin
Green Chemistry . 1/7/2023, Vol. 25 Issue 1, p211-220. 10p.
- Subjects
-
POLYMERIZATION, RENEWABLE natural resources, MONOMERS, DEPOLYMERIZATION, PETROLEUM, LIGNINS, and AMMONIA
- Abstract
-
The complete utilization of all lignin depolymerization streams obtained from the reductive catalytic fractionation (RCF) of woody biomass into high-value-added compounds is a timely and challenging objective. Here, we present a catalytic methodology to transform beech lignin-derived dimers and oligomers (DO) into well-defined 1,4-cyclohexanediol and 1,4-cyclohexanediamine. The latter two compounds have vast industrial relevance as monomers for polymer synthesis as well as pharmaceutical building blocks. The proposed two-step catalytic sequence involves the use of the commercially available RANEY® Ni catalyst. Therefore, the first step involves the efficient defunctionalization of lignin-derived 2,6-dimethoxybenzoquinone (DMBQ) into 1,4-cyclohexanediol (14CHDO) in 86.5% molar yield, representing a 10.7 wt% yield calculated on a DO weight basis. The second step concerns the highly selective amination of 1,4-cyclohexanediol with ammonia to give 1,4-cyclohexanediamine (14CHDA) in near quantitative yield. The ability to use RANEY® Ni and ammonia in this process holds great potential for future industrial synthesis of 1,4-cyclohexanediamine from renewable resources. [ABSTRACT FROM AUTHOR]
- Full text View on content provider's site
3. Chemical Constituents of Macaranga occidentalis , Antimicrobial and Chemophenetic Studies. [2022]
-
Kamso, Viviane Flore Kamlo, Simo Fotso, Christophe Colombe, Kanko Mbekou, Ines Michèle, Tousssie, Billy Tchegnitegni, Ndjakou Lenta, Bruno, Boyom, Fabrice Fekam, Sewald, Norbert, Frese, Marcel, Ngadjui, Bonaventure Tchaleu, and Wabo Fotso, Ghislain
Molecules . Dec2022, Vol. 27 Issue 24, p8820. 17p.
- Subjects
-
ACID derivatives, ELLAGIC acid, COLUMN chromatography, METABOLITES, ANTI-infective agents, ETHYL acetate, and FLAVONOIDS
- Abstract
-
Medicinal plants are known as sources of potential antimicrobial compounds belonging to different classes. The aim of the present work was to evaluate the antimicrobial potential of the crude extract, fractions, and some isolated secondary metabolites from the leaves of Macaranga occidentalis, a Cameroonian medicinal plant traditionally used for the treatment of microbial infections. Repeated column chromatography of the ethyl acetate and n-butanol fractions led to the isolation of seventeen previously known compounds (1−17), among which three steroids (1−3), one triterpene (4), four flavonoids (5−8), two stilbenoids (9 and 10) four ellagic acid derivatives (11−14), one geraniinic acid derivative (15), one coumarine (16), and one glyceride (17). Their structures were elucidated mainly by means of extensive spectroscopic and spectrometric (1D and 2D NMR and, MS) analysis and comparison with the published data. The crude extract, fractions, and isolated compounds were all screened for their antimicrobial activity. None of the natural compounds was active against Candida strains. However, the crude extract, fractions, and compounds showed varying levels of antibacterial properties against at least one of the tested bacterial strains, with minimal inhibitory concentrations (MICs) ranging from 250 to 1000 μg/mL. The n-butanol (n-BuOH) fraction was the most active against Escherichia coli ATCC 25922, with an MIC value of 250 μg/mL. Among the isolated compounds, schweinfurthin B (10) exhibited the best activity against Staphylococcus aureus NR 46003 with a MIC value of 62.5 μg/mL. In addition, schweinfurthin O (9) and isomacarangin (6) also exhibited moderate activity against the same strain with a MIC value of 125 μg/mL. Therefore, pharmacomodulation was performed on compound 6 and three new semisynthetic derivatives (6a–c) were prepared by allylation and acetylation reactions and screened for their in vitro antimicrobial activity. None of the semisynthetic derivatives showed antimicrobial activity against the same tested strains. The chemophenetic significance of the isolated compounds is also discussed in this paper. [ABSTRACT FROM AUTHOR]
- Full text View on content provider's site
-
Gajdoš, Matúš, Wagner, Jendrik, Ospina, Felipe, Köhler, Antonia, Engqvist, Martin K. M., and Hammer, Stephan C.
Angewandte Chemie International Edition . Dec2022, p1. 7p. 4 Illustrations.
- Abstract
-
Enantioselective synthesis of chiral alcohols through asymmetric addition of water across an unactivated alkene is a highly sought‐after transformation and a big challenge in catalysis. Herein we report the identification and directed evolution of a fatty acid hydratase from Marinitoga hydrogenitolerans for the highly enantioselective hydration of styrenes to yield chiral 1‐arylethanols. While directed evolution for styrene hydration was performed in the presence of heptanoic acid to mimic fatty acid binding, the engineered enzyme displayed remarkable asymmetric styrene hydration activity in the absence of the small molecule activator. The evolved styrene hydratase provided access to chiral alcohols from simple alkenes and water with high enantioselectivity (>99 : 1 e.r.) and could be applied on a preparative scale. [ABSTRACT FROM AUTHOR]
- Full text View on content provider's site
-
Liubimtsev, Nikolai, Zagradska‐Paromova, Zlata, Appelhans, Dietmar, Gaitzsch, Jens, and Voit, Brigitte
Macromolecular Chemistry & Physics . Dec2022, p1. 11p. 7 Illustrations, 2 Charts.
- Abstract
-
Smart hydrogels are interesting materials as they can change their dimensions upon an external trigger. Herein, a photoresponsive double cross‐linked hydrogel system based on polyacrylamide (AAm) with grafted poly(2‐methyl‐2‐oxazoline) (PMOXA) chains with a α‐cyclodextrin/azobenzene host–guest complex is present. Switching azobenzene from the trans to the cis‐conformation through irradiation with UV light breaks the complex reversibly. Well‐defined PMOXA macromonomers have been synthesized and functionalized with the respective host and guest functionalities as well as double bonds for the incorporation into the polymer network as grafted side chains. The chemical structure of the macromonomers and the complex is confirmed by 1H NMR, 2D NOESY NMR, GPC, and UV–VIS measurements. Hydrogels with different ratios of permanent and photoresponsive cross‐linkers as well as different chain lengths of the PMOXA macromonomers are analyzed toward differences in their swelling/deswelling and elastic properties. Successive irradiation of supramolecular hydrogels with UV and VIS light allowed for a repeated swelling and de‐swelling of the hydrogels. This system is studied at both macro and micro scales, showing similar swelling tendencies. The tuned properties of photoresponsive double cross‐linked hydrogel makes this system a promising tool for various applications, for example, as in situ controllable valves in microfluidic flow cells. [ABSTRACT FROM AUTHOR]
- Full text View on content provider's site
-
Batista, Victor S., Gonçalves, Adriano Marques, and Nascimento-Júnior, Nailton M.
Molecules . Dec2022, Vol. 27 Issue 23, p8236. 16p.
- Subjects
-
NICOTINIC acetylcholine receptors, NICOTINIC receptors, LIGAND-gated ion channels, CHOLINERGIC receptors, LIGANDS, CONOTOXINS, PROTEIN-ligand interactions, ALZHEIMER'S disease, and DRUG design
- Abstract
-
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer's disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4β2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4β2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands. [ABSTRACT FROM AUTHOR]
- Full text View on content provider's site
-
Ratnani, Sonia and Bargujar, Savita
- Resonance: Journal of Science Education; Dec2022, Vol. 27 Issue 12, p2243-2249, 7p
- Subjects
-
SUSTAINABILITY, COVID-19 pandemic, SUSTAINABLE chemistry, UNDERGRADUATES, PHYSICAL constants, and CHEMICAL laboratories
- Abstract
-
In this section of Resonance, we invite readers to pose questions likely to be raised in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. "Classroom" is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science. Amidst the Covid-19 pandemic, we have planned a strategy for our institution which aims towards reuse and reduce principles of Green Chemistry. Organic preparations in the undergraduate curriculum can be utilized for other sister laboratory experiments such as recrystallization, determination of physical constants (m.pt) and detection of extra elements, detection of functional group and in qualitative analysis. The product of preparation can also be subjected to a second synthesis. This approach will reduce the amount of chemicals needed for carrying out experiments other than organic preparations. This paper illustrates a few organic preparations which can be reused for other companion laboratory exercises. This approach may set a model towards sustainability for other undergraduate laboratories. [ABSTRACT FROM AUTHOR]
- Full text View on content provider's site
-
Ospina, Felipe, Schülke, Kai H., Soler, Jordi, Klein, Alina, Prosenc, Benjamin, Garcia‐Borràs, Marc, and Hammer, Stephan C.
Angewandte Chemie International Edition . 11/25/2022, Vol. 61 Issue 48, p1-7. 7p.
- Subjects
-
HETEROCYCLIC compounds, INDAZOLES, ETHYLATION, METHYLTRANSFERASES, BIOCATALYSIS, and IMIDAZOLES
- Abstract
-
Methods for regioselective N‐methylation and ‐alkylation of unsaturated heterocycles with "off the shelf" reagents are highly sought‐after. This reaction could drastically simplify synthesis of privileged bioactive molecules. Here we report engineered and natural methyltransferases for challenging N‐(m)ethylation of heterocycles, including benzimidazoles, benzotriazoles, imidazoles and indazoles. The reactions are performed through a cyclic enzyme cascade that consists of two methyltransferases using only iodoalkanes or methyl tosylate as simple reagents. This method enables the selective synthesis of important molecules that are otherwise difficult to access, proceeds with high regioselectivity (r.r. up to >99 %), yield (up to 99 %), on a preparative scale, and with nearly equimolar concentrations of simple starting materials. [ABSTRACT FROM AUTHOR]
- Full text View on content provider's site
-
Mathada, Basavarajaiah Suliphuldevara and Yernale, Nagesh Gunavanthrao
Organic Preparations & Procedures International . Nov2022, p1-18. 18p. 38 Illustrations, 2 Charts.
- Full text View on content provider's site
-
Pagliaro, Mario, Della Pina, Cristina, and Ciriminna, Rosaria
- ChemCatChem; 11/8/2022, Vol. 14 Issue 21, p1-1, 1p
- Subjects
-
CATALYSIS, ORGANIC chemistry, FLOW chemistry, and METAL catalysts
- Abstract
-
Fine chemical industry, flow chemistry, organic process, single-atom catalysis Keywords: fine chemical industry; flow chemistry; organic process; single-atom catalysis EN fine chemical industry flow chemistry organic process single-atom catalysis 1 1 1 11/11/22 20221108 NES 221108 B The Cover Feature b shows a flow reactor employing a single-atom catalyst schematically represented. Cover Feature: Continuous Flow Single-Atom Catalysis: A Viable Organic Process Technology?. [Extracted from the article]
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 10
Next