articles+ search results
7,530 articles+ results
1 - 50
Next
Number of results to display per page
1 - 50
Next
Number of results to display per page
1. Technologies for implementing of artificial intelligence as a service based on hardware accelerators [2023]
-
Artem Perepelitsyn, Yelyzaveta Kasapien, Herman Fesenko, and Vyacheslav Kharchenko
- Авіаційно-космічна техніка та технологія, Vol 0, Iss 6, Pp 57-65 (2023)
- Subjects
-
штучний інтелект, fpga, ші як сервіс, гетерогенні проєкти ші систем, апаратні прискорювачі ші, dpu, інструментальні засоби розробки ші, xrt, Motor vehicles. Aeronautics. Astronautics, and TL1-4050
- Abstract
-
The subject of study in this article is modern technologies, tools and methods of building AI systems as a service using FPGA as a platform. The goal is to analyze modern technologies and tools used to develop FPGA-based projects for systems that implement artificial intelligence as a service and to prepare a practical AI service prototype. Task: to analyze the evolution of changes in the products of leading manufacturers of programmable logic devices and experimental and practical examples of the implementation of the paradigm of continuous reprogramming of programmable logic; analyze the dynamics of changes in the development environment of programmable logic systems for AI; analyze the essential elements of building projects for AI systems using programmable logic. According to the tasks, the following results were obtained. The area of application of hardware implementation of artificial intelligence for on-board and embedded systems including airspace industry, smart cars and medical systems is analyzed. The process of programming FPGA accelerators for AI projects is analyzed. The analysis of the capabilities of FPGA with HBM for building projects that require enough of high speed memory is performed. Description languages, frameworks, the hierarchy of tools for building of hardware accelerators for AI projects are analyzed in detail. The stages of prototyping of AI projects using new FPGA development tools and basic DPU blocks are analyzed. The parameters of the DPU blocks were analyzed. Practical steps for building such systems are offered. The practical recommendations for optimizing the neural network for FPGA implementation are given. The stages of neural network optimization are provided. The proposed steps include pruning of branches with low priority and the use of fixed point computations with custom range based on the requirements of an exact neural network. Based on these solutions, a practical case of AI service was prepared, trained and tested. Conclusions. The main contribution of this study is that, based on the proposed ideas and solutions, the next steps to create heterogeneous systems based on the combination of three elements are clear: AI as a service, FPGA accelerators as a technology for improving performance, reliability and security, and cloud or Edge resources to create FPGA infrastructure and AI as service. The development of this methodological and technological basis is the direction of further R&D.
- Full text View record in DOAJ
-
Chunxu Li, Fengbo Sun, Jingjing Tian, Jiahao Li, Haidan Sun, Yong Zhang, Shigong Guo, Yuanhua Lin, Xiaodan Sun, and Yu Zhao
- Bioactive Materials, Vol 24, Iss , Pp 361-375 (2023)
- Subjects
-
3D printing, Zinc submicron particles, Osteoinductivity, Anti-inflammatory, Bone defect repair, Materials of engineering and construction. Mechanics of materials, TA401-492, Biology (General), and QH301-705.5
- Abstract
-
Long-term nonunion of bone defects has always been a major problem in orthopedic treatment. Artificial bone graft materials such as Poly (lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds are expected to solve this problem due to their suitable degradation rate and good osteoconductivity. However, insufficient mechanical properties, lack of osteoinductivity and infections after implanted limit its large-scale clinical application. Hence, we proposed a novel bone repair bioscaffold by adding zinc submicron particles to PLGA/β-TCP using low temperature rapid prototyping 3D printing technology. We first screened the scaffolds with 1 wt% Zn that had good biocompatibility and could stably release a safe dose of zinc ions within 16 weeks to ensure long-term non-toxicity. As designed, the scaffold had a multi-level porous structure of biomimetic cancellous bone, and the Young's modulus (63.41 ± 1.89 MPa) and compressive strength (2.887 ± 0.025 MPa) of the scaffold were close to those of cancellous bone. In addition, after a series of in vitro and in vivo experiments, the scaffolds proved to have no adverse effects on the viability of BMSCs and promoted their adhesion and osteogenic differentiation, as well as exhibiting higher osteogenic and anti-inflammatory properties than PLGA/β-TCP scaffold without zinc particles. We also found that this osteogenic and anti-inflammatory effect might be related to Wnt/β-catenin, P38 MAPK and NFkB pathways. This study lay a foundation for the follow-up study of bone regeneration mechanism of Zn-containing biomaterials. We envision that this scaffold may become a new strategy for clinical treatment of bone defects.
- Full text View on content provider's site
-
Marc Schmitt
- Intelligent Systems with Applications, Vol 18, Iss , Pp 200188- (2023)
- Subjects
-
Artificial intelligence, Machine learning, AutoML, Business analytics, Data-driven decision making, Digital transformation, Cybernetics, Q300-390, Electronic computers. Computer science, and QA75.5-76.95
- Abstract
-
The realization that AI-driven decision-making is indispensable in today's fast-paced and ultra-competitive marketplace has raised interest in industrial machine learning (ML) applications significantly. The current demand for analytics experts vastly exceeds the supply. One solution to this problem is to increase the user-friendliness of ML frameworks to make them more accessible for the non-expert. Automated machine learning (AutoML) is an attempt to solve the problem of expertise by providing fully automated off-the-shelf solutions for model choice and hyperparameter tuning. This paper analyzed the potential of AutoML for applications within business analytics, which could help to increase the adoption rate of ML across all industries. The H2O AutoML framework was benchmarked against a manually tuned stacked ML model on three real-world datasets. The manually tuned ML model could reach a performance advantage in all three case studies used in the experiment. Nevertheless, the H2O AutoML package proved to be quite potent. It is fast, easy to use, and delivers reliable results, which come close to a professionally tuned ML model. The H2O AutoML framework in its current capacity is a valuable tool to support fast prototyping with the potential to shorten development and deployment cycles. It can also bridge the existing gap between supply and demand for ML experts and is a big step towards automated decisions in business analytics. Finally, AutoML has the potential to foster human empowerment in a world that is rapidly becoming more automated and digital.
- Full text View record in DOAJ
-
García-Moll L, Sixto A, Carrasco-Correa EJ, and Miró M
Talanta [Talanta] 2023 Apr 01; Vol. 255, pp. 124211. Date of Electronic Publication: 2022 Dec 24.
- Subjects
-
Printing, Three-Dimensional, Hydrogen Peroxide, and Luminescence
- Abstract
-
Low force stereolithography is exploited for the first time for one-step facile fabrication of chemiluminescence (CL) flow-through cells that bear unrivalled features as compared to those available through milling or blowing procedures or alternative 3D printing technologies. A variety of bespoke cross-section geometries with polyhedral features (namely, triangular, square, and five-side polygon) as well as semicircular cross-section are herein critically evaluated in terms of analytical performance against the standardcircular cross-section in a flat spirally-shape format. The idea behind is to maximize capture of elicited light by the new designs while leveraging 3D printing further for fabrication of (i) customized gaskets that enable reliable attaching of the active mixing zone of the CL cell to the detection window, (ii) in-line 3D-printed serpentine reactors, and (iii) flow confluences with tailorable shapes for enhancing mixing of samples with CL reagents. Up to twenty transparent functional cells were simultaneously fabricated without inner supports following post-curing and surface treatment protocols lasting less than 5 h. In fact, previous attempts to print spirally-shaped cells in one-step by resorting to less cost effective photopolymer inkjet printing technologies were unsuccessful because of the requirement of lengthy procedures (>15 days) for quantitative removal of the support material. By exploiting the phthalazinedione-hydrogen peroxide chemistry as a model reaction, the five-side irregular pentagon cell exhibited superior analytical figures of merit in terms of LOD, dynamic range and intermediate precision as compared to alternative designs. Computational fluid dynamic simulations for mapping velocities at the entry region of the spiral cell corroborated the fact that the 5-side polygon cross-section flow-cell with Y-type confluence permitted the most efficient mixing of reagents and sample while enabling larger flow velocities near the inlet that contribute to a more efficient capture of the photons from the flash-type reaction. The applicability of the 3D-printed 5-side polygon CL cell for automatic determination of hydrogen peroxide using a computerized hybrid flow system was demonstrated for the analysis of high matrix samples, viz., seawater and saliva, with relative recoveries ranging from 83 to 103%.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
D'Astous A, Cereza G, Papp D, Gilbert KM, Stockmann JP, Alonso-Ortiz E, and Cohen-Adad J
Magnetic resonance in medicine [Magn Reson Med] 2023 Apr; Vol. 89 (4), pp. 1401-1417. Date of Electronic Publication: 2022 Nov 28.
- Subjects
-
Brain diagnostic imaging, Algorithms, Image Processing, Computer-Assisted methods, Magnetic Resonance Imaging methods, and Software
- Abstract
-
Purpose: Introduce Shimming Toolbox ( https://shimming-toolbox.org), an open-source software package for prototyping new methods and performing static, dynamic, and real-time B0 shimming as well as B1 shimming experiments.
Methods: Shimming Toolbox features various field mapping techniques, manual and automatic masking for the brain and spinal cord, B0 and B1 shimming capabilities accessible through a user-friendly graphical user interface. Validation of Shimming Toolbox was demonstrated in three scenarios: (i) B0 dynamic shimming in the brain at 7T using custom AC/DC coils, (ii) B0 real-time shimming in the spinal cord at 3T, and (iii) B1 static shimming in the spinal cord at 7T.
Results: The B0 dynamic shimming of the brain at 7T took about 10 min to perform. It showed a 47% reduction in the standard deviation of the B0 field, associated with noticeable improvements in geometric distortions in EPI images. Real-time dynamic xyz-shimming in the spinal cord took about 5 min and showed a 30% reduction in the standard deviation of the signal distribution. B1 static shimming experiments in the spinal cord took about 10 min to perform and showed a 40% reduction in the coefficient of variation of the B1 field.
Conclusion: Shimming Toolbox provides an open-source platform where researchers can collaborate, prototype and conveniently test B0 and B1 shimming experiments. Future versions will include additional field map preprocessing techniques, optimization algorithms, and compatibility across multiple MRI manufacturers.
(© 2022 International Society for Magnetic Resonance in Medicine.)
- Full text View on content provider's site
-
Teekayupak K, Aumnate C, Lomae A, Preechakasedkit P, Henry CS, Chailapakul O, and Ruecha N
Talanta [Talanta] 2023 Mar 01; Vol. 254, pp. 124131. Date of Electronic Publication: 2022 Dec 01.
- Subjects
-
Humans, Creatinine chemistry, Limit of Detection, Smartphone, Electrochemical Techniques, Electrodes, Graphite chemistry, and Nanoparticles chemistry
- Abstract
-
3D printing technologies are an attractive for fabricating electrochemical sensors due to their ease of operation, freedom of design, fast prototyping, low waste, and low cost. We report the fabrication of a simple 3D-printed electrochemical sensing device for non-enzymatic detection of creatinine, an important indicator of renal function. To create the 3D-printed electrodes (3DE), carbon black/polylactic acid (CB/PLA) composite filament was used. The 3DE was activated using 0.5 M NaOH via amperometry prior to use to improve electrochemical performance. To give selectivity for creatinine, the activated 3DE was modified with a copper oxide nanoparticle-ionic liquid/reduced graphene oxide (CuO-IL/rGO) composite. The modified 3DE was characterized using microscopy and electrochemistry. Cyclic voltammetry and amperometry were used to evaluate sensor performance. The modified 3DE provided electrocatalytic activity towards creatinine without enzymes. Under optimal conditions, the modified 3DE directly coupled with a portable smartphone potentiostat exhibited the linear detection range of 0.5-35.0 mM, and the limit of detection was 37.3 μM, which is sufficient for detecting creatinine in human urine samples. Furthermore, the other physiological compounds present in human urine were not detected on the modified 3DE. Therefore, the modified 3DE could be a tool for effective creatinine screening in the urine.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022 Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Ahmed M, Ali S, and Soliman S
Journal of maxillofacial and oral surgery [J Maxillofac Oral Surg] 2023 Mar; Vol. 22 (1), pp. 239-244. Date of Electronic Publication: 2022 May 30.
- Abstract
-
Purpose: to evaluate the efficacy of dual-purpose computer-generated splint in guiding the proximal and the distal segment in bilateral sagittal split osteotomy.
Patients and Method: It was a prospective case series study directed on 8 class III patients indicating the need of maxillary advancement and mandibular set back by bilateral sagittal split osteotomy. A CAD/CAM splint is generated to guide the distal segment to the stable maxilla and at the same time a grooved extension to engage the proximal segment ensuring the condyle in its planned position during fixation. The primary outcome was measured by calculating the difference between the pre- and post-operative condylar segment position.
Results: The present study included five female patient and three male patient with mean age of 28.4 ± 5.1 years. The accuracy of the splint in positioning the mandibular proximal segment showed promising results ranging from 2.59 to 0.49.
Conclusion: The dual-purpose splint introduced in this study showed satisfied results in maintaining the pre-operative condylar position while securing the distal segment in the desired plan.
Competing Interests: Conflict of interestThe authors declare that there is no conflict of interest (Mamdouh Ahmed declares that there is no conflict of interest, Sherif Ali declares that there is no conflict of interest and Sara Soliman declares that there is no conflict of interest).
(© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.)
- Full text View on content provider's site
-
Tayyaba Sahar, Muhammad Rauf, Ahmar Murtaza, Lehar Asip Khan, Hasan Ayub, Syed Muslim Jameel, and Inam Ul Ahad
- Results in Engineering, Vol 17, Iss , Pp 100803- (2023)
- Subjects
-
Metal additive manufacturing (MAM), Laser powder bed fusion (L-PBF), Machine learning (ML), Process parameter optimization, Anomaly detection, and Technology
- Abstract
-
Metal Additive Manufacturing (MAM) applications are growing rapidly in high-tech industries such as biomedical and aerospace, and in many other industries including tooling, casting, automotive, oil and gas for production and prototyping. The onset of Laser Powder Bed Fusion (L-PBF) technology proved to be an efficient technique that can convert metal additive manufacturing into a reformed process if anomalies occurred during this process are eliminated. Industrial applications demand high accuracy and risk-free products whereas prototyping using MAM demand lower process and product development time. In order to address these challenges, Machine Learning (ML) experts and researchers are trying to adopt an efficient method for anomaly detection in L-PBF so that the MAM process can be optimized and desired final part properties can be achieved. This review provides an overview of L-PBF and outlines the ML methods used for anomaly detection in L-PBF. The paper also explains how ML methods are being used as a step forward toward enabling the real-time process control of MAM and the process can be optimized for higher accuracy, lower production time, and less material waste. Authors have a strong believe that ML techniques can reform MAM process, whereas research concerned to the anomaly detection using ML techniques is limited and needs attention.This review has been done with a hope that ML experts can easily find a direction and contribute in this field.
- Full text View record in DOAJ
9. Design and prototyping of a robotic hand for sign language using locally-sourced materials [2023]
-
Ibrahim A. Adeyanju, Sheriffdeen O. Alabi, Adebimpe O. Esan, Bolaji A. Omodunbi, Oluwaseyi O. Bello, and Samuel Fanijo
- Scientific African, Vol 19, Iss , Pp e01533- (2023)
- Subjects
-
Android, Communication, Deaf, Disability, Dumb, Hardware, and Science
- Abstract
-
People living with disability constitute a significant percentage of the world population. For many people with disabilities, assistance and support are prerequisites for participating in societal activities. This research work developed a hardware prototype of a robotic hand forfor sign language communication with persons living with hard-of-hearing disabilities (deaf and/or dumb). The prototype has three basic modules: the input unit, the control unit, and the robotic hand. The input unit is designed as an Android-based mobile application with speech recognition capabilities while the control unit is ATMEGA 2560 microcontroller board. The robotic hand is constructed using locally available materials (bathroom Slippers, expandable rubber, straw pipe, and tiny rope) together with three servo motors and is designed to look and perform movements similar to a human hand. The prototype was evaluated quantitatively in terms of empirical accuracy and response time. It was also evaluated qualitatively by thirty-five (35) users which included fifteen (15) experience ASL users, eighteen (18) non-experience ASL users, and two (2) ASL experts, who completed questionnaires to rate the prototype on a 5-point Likert scale in terms of five parameters: functionality, reliability, ease of use, efficiency, and portability. An accuracy of 78.43% with an average response time of 2 s was obtained from empirical experiments. Statistical analysis of user responses showed that 97%, 68%, 77%, 80%, and 83% of users rated the system as above average for functionality, reliability, ease of use, efficiency, and portability, respectively. The robotic hand effectively communicates American Sign Language which includes English Alphabets, numbers (1–9), and some selected common words, which can be demonstrated with a single hand for hard of hearing persons. To the best of our knowledge, this work is the first ASL robotic hand that is based on locally sourced cost-effective materials, and we build on flaws from existing literature, most of which are either template-based, not real-time, or expensive. In terms of future work, the prototype can be improved by extending the single robotic hand to a fully robotic body with two hands.
- Full text View record in DOAJ
-
Mohaghegh Montazeri M and Taghipour F
Water research [Water Res] 2023 Feb 15; Vol. 230, pp. 119581. Date of Electronic Publication: 2023 Jan 05.
- Subjects
-
Hydrodynamics, Kinetics, Ultraviolet Rays, Disinfection methods, and Water Purification methods
- Abstract
-
We developed and studied one of the first high-flow UV-LED water disinfection reactors applicable to point-of-entry (POE) water disinfection. A multiphysics computational model was created to predict the performance of UV reactor design concepts by modeling the synergic effect of radiation, hydrodynamics, and the inactivation kinetics of microorganisms. The geometrical optics that describe light propagation in terms of rays were employed to model the radiation profile of multiple UV-LEDs with optical components in complex reactor geometries, the first account of such an approach. The computational solution of the mass, momentum, and species equations was applied to model the hydrodynamics and kinetics. We designed a reactor through a detailed computational study of the optical and hydrodynamic performance of various design strategies. Highly efficient UV fluence distribution in the reactor was achieved by creating nearly collimated UV radiation beams across the reactor and managing the hydrodynamics using a flow distributor. We fabricated a prototype of the optimized reactor design for experimental studies. Biodosimetry tests were conducted for various flow rates and UV transmittances (UVTs), and the experimental results were compared with the model predictions. The design, which employed 14 UV-LEDs assembled over custom-made optical modules, resulted in a reduction equivalent dose (RED) of 65 mJ/cm 2 at a flow rate of 20 liters per minute (LPM) while consuming about 50 W energy. This reactor design required only 0.05 W radiant power per LPM flow rate to achieve an NSF Class A UV dose equivalent of 40 mJ/cm 2 . The findings of this study provide insights into UV-LED reactor development strategies as well as the creation and application of reactor virtual prototyping tools for designing and optimizing highly efficient UV-LED reactors.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023. Published by Elsevier Ltd.)
- Full text View on content provider's site
11. Fanpy: A python library for prototyping multideterminant methods in ab initio quantum chemistry. [2023]
-
Kim TD, Richer M, Sánchez-Díaz G, Miranda-Quintana RA, Verstraelen T, Heidar-Zadeh F, and Ayers PW
Journal of computational chemistry [J Comput Chem] 2023 Feb 15; Vol. 44 (5), pp. 697-709. Date of Electronic Publication: 2022 Nov 28.
- Subjects
-
Electrons, Quantum Theory, and Software
- Abstract
-
Fanpy is a free and open-source Python library for developing and testing multideterminant wavefunctions and related ab initio methods in electronic structure theory. The main use of Fanpy is to quickly prototype new methods by making it easier to convert the mathematical formulation of a new wavefunction ansätze to a working implementation. Fanpy is designed based on our recently introduced Flexible Ansatz for N-electron Configuration Interaction (FANCI) framework, where multideterminant wavefunctions are represented by their overlaps with Slater determinants of orthonormal spin-orbitals. In the simplest case, a new wavefunction ansatz can be implemented by simply writing a function for evaluating its overlap with an arbitrary Slater determinant. Fanpy is modular in both implementation and theory: the wavefunction model, the system's Hamiltonian, and the choice of objective function are all independent modules. This modular structure makes it easy for users to mix and match different methods and for developers to quickly explore new ideas. Fanpy is written purely in Python with standard dependencies, making it accessible for various operating systems. In addition, it adheres to principles of modern software development, including comprehensive documentation, extensive testing, quality assurance, and continuous integration and delivery protocols. This article is considered to be the official release notes for the Fanpy library.
(© 2022 Wiley Periodicals LLC.)
- Full text View on content provider's site
-
Borda E, Medagoda DI, Airaghi Leccardi MJI, Zollinger EG, and Ghezzi D
Biomaterials [Biomaterials] 2023 Feb; Vol. 293, pp. 121979. Date of Electronic Publication: 2022 Dec 27.
- Subjects
-
Mice, Animals, Electrodes, Prostheses and Implants, Brain, Sulfhydryl Compounds chemistry, and Nervous System
- Abstract
-
Off-stoichiometry thiol-ene-epoxy (OSTE+) thermosets show low permeability to gases and little absorption of dissolved molecules, allow direct low-temperature dry bonding without surface treatments, have a low Young's modulus, and can be manufactured via UV polymerisation. For these reasons, OSTE+ thermosets have recently gained attention for the rapid prototyping of microfluidic chips. Moreover, their compatibility with standard clean-room processes and outstanding mechanical properties make OSTE+ an excellent candidate as a novel material for neural implants. Here we exploit OSTE+ to manufacture a conformable multilayer micro-electrocorticography array with 16 platinum electrodes coated with platinum black. The mechanical properties allow conformability to curved surfaces such as the brain. The low permeability and strong adhesion between layers improve the stability of the device. Acute experiments in mice show the multimodal capacity of the array to record and stimulate the neural tissue by smoothly conforming to the mouse cortex. Devices are not cytotoxic, and immunohistochemistry stainings reveal only modest foreign body reaction after two and six weeks of chronic implantation. This work introduces OSTE+ as a promising material for implantable neural interfaces.
Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Diego Ghezzi reports financial support was provided by Medtronic plc.
(Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Full text View on content provider's site
-
Alarçin E, İzbudak B, Yüce Erarslan E, Domingo S, Tutar R, Titi K, Kocaaga B, Guner FS, and Bal-Öztürk A
Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2023 Feb; Vol. 111 (2), pp. 209-223. Date of Electronic Publication: 2022 Oct 10.
- Subjects
-
Nanogels
- Abstract
-
Layered double hydroxides (LDHs) offer unique source of inspiration for design of bone mimetic biomaterials due to their superior mechanical properties, drug delivery capability and regulation cellular behaviors, particularly by divalent metal cations in their structure. Three-dimensional (3D) bioprinting of LDHs holds great promise as a novel strategy thanks to highly tunable physiochemical properties and shear-thinning ability of LDHs, which allow shape fidelity after deposition. Herein, we introduce a straightforward strategy for extrusion bioprinting of cell laden nanocomposite hydrogel bioink of gelatin methacryloyl (GelMA) biopolymer and LDHs nanoparticles. First, we synthesized LDHs by co-precipitation process and systematically examined the effect of LDHs addition on printing parameters such as printing pressure, extrusion rate, printing speed, and finally bioink printability in creating grid-like constructs. The developed hydrogel bioinks provided precise control over extrudability, extrusion uniformity, and structural integrity after deposition. Based on the printability and rheological analysis, the printability could be altered by controlling the concentration of LDHs, and printability was found to be ideal with the addition of 3 wt % LDHs. The addition of LDHs resulted in remarkably enhanced compressive strength from 652 kPa (G-LDH0) to 1168 kPa (G-LDH3). It was shown that the printed nanocomposite hydrogel scaffolds were able to support encapsulated osteoblast survival, spreading, and proliferation in the absence of any osteoinductive factors taking advantage of LDHs. In addition, cells encapsulated in G-LDH3 had a larger cell spreading area and higher cell aspect ratio than those encapsulated in G-LDH0. Altogether, the results demonstrated that the developed GelMA/LDHs nanocomposite hydrogel bioink revealed a high potential for extrusion bioprinting with high structural fidelity to fabricate implantable 3D hydrogel constructs for repair of bone defects.
(© 2022 Wiley Periodicals LLC.)
- Full text View on content provider's site
-
Yuan J, Cheng J, Fan C, Wu P, Zhang Y, Cao M, and Shi T
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2023 Feb; Vol. 107 (2-3), pp. 985.
- Full text View on content provider's site
-
Hammood M, Lin S, Yun H, Luan E, Chrostowski L, and Jaeger NAF
Optics letters [Opt Lett] 2023 Feb 01; Vol. 48 (3), pp. 582-585.
- Abstract
-
We demonstrate a method to emulate the optical performance of silicon photonic devices fabricated using advanced deep-ultraviolet lithography (DUV) processes on a rapid-prototyping electron-beam lithography process. The method is enabled by a computational lithography predictive model generated by processing SEM image data of the DUV lithography process. We experimentally demonstrate the emulation method's accuracy on integrated silicon Bragg grating waveguides and grating-based, add-drop filter devices, two devices that are particularly susceptible to DUV lithography effects. The emulation method allows silicon photonic device and system designers to experimentally observe the effects of DUV lithography on device performance in a low-cost, rapid-prototyping, electron-beam lithography process to enable a first-time-right design flow.
- Full text View on content provider's site
-
Davidson JB, Cashaback JGA, and Fischer SL
Computer methods in biomechanics and biomedical engineering [Comput Methods Biomech Biomed Engin] 2023 Feb; Vol. 26 (2), pp. 187-198. Date of Electronic Publication: 2022 Mar 17.
- Subjects
-
Humans, Computer Simulation, and Posture physiology
- Abstract
-
Multi-objective optimization digital human models permit users to predict postures that follow performance criteria, such as minimizing torques. Currently, it is unknown how to weight different objective functions to best predict postures. Objective one was to describe a response surface method to determine optimal objective function weightings to predict lift postures. Objective two was to evaluate the sensitivity of different error calculation methods. Our response surface approach has utility for determining optimal objective function weightings when using a digital human model to evaluate human-system interactions in early design stages. The approach was not dependent on variations in error calculation methods.
- Full text View on content provider's site
-
Silcock J, Marques I, Olaniyan J, Raynor DK, Baxter H, Gray N, Zaidi STR, Peat G, Fylan B, Breen L, Benn J, and Alldred DP
Health expectations : an international journal of public participation in health care and health policy [Health Expect] 2023 Feb; Vol. 26 (1), pp. 399-408. Date of Electronic Publication: 2022 Nov 24.
- Subjects
-
Humans, Aged, Caregivers, United Kingdom, Polypharmacy, Frailty, and Deprescriptions
- Abstract
-
Background: In older people living with frailty, polypharmacy can lead to preventable harm like adverse drug reactions and hospitalization. Deprescribing is a strategy to reduce problematic polypharmacy. All stakeholders should be actively involved in developing a person-centred deprescribing process that involves shared decision-making.
Objective: To co-design an intervention, supported by a logic model, to increase the engagement of older people living with frailty in the process of deprescribing.
Design: Experience-based co-design is an approach to service improvement, which uses service users and providers to identify problems and design solutions. This was used to create a person-centred intervention with the potential to improve the quality and outcomes of the deprescribing process. A 'trigger film' showing older people talking about their healthcare experiences was created and facilitated discussions about current problems in the deprescribing process. Problems were then prioritized and appropriate solutions were developed. The review located the solutions in the context of current processes and procedures. An ideal care pathway and a complex intervention to deliver better care were developed.
Setting and Participants: Older people living with frailty, their informal carers and professionals living and/or working in West Yorkshire, England, UK. Deprescribing was considered in the context of primary care.
Results: The current deprescribing process differed from an ideal pathway. A complex intervention containing seven elements was required to move towards the ideal pathway. Three of these elements were prototyped and four still need development. The complex intervention responded to priorities about (a) clarity for older people about what was happening at all stages in the deprescribing process and (b) the quality of one-to-one consultations.
Conclusions: Priorities for improving the current deprescribing process were successfully identified. Solutions were developed and structured as a complex intervention. Further work is underway to (a) complete the prototyping of the intervention and (b) conduct feasibility testing.
Patient or Public Contribution: Older people living with frailty (and their informal carers) have made a central contribution, as collaborators, to ensure that a complex intervention has the greatest possible potential to enhance the experience of deprescribing medicines.
(© 2022 The Authors. Health Expectations published by John Wiley & Sons Ltd.)
- Full text
View/download PDF
-
Simon Orlob, Christoph Hobisch, Johannes Wittig, Daniel Auinger, Otto Touzil, Gabriel Honnef, Otmar Schindler, Philipp Metnitz, Georg Feigl, and Gerhard Prause
- Data in Brief, Vol 46, Iss , Pp 108767- (2023)
- Subjects
-
cardiopulmonary resuscitation, Mechanical ventilation, Mechanical chest-compression, Respiratory monitoring, Thiel embalmed cadaver, Biomechanics, Computer applications to medicine. Medical informatics, R858-859.7, Science (General), and Q1-390
- Abstract
-
The data presented in this article relate to the research article, “Reliability of mechanical ventilation during continuous chest compressions: a crossover study of transport ventilators in a human cadaver model of CPR” [1].This article contains raw data of continuous recordings of airflow, airway and esophageal pressure during the whole experiment. Data of mechanical ventilation was obtained under ongoing chest compressions and from repetitive measurements of pressure-volume curves. All signals are presented as raw time series data with a sample rate of 200Hz for flow and 500 Hz for pressure. Additionally, we hereby publish extracted time series recordings of force and compression depth from the used automated chest compression device. Concomitantly, we report tables with time stamps from our laboratory book by which the data can be sequenced into different phases of the study protocol.We also present a dataset of derived volumes which was used for statistical analysis in our research article together with the used exclusion list.The reported dataset can help to understand mechanical properties of Thiel-embalmed cadavers better and compare different models of cardiopulmonary resuscitation (CPR). Future research may use this data to translate our findings from bench to bedside. Our recordings may become useful in developing respiratory monitors for CPR, especially in prototyping and testing algorithms of such devices.
- Full text View on content provider's site
-
Jonathan Silcock, Iuri Marques, Janice Olaniyan, David K. Raynor, Helen Baxter, Nicky Gray, Syed T. R. Zaidi, George Peat, Beth Fylan, Liz Breen, Jonathan Benn, and David P. Alldred
- Health Expectations, Vol 26, Iss 1, Pp 399-408 (2023)
- Subjects
-
aged, deprescribing, frailty, polypharmacy, primary health care, referral and consultation, Medicine (General), R5-920, Public aspects of medicine, and RA1-1270
- Abstract
-
Abstract Background In older people living with frailty, polypharmacy can lead to preventable harm like adverse drug reactions and hospitalization. Deprescribing is a strategy to reduce problematic polypharmacy. All stakeholders should be actively involved in developing a person‐centred deprescribing process that involves shared decision‐making. Objective To co‐design an intervention, supported by a logic model, to increase the engagement of older people living with frailty in the process of deprescribing. Design Experience‐based co‐design is an approach to service improvement, which uses service users and providers to identify problems and design solutions. This was used to create a person‐centred intervention with the potential to improve the quality and outcomes of the deprescribing process. A ‘trigger film’ showing older people talking about their healthcare experiences was created and facilitated discussions about current problems in the deprescribing process. Problems were then prioritized and appropriate solutions were developed. The review located the solutions in the context of current processes and procedures. An ideal care pathway and a complex intervention to deliver better care were developed. Setting and Participants Older people living with frailty, their informal carers and professionals living and/or working in West Yorkshire, England, UK. Deprescribing was considered in the context of primary care. Results The current deprescribing process differed from an ideal pathway. A complex intervention containing seven elements was required to move towards the ideal pathway. Three of these elements were prototyped and four still need development. The complex intervention responded to priorities about (a) clarity for older people about what was happening at all stages in the deprescribing process and (b) the quality of one‐to‐one consultations. Conclusions Priorities for improving the current deprescribing process were successfully identified. Solutions were developed and structured as a complex intervention. Further work is underway to (a) complete the prototyping of the intervention and (b) conduct feasibility testing. Patient or Public Contribution Older people living with frailty (and their informal carers) have made a central contribution, as collaborators, to ensure that a complex intervention has the greatest possible potential to enhance the experience of deprescribing medicines.
- Full text
View/download PDF
-
Russell Galea, Pierre-Sandre Farrugia, Krzysztof K. Dudek, Daphne Attard, Joseph N. Grima, and Ruben Gatt
- Materials & Design, Vol 226, Iss , Pp 111596- (2023)
- Subjects
-
Perforations, Subtractive manufacturing, Negative Poisson’s ratio, 3D auxetic structures, Materials of engineering and construction. Mechanics of materials, and TA401-492
- Abstract
-
Prototyping of three-dimensional mechanical metamaterials that exhibit negative Poisson’s ratio is usually performed through additive manufacturing. Although this technique has a huge potential, its use to engineer mechanical metamaterials for consumer products is still challenging. In this work, a novel design method is being proposed where 3D auxetic metamaterials can be produced by introducing continuous voids of constant cross-sectional area. Such voids would be inserted at strategic positions in different perpendicular planes of a solid block to obtain a continuous three-dimensional mechanical metamaterial that can exhibit the desired mechanical characteristics. The use of continuous voids to design the 3D meatamaterial makes it possible to use additive manufacturing, subtractive manufacturing as well as casting to produce these systems. The proposed design method is explained by using continuous voids having a diamond shaped cross-sectional area. The resulting group of structures can be described as connected polygons and were found to exhibit a negative or zero Poisson’s ratio. The analysed systems were also found to have a strain independent Poisson’s ratio up to at least 7% strain. The proposed design method can thus facilitate the availability of three dimensional auxetic metamaterials in the consumer market which to date is conspicuous by their absence.
- Full text View on content provider's site
-
Francesca Usai, Giada Loi, Franca Scocozza, Massimo Bellato, Ignazio Castagliuolo, Michele Conti, and Lorenzo Pasotti
- Materials Today Bio, Vol 18, Iss , Pp 100526- (2023)
- Subjects
-
Bioprinting, Engineered living materials, Biosensors, Synthetic biology, Engineered bacteria, Medicine (General), R5-920, Biology (General), and QH301-705.5
- Abstract
-
The intertwined adoption of synthetic biology and 3D bioprinting has the potential to improve different application fields by fabricating engineered living materials (ELMs) with unnatural genetically-encoded sense & response capabilities. However, efforts are still needed to streamline the fabrication of sensing ELMs compatible with field use and improving their functional complexity. To investigate these two unmet needs, we adopted a workflow to reproducibly construct bacterial ELMs with synthetic biosensing circuits that provide red pigmentation as visible readout in response to different proof-of-concept chemical inducers. We first fabricated single-input/single-output ELMs and we demonstrated their robust performance in terms of longevity (cell viability and evolutionary stability >15 days, and long-term storage >1 month), sensing in harsh, non-sterile or nutrient-free conditions compatible with field use (soil, water, and clinical samples, including real samples from Pseudomonas aeruginosa infected patients). Then, we fabricated ELMs including multiple spatially-separated biosensor strains to engineer: level-bar materials detecting molecule concentration ranges, multi-input/multi-output devices with multiplexed sensing and information processing capabilities, and materials with cell-cell communication enabling on-demand pattern formation. Overall, we showed successful field use and multiplexed functioning of reproducibly fabricated ELMs, paving the way to a future automation of the prototyping process and boosting applications of such devices as in-situ monitoring tools or easy-to-use sensing kits.
- Full text View on content provider's site
-
Kling A, Dirscherl L, and Dittrich PS
Lab on a chip [Lab Chip] 2023 Jan 31; Vol. 23 (3), pp. 534-541. Date of Electronic Publication: 2023 Jan 31.
- Subjects
-
Male, Humans, Prostate, Proteins, Polymers, Antibodies, Biomarkers, Tumor, and Prostatic Neoplasms diagnosis
- Abstract
-
Immunoassays are frequently used for analysis of protein biomarkers. The specificity of antibodies enables parallel analysis of several target proteins, at the same time. However, the implementation of such multiplexed assays into cost-efficient and mass-producible thermoplastic microfluidic platforms remains difficult due to the lack of suitable immobilization strategies for different capture antibodies. Here, we introduce and characterize a method to functionalize the surfaces of microfluidic devices manufactured in the thermoplastic material cyclic olefin copolymer (COC) by a rapid prototyping process. A laser-induced immobilization process enables the surface patterning of anchor biomolecules at a spatial resolution of 5 μm. We employ the method for the analysis of prostate cancer associated biomarkers by competitive immunoassays in a microchannel with a total volume of 320 nL, and successfully detected the proteins PSA, CRP, CEA and IGF-1 at clinically relevant concentrations. Finally, we also demonstrate the simultaneous analysis of three markers spiked into undiluted human plasma. In conclusion, this method opens the way to transfer multiplexed immunoassays into mass-producible microfluidic platforms that are suitable for point of care applications.
- Full text View on content provider's site
23. Structural and optical variation of pseudoisocyanine aggregates nucleated on DNA substrates. [2023]
-
Chiriboga M, Green CM, Mathur D, Hastman DA, Melinger JS, Veneziano R, Medintz IL, and Díaz SA
Methods and applications in fluorescence [Methods Appl Fluoresc] 2023 Jan 31; Vol. 11 (1). Date of Electronic Publication: 2023 Jan 31.
- Subjects
-
DNA chemistry, DNA, Single-Stranded, Circular Dichroism, and Quinolines chemistry
- Abstract
-
Coherently coupled pseudoisocyanine (PIC) dye aggregates have demonstrated the ability to delocalize electronic excitations and ultimately migrate excitons with much higher efficiency than similar designs where excitations are isolated to individual chromophores. Here, we report initial evidence of a new type of PIC aggregate, formed through heterogeneous nucleation on DNA oligonucleotides, displaying photophysical properties that differ significantly from previously reported aggregates. This new aggregate, which we call the super aggregate (SA) due to the need for elevated dye excess to form it, is clearly differentiated from previously reported aggregates by spectroscopic and biophysical characterization. In emission spectra, the SA exhibits peak narrowing and, in some cases, significant quantum yield variation, indicative of stronger coupling in cyanine dyes. The SA was further characterized with circular dichroism and atomic force microscopy observing unique features depending on the DNA substrate. Then by integrating an AlexaFluor TM 647 (AF) dye as an energy transfer acceptor into the system, we observed mixed energy transfer characteristics using the different DNA. For example, SA formed with a rigid DNA double crossover tile (DX-tile) substrate resulted in AF emission sensitization. While SA formed with more flexible non-DX-tile DNA (i.e. duplex and single strand DNA) resulted in AF emission quenching. These combined characterizations strongly imply that DNA-based PIC aggregate properties can be controlled through simple modifications to the DNA substrate's sequence and geometry. Ultimately, we aim to inform rational design principles for future device prototyping. For example, one key conclusion of the study is that the high absorbance cross-section and efficient energy transfer observed with rigid substrates made for better photonic antennae, compared to flexible DNA substrates.
(Creative Commons Attribution license.)
- Full text View on content provider's site
-
Johnson EA, Rainbow JG, and Carrington JM
Computers, informatics, nursing : CIN [Comput Inform Nurs] 2023 Jan 30. Date of Electronic Publication: 2023 Jan 30.
- Abstract
-
The expanded access to clinical trials has provided more patients the opportunity to participate in novel therapeutics research. There is an increased likelihood of a patient, as a pediatric oncology clinical trial participant, to present for clinical care outside the research site, such as at an emergency room or urgent care center. A novel wearable universal serial bus device is a proposed technology to bridge potential communication gaps, pertaining to critical information such as side effects and permitted therapies, between research teams and clinical teams where investigational agents may be contraindicated to standard treatments. Fifty-five emergency and urgent care nurses across the United States were presented, via online survey without priming to the context of clinical trials or the device, a picture of a pediatric patient wearing the novel wearable device prompted to identify significant, environmental cues important for patient care. Of the 40 nurses observing the patient photo, three identified the wearable device within Situational Awareness Global Assessment Tool formatted narrative response fields. Analysis of the narrative nurse-participant responses of significant clinical findings upon initial assessment of the pediatric patient photo is described, as well as the implications for subsequent prototyping of the novel universal serial bus prototype.
(Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.)
- Full text View on content provider's site
-
Martin J, Rasor B, DeBonis J, Karim AS, Jewett MC, Tyo KEJ, and Broadbelt LJ
Metabolic engineering [Metab Eng] 2023 Jan 29. Date of Electronic Publication: 2023 Jan 29.
- Abstract
-
Cell-free systems are useful tools for prototyping metabolic pathways and optimizing the production of various bioproducts. Mechanistically-based kinetic models are uniquely suited to analyze dynamic experimental data collected from cell-free systems and provide vital qualitative insight. However, to date, dynamic kinetic models have not been applied with rigorous biological constraints or trained on adequate experimental data to the degree that they would give high confidence in predictions and broadly demonstrate the potential for widespread use of such kinetic models. In this work, we construct a large-scale dynamic model of cell-free metabolism with the goal of understanding and optimizing butanol production in a cell-free system. Using a combination of parameterization methods, the resultant model captures experimental metabolite measurements across two experimental conditions for nine metabolites at timepoints between 0 and 24 h. We present analysis of the model predictions, provide recommendations for butanol optimization, and identify the aldehyde/alcohol dehydrogenase as the primary bottleneck in butanol production. Sensitivity analysis further reveals the extent to which various parameters are constrained, and our approach for probing valid parameter ranges can be applied to other modeling efforts.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023. Published by Elsevier Inc.)
- Full text View on content provider's site
-
Spencer M, Kameneva T, Grayden DB, Burkitt AN, and Meffin H
Journal of neural engineering [J Neural Eng] 2023 Jan 27; Vol. 20 (1). Date of Electronic Publication: 2023 Jan 27.
- Subjects
-
Visual Acuity, Vision, Ocular, Visual Perception physiology, Retina physiology, and Visual Prosthesis
- Abstract
-
Objective. Visual prostheses currently restore only limited vision. More research and pre-clinical work are required to improve the devices and stimulation strategies that are used to induce neural activity that results in visual perception. Evaluation of candidate strategies and devices requires an objective way to convert measured and modelled patterns of neural activity into a quantitative measure of visual acuity. Approach. This study presents an approach that compares evoked patterns of neural activation with target and reference patterns. A d-prime measure of discriminability determines whether the evoked neural activation pattern is sufficient to discriminate between the target and reference patterns and thus provides a quantified level of visual perception in the clinical Snellen and MAR scales. The magnitude of the resulting value was demonstrated using scaled standardized 'C' and 'E' optotypes. Main results. The approach was used to assess the visual acuity provided by two alternative stimulation strategies applied to simulated retinal implants with different electrode pitch configurations and differently sized spreads of neural activity. It was found that when there is substantial overlap in neural activity generated by different electrodes, an estimate of acuity based only upon electrode pitch is incorrect; our proposed method gives an accurate result in both circumstances. Significance. Quantification of visual acuity using this approach in pre-clinical development will allow for more rapid and accurate prototyping of improved devices and neural stimulation strategies.
(© 2023 IOP Publishing Ltd.)
- Full text View on content provider's site
-
Inagawa A, Iimura KI, and Uehara N
Analytical methods : advancing methods and applications [Anal Methods] 2023 Jan 26; Vol. 15 (4), pp. 537-542. Date of Electronic Publication: 2023 Jan 26.
- Abstract
-
A stencil printing method utilizing sticky notes, a thermal transfer ink ribbon, and office appliances for paper-based analytical device (PAD) fabrication was proposed. A sticky note was attached to a filter paper, and a mask pattern was cut using a cutting machine. A commercially available thermal ink ribbon was then placed over the mask and laminated. We have characterized the fabricated devices. This approach could be used for the fast and mass prototyping of PADs using simple office appliances with no need for a wax printer.
- Full text View on content provider's site
-
Rasor BJ, Chirania P, Rybnicky GA, Giannone RJ, Engle NL, Tschaplinski TJ, Karim AS, Hettich RL, and Jewett MC
ACS synthetic biology [ACS Synth Biol] 2023 Jan 26. Date of Electronic Publication: 2023 Jan 26.
- Abstract
-
Cell-free systems derived from crude cell extracts have developed into tools for gene expression, with applications in prototyping, biosensing, and protein production. Key to the development of these systems is optimization of cell extract preparation methods. However, the applied nature of these optimizations often limits investigation into the complex nature of the extracts themselves, which contain thousands of proteins and reaction networks with hundreds of metabolites. Here, we sought to uncover the black box of proteins and metabolites in Escherichia coli cell-free reactions based on different extract preparation methods. We assess changes in transcription and translation activity from σ 70 promoters in extracts prepared with acetate or glutamate buffer and the common post-lysis processing steps of a runoff incubation and dialysis. We then utilize proteomic and metabolomic analyses to uncover potential mechanisms behind these changes in gene expression, highlighting the impact of cold shock-like proteins and the role of buffer composition.
- Full text View on content provider's site
-
Chesnais F, Joel J, Hue J, Shakib S, Di Silvio L, Grigoriadis AE, Coward T, and Veschini L
Lab on a chip [Lab Chip] 2023 Jan 26. Date of Electronic Publication: 2023 Jan 26.
- Abstract
-
Creating vascularised cellular environments in vitro is a current challenge in tissue engineering and a bottleneck towards developing functional stem cell-derived microtissues for regenerative medicine and basic investigations. Here we have developed a new workflow to manufacture vasculature on chip (VoC) systems efficiently, quickly, and inexpensively. We have employed 3D printing for fast-prototyping of bespoke VoC and coupled them with a refined organotypic culture system (OVAA) to grow patent capillaries in vitro using tissue-specific endothelial and stromal cells. Furthermore, we have designed and implemented a pocket-size flow driver to establish physiologic perfusive flow throughout our VoC-OVAA with minimal medium use and waste. Using our platform, we have created vascularised microtissues and perfused them at physiologic flow rates for extended time (>2 weeks) observing flow-dependent vascular remodelling. Overall, we present for the first time a scalable and customisable system to grow vascularised and perfusable microtissues, a key initial step to grow mature and functional tissues in vitro . We envision that this technology will empower fast prototyping and validation of increasingly biomimetic in vitro systems, including interconnected multi-tissue systems.
- Full text View on content provider's site
-
Govoni FA, Felici N, Ornelli M, Marcelli VA, Migliano E, Pesucci BA, and Pistilli R
Maxillofacial plastic and reconstructive surgery [Maxillofac Plast Reconstr Surg] 2023 Jan 23; Vol. 45 (1), pp. 6. Date of Electronic Publication: 2023 Jan 23.
- Abstract
-
Background: The need for whole mandibular bone reconstruction and bilateral joint replacement is fortunately rare, but it is an extremely challenging topic in maxillofacial surgery, due to its functional implications. CAD-CAM techniques development has opened new broad horizons in the surgical planning of complex maxillofacial reconstructions, in terms of accuracy, predictability, and functional cosmetic results. The review of the literature has revealed a small number of scientific reports on total mandibulectomy including the condyles, with only eleven cases from 1980. Most of the works describe reconstructions secondary to dysplastic or inflammatory diseases affecting the lower jaw. The aim of this work, reporting a rare case of massive fibrous dysplasia of the whole mandible, is to share our experience in the management of extended mandibular and bilateral joint reconstruction, using porous titanium patient-specific implants.
Case Presentation: The authors present a 20-year-old male patient suffering from massive bone fibrous dysplasia of the mandible. The mandibular body and both the rami and the condylar processes had been involved, causing severe functional impairment, tooth loss, and facial deformation. The young patient, after repeated ineffective conservative surgical treatments, has required a biarticular mandibular replacement. Using virtual surgical planning (VSP) software, the authors, in collaboration with medical engineers, have created a custom-made original titanium porous mandibular implant, suspended from a bilateral artificial temporomandibular joint. The mandibular titanium implant body has been specifically designed to support soft tissues and to fix, in the alveolar region, a free fibular bone graft, for delayed dental implant prosthetic rehabilitation.
Conclusion: The surgical and technical details, as well as the new trends in mandibular reconstructions using porous titanium implants, are reported, and discussed, reviewing literature reports on this topic. Satisfactory functional and cosmetic restorative results have been obtained, and no major complications have occurred. The patient, currently in the 18 th month clinical and radiological follow-up, has recently completed the functional restoration program by an implant-supported full-arch dental prosthesis.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
Rein C, Toner M, and Sevenler D
Scientific reports [Sci Rep] 2023 Jan 22; Vol. 13 (1), pp. 1232. Date of Electronic Publication: 2023 Jan 22.
- Subjects
-
Dimethylpolysiloxanes, Microfluidics methods, and Microfluidic Analytical Techniques
- Abstract
-
Soft lithography has permitted rapid prototyping of precise microfluidic features by patterning a deformable elastomer such as polydimethylsiloxane (PDMS) with a photolithographically patterned mold. In microfluidics applications where the flexibility of PDMS is a drawback, a variety of more rigid materials have been proposed. Compared to alternatives, devices fabricated from epoxy and glass have superior mechanical performance, feature resolution, and solvent compatibility. Here we provide a detailed step-by-step method for fabricating rigid microfluidic devices from soft lithography patterned epoxy and glass. The bonding protocol was optimized yielding devices that withstand pressures exceeding 500 psi. Using this method, we demonstrate the use of rigid high aspect ratio spiral microchannels for high throughput cell focusing.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
van der Windt M, van Zundert SKM, Schoenmakers S, van Rossem L, and Steegers-Theunissen RPM
Journal of medical Internet research [J Med Internet Res] 2023 Jan 20; Vol. 25, pp. e37537. Date of Electronic Publication: 2023 Jan 20.
- Subjects
-
Humans, Pregnancy, Female, Pilot Projects, Feasibility Studies, Pregnancy Outcome, Life Change Events, and Prenatal Care
- Abstract
-
Background: A healthy lifestyle plays a key role in the prevention of lifestyle-related diseases, including subfertility and pregnancy complications. Although the benefits of a healthy lifestyle are well-known, long-term adherence is limited. Moreover, memory for lifestyle-related information as well as medical information provided by the medical professional is often poor and insufficient. In order to innovate and improve health care for both the patients and health care professionals, we developed a prototype of a digital life course care platform (Smarter Health app), providing personalized lifestyle care trajectories integrated in medical care journeys.
Objective: This pilot study aimed to evaluate the feasibility, defined as the actual app use, and the acceptability, which included patient satisfaction and appreciation, of the Smarter Health app.
Methods: Between March 17, 2021, and September 30, 2021, pregnant women familiar with the Dutch language seeking tertiary preconception and pregnancy care were offered the app as part of standard medical care at the outpatient clinic Healthy Pregnancy of the Department of Obstetrics and Gynecology of the Erasmus University Medical Center. Three months after activation of the app, patients received a digital questionnaire consisting of aspects of feasibility and acceptability.
Results: During this pilot study, 440 patients visited the outpatient clinic Healthy Pregnancy. Of the 440 patients, 293 (66.6%) activated the app. Of the 293 patients who activated the app, 125 (42.7%) filled out the questionnaire. Of these 125 patients, 48 (38.4%) used the app. Most app users used it occasionally and logged in 8 times during their medical care trajectory. Overall, app users were satisfied with the app (median 5-point Likert scale=2.4, IQR 2.0-3.3).
Conclusions: Our findings showed that the Smarter Health app, which integrates lifestyle care in medical care, is a feasible health care innovation, and that patients were satisfied with the app. Follow-up and evaluation of pregnancy outcomes should be performed to further substantiate wider clinical implementation.
(©Melissa van der Windt, Sofie Karolina Maria van Zundert, Sam Schoenmakers, Lenie van Rossem, Régine Patricia Maria Steegers-Theunissen. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 20.01.2023.)
- Full text View on content provider's site
33. Agile Methodologies Applied to the Development of Internet of Things (IoT)-Based Systems: A Review. [2023]
-
Guerrero-Ulloa G, Rodríguez-Domínguez C, and Hornos MJ
Sensors (Basel, Switzerland) [Sensors (Basel)] 2023 Jan 10; Vol. 23 (2). Date of Electronic Publication: 2023 Jan 10.
- Subjects
-
Humans, Internet, Research Personnel, Software, and Internet of Things
- Abstract
-
Throughout the evolution of software systems, empirical methodologies have been used in their development process, even in the Internet of Things (IoT) paradigm, to develop IoT-based systems (IoTS). In this paper, we review the fundamentals included in the manifesto for agile software development, especially in the Scrum methodology, to determine its use and role in IoTS development. Initially, 4303 documents were retrieved, a number that was reduced to 186 after applying automatic filters and by the relevance of their titles. After analysing their contents, only 60 documents were considered. Of these, 38 documents present the development of an IoTS using some methodology, 8 present methodologies focused on the construction of IoTS software, and 14 present methodologies close to the systems life cycle (SLC). Finally, only one methodology can be considered SLC-compliant. Out of 38 papers presenting the development of some IoTS following a methodology for traditional information systems (ISs), 42.1% have used Scrum as the only methodology, while 10.5% have used Scrum combined with other methodologies, such as eXtreme Programming (XP), Kanban and Rapid Prototyping. In the analysis presented herein, the existing methodologies for developing IoTSs have been grouped according to the different approaches on which they are based, such as agile, modelling, and service oriented. This study also analyses whether the different proposals consider the standard stages of the development process or not: planning and requirements gathering, solution analysis, solution design, solution coding and unit testing (construction), integration and testing (implementation), and operation and maintenance. In addition, we include a review of the automated frameworks, platforms, and tools used in the methodologies analysed to improve the development of IoTSs and the design of their underlying architectures. To conclude, the main contribution of this work is a review for IoTS researchers and developers regarding existing methodologies, frameworks, platforms, tools, and guidelines for the development of IoTSs, with a deep analysis framed within international standards dictated for this purpose.
- Full text View on content provider's site
34. Computer-Aided Greenery Design-Prototype Green Structure Improving Human Health in Urban Ecosystem. [2023]
-
Sędzicki D, Cudzik J, and Nyka L
International journal of environmental research and public health [Int J Environ Res Public Health] 2023 Jan 10; Vol. 20 (2). Date of Electronic Publication: 2023 Jan 10.
- Subjects
-
Humans, Cities, Urbanization, Public Health, Ecosystem, and Quality of Life
- Abstract
-
Increasing population and urbanization, with climate change consequences, such as rising temperatures, influence public health and well-being. The search to improve the quality of life in cities becomes one of the priority objectives. A solution can be found in the role of greenery in an urban environment and its impact on human health. This opens a path toward experimentation on microclimate green structures that can be inserted into dense urban spaces providing human and environmental benefits. The article proposes an automated greenery design method combined with rapid prototyping for such interventions. A theoretical analysis of the problem preceded the introduction of the method. The research process was developed in accordance with the main objectives of the CDIO framework (Conceive, Design, Implement, and Operate) with the SiL (Software in the Loop) and HiL (Hardware in the Loop) methods. Moreover, the applied test model allows for complex evaluation in order to ensure quality and directions for further development.
- Full text View on content provider's site
35. Customizable 3D printed perfusion bioreactor for the engineering of stem cell microenvironments. [2023]
-
Dupard SJ, Garcia AG, and Bourgine PE
Frontiers in bioengineering and biotechnology [Front Bioeng Biotechnol] 2023 Jan 09; Vol. 10, pp. 1081145. Date of Electronic Publication: 2023 Jan 09 (Print Publication: 2022).
- Abstract
-
Faithful modeling of tissues and organs requires the development of systems reflecting their dynamic 3D cellular architecture and organization. Current technologies suffer from a lack of design flexibility and complex prototyping, preventing their broad adoption by the scientific community. To make 3D cell culture more available and adaptable we here describe the use of the fused deposition modeling (FDM) technology to rapid-prototype 3D printed perfusion bioreactors. Our 3D printed bioreactors are made of polylactic acid resulting in reusable systems customizable in size and shape. Following design confirmation, our bioreactors were biologically validated for the culture of human mesenchymal stromal cells under perfusion for up to 2 weeks on collagen scaffolds. Microenvironments of various size/volume (6-12 mm in diameter) could be engineered, by modulating the 3D printed bioreactor design. Metabolic assay and confocal microscopy confirmed the homogenous mesenchymal cell distribution throughout the material pores. The resulting human microenvironments were further exploited for the maintenance of human hematopoietic stem cells. Following 1 week of stromal coculture, we report the recapitulation of 3D interactions between the mesenchymal and hematopoietic fractions, associated with a phenotypic expansion of the blood stem cell populations.Our data confirm that perfusion bioreactors fit for cell culture can be generated using a 3D printing technology and exploited for the 3D modeling of complex stem cell systems. Our approach opens the gates for a more faithful investigation of cellular processes in relation to a dynamic 3D microenvironment.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Dupard, Garcia and Bourgine.)
- Full text View on content provider's site
-
Kwan YH, Ong ZQ, Choo DYX, Phang JK, Yoon S, and Low LL
Patient preference and adherence [Patient Prefer Adherence] 2023 Jan 05; Vol. 17, pp. 1-11. Date of Electronic Publication: 2023 Jan 05 (Print Publication: 2023).
- Abstract
-
Background: Diabetes is a global public health issue, causing burden on healthcare system and increasing risk of mortality. Mobile applications (apps) can be a promising approach to facilitate diabetes self-management. An increasingly utilized approach to facilitate engagement with mobile health (mHealth) technology is to involve potential users in the creation of the technology.
Objective: The aim of this study was to use co-design for type 2 diabetes mellitus (T2DM) self-management mHealth development.
Methods: Three rounds of iterative rapid prototyping panel sessions were conducted with a total of 9 T2DM participants in an Asian setting between Oct 2020 and April 2021. The participants were recruited through convenience sampling. For each round, feedback was gathered through qualitative interviews, and the feedback was used as a reference by the development team to develop and test a more refined version of the app in the next round. Transcribed semi-structured interview data was analyzed thematically using an inductive approach.
Results: Participants' ages ranged from 40 to 69 years. Data saturation was reached, with no new themes emerging from the data. During the sessions, the participants expressed a variety of concerns and feedback on T2DM self-management using EMPOWER app and raised suggestions on the features of ideal T2DM self-management app. Important features include 1) reminders and notifications for medications, 2) Bluetooth integration with glucometers and blood pressure machines to minimize manual entry, 3) enlarged local food database including information on sugar content and recommendations for healthier options, 4) one touch for logging of routine medications and favorite foods, 5) export function for data sharing with physicians. Overall inputs concerned aspects such as user-friendliness of the app, customization possibilities, and educational content for the features in the mobile app.
Conclusion: In this study, we explored users' opinions on a T2DM self-management mobile app using co-design approach. This study adds to the growing body of literature on co-designing behavioral mHealth interventions and can potentially guide researchers in mobile app design for other chronic conditions.
Competing Interests: The authors declare that they have no other competing interests.
(© 2023 Kwan et al.)
- Full text View on content provider's site
-
Chen L, Zhang C, Yadav V, Wong A, Senapati S, and Chang HC
Scientific reports [Sci Rep] 2023 Jan 05; Vol. 13 (1), pp. 184. Date of Electronic Publication: 2023 Jan 05.
- Subjects
-
Microfluidics methods, Cell Encapsulation, Polymerase Chain Reaction, Microfluidic Analytical Techniques methods, and Microgels
- Abstract
-
Droplet microfluidics offers a platform from which new digital molecular assay, disease screening, wound healing and material synthesis technologies have been proposed. However, the current commercial droplet generation, assembly and imaging technologies are too expensive and rigid to permit rapid and broad-range tuning of droplet features/cargoes. This rapid prototyping bottleneck has limited further expansion of its application. Herein, an inexpensive home-made pipette droplet microfluidics kit is introduced. This kit includes elliptical pipette tips that can be fabricated with a simple DIY (Do-It-Yourself) tool, a unique tape-based or 3D printed shallow-center imaging chip that allows rapid monolayer droplet assembly/immobilization and imaging with a smart-phone camera or miniature microscope. The droplets are generated by manual or automatic pipetting without expensive and lab-bound microfluidic pumps. The droplet size and fluid viscosity/surface tension can be varied significantly because of our particular droplet generation, assembly and imaging designs. The versatility of this rapid prototyping kit is demonstrated with three representative applications that can benefit from a droplet microfluidic platform: (1) Droplets as microreactors for PCR reaction with reverse transcription to detect and quantify target RNAs. (2) Droplets as microcompartments for spirulina culturing and the optical color/turbidity changes in droplets with spirulina confirm successful photosynthetic culturing. (3) Droplets as templates/molds for controlled synthesis of gold-capped polyacrylamide/gold composite Janus microgels. The easily fabricated and user-friendly portable kit is hence ideally suited for design, training and educational labs.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
Wang YC, Chen HC, Wong CC, Chang WP, Lin CH, Liaw CK, Chen CH, and Weng PW
Orthopaedic journal of sports medicine [Orthop J Sports Med] 2023 Jan 05; Vol. 11 (1), pp. 23259671221142242. Date of Electronic Publication: 2023 Jan 05 (Print Publication: 2023).
- Abstract
-
Background: Single-row (SR) and double-row repair techniques have been described to treat rotator cuff tears. We present a novel surgical strategy of arthroscopic-assisted mini-open repair in which a locking-loop suture bridge (LLSB) is used.
Purpose: To compare the functional outcomes and repair integrity of LLSB technique to the SR technique for arthroscopic-assisted mini-open repair of small to medium rotator cuff tears.
Study Design: Cohort study; Level of evidence, 3.
Methods: Included were 39 patients who underwent LLSB repair (LLSB group) and 44 patients who underwent SR suture anchor repair (SR group) from 2015 to 2018. We evaluated all patients preoperatively and at 3, 6, 12, and 24 months postoperatively using the visual analog scale (VAS) for pain, Oxford Shoulder Score (OSS), and American Shoulder and Elbow Surgeons (ASES) score. Also, shoulder sonography was performed at 12 months postoperatively to evaluate repair integrity using the Sugaya classification system. The independent-sample t test was used to analyze functional outcomes (VAS, OSS, and ASES scores), and the Fisher exact test was used to analyze postoperative sonography results.
Results: Patients in both the LLSB and SR groups saw a significant improvement on all 3 outcome measures from preoperatively to 24 months postoperatively ( P < .001 for all). However, when comparing scores between groups, only the scores at 3 months postoperatively differed significantly (VAS: P = .002; OSS: P < .001; ASES: P = .005). Shoulder sonography at 12 months postoperatively revealed no significant difference in repair integrity between the LLSB and SR groups (retear rate: 10.26% and 6.82%, respectively; P = .892).
Conclusion: Better outcome scores were seen at 3-month follow-up in the LLSB group, with no difference in retear rates compared with the SR group at 12 months postoperatively. The LLSB technique was found to be a reliable technique for rotator cuff repair of small- to medium-sized tears.
Competing Interests: The authors declared that there are no conflicts of interest in the authorship and publication of this contribution. AOSSM checks author disclosures against the Open Payments Database (OPD). AOSSM has not conducted an independent investigation on the OPD and disclaims any liability or responsibility relating thereto.
(© The Author(s) 2023.)
- Full text View on content provider's site
-
Smith MA and Nigro S
The Annals of pharmacotherapy [Ann Pharmacother] 2023 Jan 05, pp. 10600280221147014. Date of Electronic Publication: 2023 Jan 05.
- Abstract
-
Design thinking is an approach to problem solving that focuses on a solution to a problem. This systematic approach can be applied to practice-based research or implementation projects in your practice setting. It may be useful for starting new projects as well as revisiting past projects that may not have yielded meaningful results. The design-thinking process begins with identifying a problem or knowledge gap and then the steps include: (1) understanding the problem, (2) observing the problem, (3) defining the problem, (4) brainstorming possible solutions, (5) prototyping the best solution, and (6) testing the solution.
- Full text View on content provider's site
-
Alimenti A, Torokhtii K, Vidal García P, Pompeo N, and Silva E
Sensors (Basel, Switzerland) [Sensors (Basel)] 2023 Jan 03; Vol. 23 (1). Date of Electronic Publication: 2023 Jan 03.
- Abstract
-
The spread of additive manufacturing techniques in the prototyping and realization of high-frequency applications renewed the interest in the characterization of the electromagnetic properties of both dielectric and conductive materials, as well as the design of new versatile measurement techniques. In this framework, a new configuration of a dielectric-loaded resonator is presented. Its optimization, realization, and use are presented. A measurement repeatability of about one order of magnitude lower than the commonly found values (10-3 on the Q -factor and 15×10-6 on the resonance frequency, given in terms of the relative standard deviations of repeated measurements) was reached thanks to the design of a closed resonator in which the samples can be loaded without disassembling the whole measurement fixture. The uncertainty levels, the ease of use, and the versatility of the realized system make its use of potential interest in numerous scenarios.
- Full text View on content provider's site
-
Pizzi M, De Gaetano F, Ferroni M, Boschetti F, and Annoni M
Micromachines [Micromachines (Basel)] 2023 Jan 03; Vol. 14 (1). Date of Electronic Publication: 2023 Jan 03.
- Abstract
-
The mechanisms of deep-hole microdrilling of pure Mg material were experimentally studied in order to find a suitable setup for a novel intraocular drug delivery device prototyping. Microdrilling tests were performed with 0.20 mm and 0.35 mm microdrills, using a full factorial design in which cutting speed vc and feed fz were varied over two levels. In a preliminary phase, the chip shape was evaluated for low feeds per tooth down to 1 μm, to verify that the chosen parameters were appropriate for machining. Subsequently, microdrilling experiments were carried out, in which diameter, burr height and surface roughness of the drilled holes were examined. The results showed that the burr height is not uniform along the circumference of the holes. In particular, the maximum burr height increases with higher cutting speed, due to the thermal effect that plasticizes Mg. Hole entrance diameters are larger than the nominal tool diameters due to tool runout, and their values are higher for high vc and fz. In addition, the roughness of the inner surface of the holes increases as fz increases.
- Full text View on content provider's site
42. Tailoring inkjet-printed PEDOT:PSS composition toward green, wearable device fabrication. [2023]
-
Galliani M, Ferrari LM, Bouet G, Eglin D, and Ismailova E
APL bioengineering [APL Bioeng] 2023 Jan 03; Vol. 7 (1), pp. 016101. Date of Electronic Publication: 2023 Jan 03 (Print Publication: 2023).
- Abstract
-
Inkjet printing remains one of the most cost-efficient techniques for device prototyping and manufacturing, offering considerable freedom of digital design, non-contact, and additive fabrication. When developing novel wearable devices, a balanced approach is required between functional, user-safe materials and scalable manufacturing processes. Here, we propose a tailor-made ink formulation, based on non-hazardous materials, to develop green electronic devices aimed at interfacing with humans. We demonstrate that developed ink exhibits high-resolution inkjet printability, in line with theoretical prediction, on multiple wearable substrates. The ink's chemical composition ensures the pattern's enhanced electrical properties, mechanical flexibility, and stability in water. The cytocompatibility evaluations show no noxious effects from printed films in contact with human mesenchymal stem cells. Finally, we fabricated a printed wearable touch sensor on a non-woven fabric substrate, capable of tracking human steps. This is a step toward the development of green wearable electronics manufacturing, demonstrating a viable combination of materials and processes for biocompatible devices.
(© 2023 Author(s).)
- Full text View on content provider's site
43. Implementation of Automated Pipeline for Resting-State fMRI Analysis with PACS Integration. [2023]
-
Li XT, Allen JW, and Hu R
Journal of digital imaging [J Digit Imaging] 2023 Jan 03. Date of Electronic Publication: 2023 Jan 03.
- Abstract
-
In recent years, the quantity and complexity of medical imaging acquisition and processing have increased tremendously. The explosion in volume and need for advanced imaging analysis have led to the creation of numerous software programs, which have begun to be incorporated into clinical practice for indications such as automated stroke assessment, brain tumor perfusion processing, and hippocampal volume analysis. Despite these advances, there remains a need for specialized, custom-built software for advanced algorithms and new areas of research that is not widely available or adequately integrated in these "out-of-the-box" solutions. The purpose of this paper is to describe the implementation of an image-processing pipeline that is versatile and simple to create, which allows for rapid prototyping of image analysis algorithms and subsequent testing in a clinical environment. This pipeline uses a combination of Orthanc server, custom MATLAB code, and publicly available FMRIB Software Library and RestNeuMap tools to automatically receive and analyze resting-state functional MRI data collected from a custom filter on the MR scanner output. The processed files are then sent directly to Picture Archiving and Communications System (PACS) without the need for user input. This initial experience can serve as a framework for those interested in simple implementation of an automated pipeline customized to clinical needs.
(© 2022. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.)
- Full text View on content provider's site
-
Prestby TJ, Robinson AC, McLaughlin D, Dudas PM, and Grozinger CM
Journal of environmental management [J Environ Manage] 2023 Jan 01; Vol. 325 (Pt A), pp. 116416. Date of Electronic Publication: 2022 Oct 13.
- Subjects
-
Bees, Animals, and Pesticides
- Abstract
-
Interactive maps can serve as powerful environmental decision-support tools. However, designing an interactive map that meets the needs of diverse constituencies is a challenge. In this article, we evaluate and characterize user needs for an interactive map and spatial decision-support tool called Beescape. Beescape is designed to visualize resources and environmental risks to bees and other pollinators (such as availability of nutritional resources from flowering plants and exposure to pesticides) in order to help users make informed decisions about managing bee populations and associated landscapes. We conducted a needs assessment workshop with twenty stakeholders from four user groups including beekeepers, growers, conservationists, and pollinator scientists to elicit their knowledge to guide future Beescape development. The results of the workshop identify current analytical gaps with the existing Beescape prototype, including the need for predictive and historical tools, more actionable data layers, finer-grain spatial data, and better explanations on what data represent and how they were created. Our findings on user's analytical, informational, and interface needs can be utilized to guide the future development of spatial decision support tools like Beescape, and our methodological approach may apply to other environmental informatics tools where it is important to design for multiple constituent user groups.
Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Timothy J. Prestby reports financial support was provided by United States Department of Agriculture. Anthony C. Robinson reports financial support was provided by United States Department of Agriculture and Agriculture. Christina M. Grozinger reports financial support was provided by United States Department of Agriculture.
(Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Full text View on content provider's site
-
Sánchez-Salcedo S, García A, González-Jiménez A, and Vallet-Regí M
Acta biomaterialia [Acta Biomater] 2023 Jan 01; Vol. 155, pp. 654-666. Date of Electronic Publication: 2022 Nov 01.
- Subjects
-
Silicon Dioxide, Staphylococcus aureus, Escherichia coli, Biocompatible Materials chemistry, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents chemistry, Polymers, Printing, Three-Dimensional, Glass chemistry, Tissue Scaffolds chemistry, Porosity, Silver pharmacology, and Metal Nanoparticles
- Abstract
-
The development of new biomaterials for bone tissue regeneration with high bioactivity abilities and antibacterial properties is being intensively investigated. We have synthesized nanocomposites formed by mesoporous bioactive glasses (MBGs) in the ternary SiO 2 , CaO and P 2 O 5 system doped with metallic silver nanoparticles (AgNPs) that were homogenously embedded in the MBG matrices. Ag/MBG nanocomposites have been directly synthesized and silver species were spontaneously reduced to metallic AgNPs by high temperatures (700 °C) obtained of last MBG synthesis step. Three-dimensional silver-containing mesoporous bioactive glass scaffolds were fabricated showing uniformly interconnected ultrapores, macropores and mesopores. The manufacture method consisted of a combination of a single-step sol-gel route in the mesostructure directing agent (P123) presence and a biomacromolecular polymer such as (hydroxypropyl)methyl cellulose (HPMC) as the macrostructure template, followed by rapid prototyping (RP) technique. Biological properties of Ag/MBG nanocomposites were evaluated by MC3T3-E1 preosteoblastic cells culture tests and bacterial (E. coli and S. aureus) assays. The results showed that the MC3T3-E1 cells morphology was not affected while preosteoblastic proliferation decreased when the presence of silver increased. Antimicrobial assays indicated that bacterial growth inhibition and biofilm destruction were directly proportional to the increased presence of AgNPs in the MBG matrices. Furthermore, in vitro co-culture of MC3T3-E1 cells and S. aureus bacteria confirmed that AgNPs presence was necessary for antibacterial activity, and AgNPs slightly affected cell proliferation parameters. Therefore, 3D printed scaffolds with hierarchical pore structure and high antimicrobial capacity have potential applications in bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study combines three key scientific aspects for bone tissue engineering: (i) materials with high bioactivity to repair and regenerate bone tissue that (ii) contain antibacterial agents to reduce the infection risk (iii) in the form of three-dimensional scaffolds with hierarchical porosity. Innovative methodology is described here: sol-gel method, which is employed to obtain mesoporous bioactive glass matrices doped with metallic silver nanoparticles where different polymer templates facilitate the different size scales presence, and rapid prototyping technique that provides ultra-large macroporosity according to computer-aided design. The dual scaffolds obtained are biocompatible and deliver active doses of silver capable of combating bone infections, which represent one of the most serious complications associated to surgical treatments of bone diseases and fractures.
Competing Interests: Declaration of Competing Interest The authors declare no conflict of interest.
(Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Full text View on content provider's site
-
He Q, Rao P, Wang L, Li Y, Fu G, and Xiao J
Oral surgery, oral medicine, oral pathology and oral radiology [Oral Surg Oral Med Oral Pathol Oral Radiol] 2023 Jan; Vol. 135 (1), pp. 24-32. Date of Electronic Publication: 2022 May 14.
- Subjects
-
Humans, Titanium, Pilot Projects, Surgical Mesh, Orbit surgery, Plastic Surgery Procedures, Dental Implants, Orbital Fractures diagnostic imaging, and Orbital Fractures surgery
- Abstract
-
Objective: The aim was to preliminarily evaluate the effect of individualized preformed titanium mesh in the treatment of orbital wall fractures with superior orbital fissure syndrome (SOFS).
Study Design: This study consisted of 10 patients of orbital wall fracture and SOFS who were treated at the Affiliated Stomatology Hospital of Southwest Medical University. On the basis of preoperative computed tomography data, individualized titanium mesh was produced by mirror engineering and rapid prototyping, and it was implanted into defects in the orbital walls to restore the normal anatomy. Early orbital wall reconstruction was performed to improve the SOFS. Postoperatively, the ocular and facial appearance and eye function were evaluated.
Results: The orbital structure, volume, and size of the SOF were restored in the 10 patients using the individualized titanium mesh. The symptoms of SOFS completely disappeared in all patients with no severe postoperative complications. Significant recovery of ocular and facial appearance and eye function was reported.
Conclusions: This pilot study demonstrated that individualized preformed titanium mesh can accurately restore the orbital walls and the structure and size of the SOF, and it is useful in the treatment of SOFS without intraorbital bone fragment displacement.
(Copyright © 2022 Elsevier Inc. All rights reserved.)
- Full text View on content provider's site
-
Hossain MY and Zaman L
Multimedia tools and applications [Multimed Tools Appl] 2023; Vol. 82 (3), pp. 4671-4708. Date of Electronic Publication: 2022 Apr 13.
- Abstract
-
Game development is a collective process in which a variety of different professionals from different backgrounds collaborate together not only by means of conversational interaction but also collaborative participation, one of which is programming. While collaborative and pair programming solutions exist for text-based programming languages, visual programming has not enjoyed as much attention. These solutions would not only address advanced forms of business communication among team members but could find their use in distance learning, which would have been useful during the pandemic. In our work, we propose a solution for collaborative behavioral animation of NPCs using behavior trees through synchronous and asynchronous modes of collaboration. We conducted a user study with 12 moderately skilled game development university students who were placed in groups of two and engaged in joint fixed behavior tree development tasks using the synchronous and asynchronous modes and auxiliary features of live preview, access and restoration of previous states from behavior tree history, conflict resolution, and instant messaging. Participants also completed a control task where no collaboration was involved and auxiliary features were not available. Feedback form Creativity Support Index, a self-developed questionnaire, and a semi-structured interview were collected. Additionally, task completion times were logged. The results indicate that the two collaborative modes provide expected improvement over the control condition. No significant differences were found between the two collaborative modes. However, the semi-structed interview revealed that the synchronous mode could be useful for quick prototyping, while the asynchronous mode - for most other situations.
Supplementary Information: The online version contains supplementary material available at 10.1007/s11042-022-12307-2.
Competing Interests: Conflict of interestAuthors declare that they have no conflict of interest.
(© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.)
- Full text View on content provider's site
-
Frazier-Aich L, Beaudry J, MacDonald M, and Giacumo LA
TechTrends : for leaders in education & training [TechTrends] 2023; Vol. 67 (1), pp. 68-83. Date of Electronic Publication: 2022 Dec 16.
- Abstract
-
The COVID-19 pandemic made being socially distant an essential practice to upskill employees. As employers incorporate measures to keep employees socially distant from one another, they also need to consider technology to make this practice possible. Our project with a large state-wide, multi-campus food bank (FB) in the pacific northwest occurred during the late summer and early fall of 2020. The FB partnered with our group of three graduate students and one faculty member to improve self-audits of their coolers. This project used technology and rapid prototyping to design an instructional intervention that allowed social distancing in a workplace where employees were required to be present. We conducted a front-end analysis including training requirements, learner and environmental analysis and task analysis. This article describes the process of the analyses and design of instructional materials that allowed the FB to scale their audit process to their other warehouses.
(© Association for Educational Communications & Technology 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
- Full text View on content provider's site
-
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, and Lee J
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2023 Jan; Vol. 35 (4), pp. e2203433. Date of Electronic Publication: 2022 Nov 27.
- Subjects
-
Cell-Free System and Synthetic Biology
- Abstract
-
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
(© 2022 Wiley-VCH GmbH.)
- Full text View on content provider's site
-
Lacroix R, Timonina-Farkas A, and Seifert RW
Journal of intelligent manufacturing [J Intell Manuf] 2023; Vol. 34 (1), pp. 281-301. Date of Electronic Publication: 2022 Sep 27.
- Abstract
-
Additive manufacturing (AM), originally used for prototyping, is increasingly adopted for custom final part production across different industries. However, printing speed and production volume are two barriers for the adoption of AM for product customization at large scale. Nevertheless, manufacturers could aim to combine the benefits of AM for product customization with traditional mass customization (MC) technologies over the product life cycle (PLC). This approach is showcased in our paper as a manufacturing opportunity and is addressed via a non convex-concave optimization model that considers a monopolist manufacturer producing horizontally differentiated products at scale. To satisfy individual customer preferences under capacity considerations, the firm jointly decides on the inventory, production quantity, product variety, optimal technology-switching times (between AM and MC) and pricing strategy. Our approach can be implemented by decision-makers to leverage customer-centricity and benefit from this novel hybrid manufacturing practice. By deriving a closed-form solution for the production quantity based on an adaptive inventory policy, the resulting optimization problem is solved using the Sample Average Approximation framework grounded by analytical results. Our results demonstrate that the new usage of AM with MC can benefit a manufacturer for customer-centric driven strategies. Significant profit improvements can be achieved with an AM-MC-AM technology-switching scenario under certain capacity conditions and with an increasing-decreasing pricing strategy. Our results also indicate that the benefits of pricing flexibility are highest when capacity is unlimited or when the firm does not hold inventory. Under capacity constraints, a simple decreasing pricing policy combined with inventory performs very well.
(© The Author(s) 2022.)
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 50
Next