articles+ search results
4,318 articles+ results
1 - 20
Next
Number of results to display per page
1 - 20
Next
Number of results to display per page
1. Iterative prototyping based on lessons learned from the falloposcope in vivo pilot study experience. [2023]
-
Rocha AD, Drake WK, Rice PF, Long DJ, Shir H, Walton RHM, Reed MN, Galvez D, Gorman T, Heusinkveld JM, and Barton JK
Journal of biomedical optics [J Biomed Opt] 2023 Dec; Vol. 28 (12), pp. 121206. Date of Electronic Publication: 2023 Aug 12.
- Subjects
-
Female, Humans, Pilot Projects, Endoscopes, Fallopian Tubes, Ovarian Neoplasms diagnostic imaging, and Ovarian Neoplasms pathology
- Abstract
-
Significance: High grade serous ovarian cancer is the most deadly gynecological cancer, and it is now believed that most cases originate in the fallopian tubes (FTs). Early detection of ovarian cancer could double the 5-year survival rate compared with late-stage diagnosis. Autofluorescence imaging can detect serous-origin precancerous and cancerous lesions in ex vivo FT and ovaries with good sensitivity and specificity. Multispectral fluorescence imaging (MFI) can differentiate healthy, benign, and malignant ovarian and FT tissues. Optical coherence tomography (OCT) reveals subsurface microstructural information and can distinguish normal and cancerous structure in ovaries and FTs.
Aim: We developed an FT endoscope, the falloposcope, as a method for detecting ovarian cancer with MFI and OCT. The falloposcope clinical prototype was tested in a pilot study with 12 volunteers to date to evaluate the safety and feasibility of FT imaging prior to standard of care salpingectomy in normal-risk volunteers. In this manuscript, we describe the multiple modifications made to the falloposcope to enhance robustness, usability, and image quality based on lessons learned in the clinical setting.
Approach: The ∼ 0.8 mm diameter falloposcope was introduced via a minimally invasive approach through a commercially available hysteroscope and introducing a catheter. A navigation video, MFI, and OCT of human FTs were obtained. Feedback from stakeholders on image quality and procedural difficulty was obtained.
Results: The falloposcope successfully obtained images in vivo . Considerable feedback was obtained, motivating iterative improvements, including accommodating the operating room environment, modifying the hysteroscope accessories, decreasing endoscope fragility and fiber breaks, optimizing software, improving fiber bundle images, decreasing gradient-index lens stray light, optimizing the proximal imaging system, and improving the illumination.
Conclusions: The initial clinical prototype falloposcope was able to image the FTs, and iterative prototyping has increased its robustness, functionality, and ease of use for future trials.
(© 2023 The Authors.)
- Full text View on content provider's site
-
Yilmaz-Aykut D, Torkay G, Kasgoz A, Shin SR, Bal-Ozturk A, and Deligoz H
Journal of biomedical materials research. Part B, Applied biomaterials [J Biomed Mater Res B Appl Biomater] 2023 Nov; Vol. 111 (11), pp. 1921-1937. Date of Electronic Publication: 2023 Jun 23.
- Subjects
-
Carrageenan pharmacology, Carrageenan chemistry, Wound Healing, Biocompatible Materials chemistry, Hydrogels pharmacology, Hydrogels chemistry, Gelatin pharmacology, and Gelatin chemistry
- Abstract
-
Injectable hydrogels based on natural polymers have shown great potential for various tissue engineering applications, such as wound healing. However, poor mechanical properties and weak self-healing ability are still major challenges. In this work, we introduce a host-guest (HG) supramolecular interaction between acrylate-β-cyclodextrin (Ac-β-CD) conjugated on methacrylated kappa-carrageenan (MA-κ-CA) and aromatic residues on gelatin to provide self-healing characteristics. We synthesize an MA-κ-CA to conjugate Ac-β-CD and fabricate dual crosslinked hybrid hydrogels with gelatin to mimic the native extracellular matrix (ECM). The dual crosslinking occurs on the MA-κ-CA backbone through the addition of KCl and photocrosslinking process, which enhances mechanical strength and stability. The hybrid hydrogels exhibit shear-thinning, self-healing, and injectable behavior, which apply easily under a minimally invasive manner and contribute to shear stress during the injection. In-vitro studies indicate enhanced cell viability. Furthermore, scratch assays are performed to examine cell migration and cell-cell interaction. It is envisioned that the combination of self-healing and injectable dual crosslinked hybrid hydrogels with HG interactions display a promising and functional biomaterial platform for wound healing applications.
(© 2023 Wiley Periodicals LLC.)
- Full text View on content provider's site
3. Biosensors in microalgae: A roadmap for new opportunities in synthetic biology and biotechnology. [2023]
-
Patwari P, Pruckner F, and Fabris M
Biotechnology advances [Biotechnol Adv] 2023 Nov; Vol. 68, pp. 108221. Date of Electronic Publication: 2023 Jul 24.
- Subjects
-
Synthetic Biology, Biotechnology, Bioengineering, Microalgae genetics, Microalgae metabolism, and Biosensing Techniques
- Abstract
-
Biosensors are powerful tools to investigate, phenotype, improve and prototype microbial strains, both in fundamental research and in industrial contexts. Genetic and biotechnological developments now allow the implementation of synthetic biology approaches to novel different classes of microbial hosts, for example photosynthetic microalgae, which offer unique opportunities. To date, biosensors have not yet been implemented in phototrophic eukaryotic microorganisms, leaving great potential for novel biological and technological advancements untapped. Here, starting from selected biosensor technologies that have successfully been implemented in heterotrophic organisms, we project and define a roadmap on how these could be applied to microalgae research. We highlight novel opportunities for the development of new biosensors, identify critical challenges, and finally provide a perspective on the impact of their eventual implementation to tackle research questions and bioengineering strategies. From studying metabolism at the single-cell level to genome-wide screen approaches, and assisted laboratory evolution experiments, biosensors will greatly impact the pace of progress in understanding and engineering microalgal metabolism. We envision how this could further advance the possibilities for unraveling their ecological role, evolutionary history and accelerate their domestication, to further drive them as resource-efficient production hosts.
Competing Interests: Declaration of Competing Interest The authors declare no conflicts of interest.
(Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Full text View on content provider's site
-
Suárez Peña S, Willson V, Alonso A, Caracciolo N, Boeykens S, and Piol MN
Journal of environmental management [J Environ Manage] 2023 Oct 15; Vol. 344, pp. 118630. Date of Electronic Publication: 2023 Jul 26.
- Subjects
-
Water Quality
- Abstract
-
An implementation proposal that seeks to globalize the scope of the sustainable technologies developed in the University laboratories is presented. This approach uses the generation of triple-impact projects placing people at the center of technological development to bring technical and scientific knowledge into a service design oriented to global sustainable solutions. This research is an approach to what a hub for scientific research, technological implementation, and human needs would look like by designing common environments in which to interact and expand knowledge in an iterated way through the experience of all the actors involved in technological implementation. As a control case, a new technology developed at the Universidad de Buenos Aires, consisting of using sustainable materials as tubular reactor fillers for water treatment was chosen. Based on data obtained within the framework of a University extension project, in which the water quality diagnosis for human consumption was carried out and cross-examined with the mathematical analysis of sorption, design parameters of the reactor, participatory design, and open source concepts application, different virtual environments were generated with distinct objectives: i) open design environment: publishing and mapping of installed sorption reactors, reactor model plans, and useful information related to drinking water quality (aimed at contributors of the open source design environment); ii) platform for academic actors linking: connecting data between prototyping lab for participatory design of sorption reactors (aimed at university research users); iii) information disclosure page: space where the implemented technology impact is displayed and shows options to contact researchers and request a reactor design diagnosis for another community (aimed at beneficiary users). A technological service designed to link the University with the community was proposed, by resolving one of the main gaps related to the possibility for communities to access public financing for self-managed improvement projects, increasing the appropriation of the adopted technology and democratizing public investment, making it sustainable over time.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Full text View on content provider's site
-
Kumar B, Feng A, Gheriani GA, Iftekhar A, Ni R, Dimachkie M, Gokalp G, Bazigh I, Moy L, Chao C, Lingamaneni A, Patel A, Cepero GS, Iqtidar T, Thoene PB, Knaack A, Swee ML, Suneja M, and Davis B
ACR open rheumatology [ACR Open Rheumatol] 2023 Sep 19. Date of Electronic Publication: 2023 Sep 19.
- Abstract
-
Objective: Design thinking is a creative problem-solving process used to better understand users' needs and experiences so that a product or service can be improved. Its emphasis on empathy, iterative prototyping, and participatory collaboration make it an ideal methodology for innovation in medical education. We apply this framework to the virtual rheumatology fellowship interview process so that interviews can become more applicant centered.
Methods: This educational quality improvement project uses a design-thinking framework to identify opportunities and challenges for rheumatology fellowship applicants. The investigators use the 5-step process (Empathize, Define, Ideate, Prototype, Test) and incorporate rapid qualitative analysis of semistructured interviews to innovate the interview experience. The iterative and collaborative nature of this process has empowered participants to codesign an applicant-centered interview experience.
Results: Interviews with fellowship applicants (n = 9), fellow physicians (n = 4), and faculty members (n = 3) identified three major dynamics of the interview process: (1) Is it a safe environment to ask questions? (2) How do I exchange information effectively? and (3) How do I fit all these data into the bigger picture? Creative brainstorming techniques at a series of three workshops yielded four prototypes emphasizing customization, hybridization, facilitation, and preparation. A finalized applicant-centered interview template was devised in preparation for the 2023-2024 application season.
Conclusion: Design thinking has yielded insights into three important dynamics that drive applicant experiences. These insights allow for a redesign of processes so that virtual interviews can be more applicant centered. This framework allows for further iterations and modifications as the needs of applicants and programs evolve over time.
(© 2023 The Authors. ACR Open Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.)
- Full text View on content provider's site
6. Enhancing surgical planning of distal splenopancreatectomy through 3D printed models: a case report. [2023]
-
Arsenkov S, Plavevski O, Nikolovski A, Arsenkov L, Shurlani A, and Saliu V
Journal of surgical case reports [J Surg Case Rep] 2023 Sep 18; Vol. 2023 (9), pp. rjad528. Date of Electronic Publication: 2023 Sep 18 (Print Publication: 2023).
- Abstract
-
The complex anatomy of the peripancreatic region was a challenge to many surgeons in the past. Up until recently, the only way to prepare and plan a surgery was through the use of traditional 2D images, obtained via computed tomography or magnetic resonance imaging. Recently, the advantages in the field of 3D printing (also called additive manufacturing, or rapid prototyping) allowed the creation of replicas of the patient's anatomy which is to be used for preoperative planning and visual reference. We present the case of a 46-y.o. patient with a distal pancreatic lesion requiring a distal splenopancreatectomy, who benefited from the use of 3D printing technology. No intraoperative or postoperative complications were encountered, while the created model was used to plan and perform the needed resection.
Competing Interests: None declared.
(Published by Oxford University Press and JSCR Publishing Ltd. © The Author(s) 2023.)
- Full text View on content provider's site
-
Li M, Pal A, Byun J, Gardi G, and Sitti M
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2023 Sep 15, pp. e2304825. Date of Electronic Publication: 2023 Sep 15.
- Abstract
-
Magnetically hard materials are widely used to build soft magnetic robots, providing large magnetic force/torque and macrodomain programmability. However, their high magnetic coercivity often presents practical challenges when attempting to reconfigure magnetization patterns, requiring a large magnetic field or heating. In this study, we introduce magnetic putty as a magnetically hard and soft material with large remanence and low coercivity. We show that the magnetization of magnetic putty can be easily reoriented with maximum magnitude using an external field that is only one tenth of its coercivity. Additionally, magnetic putty is a malleable, autonomous self-healing material that can be recycled and repurposed. We anticipate magnetic putty could provide a versatile and accessible tool to various magnetic robotics applications for fast prototyping and explorations for research and educational purposes. This article is protected by copyright. All rights reserved.
(This article is protected by copyright. All rights reserved.)
- Full text View on content provider's site
-
Olawumi MA, Oladapo BI, Ikumapayi OM, and Akinyoola JO
The Science of the total environment [Sci Total Environ] 2023 Sep 15, pp. 167109. Date of Electronic Publication: 2023 Sep 15.
- Abstract
-
In a world grappling with environmental challenges and the need for sustainable manufacturing practices, the convergence of 3D printing and recycling emerges as a promising solution. This research paper explores the potential of combining these two technologies and comprehensively analyses their synergistic effects. The study delves into the printability of recycled materials, evaluating their suitability for 3D printing and comparing their performance with conventional materials. The environmental impact of 3D printing with recycled materials is examined through a sustainability analysis and a life cycle assessment of recycled 3D printed objects. The findings reveal significant benefits, including enhanced resource efficiency, waste reduction, and customisation possibilities. The research also identifies challenges and opportunities for scaling up the use of recycled materials in 3D printing, highlighting the importance of collaboration, innovation, and regulations. With potential applications spanning various industries, from prototyping to construction and healthcare, the implications of this research are far-reaching. By embracing sustainable practices, industry collaboration, and innovation, the integration of 3D printing and recycling can pave the way for a more sustainable future, where resource conservation, circularity, and customised production are at the forefront of manufacturing.
(Copyright © 2023. Published by Elsevier B.V.)
- Full text View on content provider's site
-
Hansen ABG, Hansen ML, Golubovic S, Bloch P, Lorenzen JK, Almdal TP, Ried-Larsen M, and Thorsen IK
Research involvement and engagement [Res Involv Engagem] 2023 Sep 14; Vol. 9 (1), pp. 83. Date of Electronic Publication: 2023 Sep 14.
- Abstract
-
Background: Increased levels of physical activity are associated with beneficial health effects for people with type 2 diabetes, cardiovascular disease and/or severe obesity; however, transforming knowledge about these effects into action is challenging. The aim of this paper is to explore lessons learnt from a co-creation process in a partnership project involving local stakeholders, including citizens, and researchers. The purpose of the process was to link a public health care institution with civil society organisations in the local community to make it possible for citizens to continue to be physically active after ending their public rehabilitation. Secondarily, this paper aims to develop a conceptual model of the above process.
Methods: The study constitutes the first part of Project Active Communities and was based on a partnership between three research institutions and a Danish rural municipality, involving municipal and civil society stakeholders and citizens with type 2 diabetes, cardiovascular disease and/or severe obesity in co-creation of concrete interventions for implementation. The co-creation process was divided into two tracks, one involving citizens (two workshops) and one involving municipal and civil society stakeholders (two workshops). The two tracks were concluded with a final workshop involving all stakeholders, including local politicians. Data sources are focus groups and bilateral meetings, workshop observations, and questionnaires.
Results: Lessons learnt include the importance of having a flexible timeframe for the co-creation process; giving room for disagreements and matching of mutual expectations between stakeholders; the value of a coordinator in the municipality to achieve acceptance of the project; and the significance of engaging local politicians in the co-creation process to accommodate internal political agendas. We have developed a conceptual model for a co-creation process, where we outline and explain three distinct phases: stakeholder identification and description, co-creation, and prototyping. The model can be adapted and applied to other sectors and settings.
Conclusions: This study documents lessons learnt in a co-creation process aiming to link a public health care institution with civil society organisations in the local community. Further, this study has specified productive co-creative processes and documented the various phases in a conceptual model.
(© 2023. BioMed Central Ltd., part of Springer Nature.)
- Full text View on content provider's site
10. Codesign of remote data collection for chronic management of pediatric home mechanical ventilation. [2023]
-
Foster CC, Kaat AJ, Shah AV, Hodgson CA, Hird-McCorry LP, Janus A, Swanson P, Massey LF, De Sonia A, Cella D, Goodman DM, Davis MM, and Laguna TA
Pediatric pulmonology [Pediatr Pulmonol] 2023 Sep 13. Date of Electronic Publication: 2023 Sep 13.
- Abstract
-
Introduction: Outpatient monitoring of children using invasive home mechanical ventilation (IHMV) is recommended, but access to care can be difficult. This study tested if remote (home-based) data collection was feasible and acceptable in chronic IHMV management.
Methods: A codesign study was conducted with an IHMV program, home nurses, and English- and Spanish-speaking parent-guardians of children using IHMV (0-17 years; n = 19). After prototyping, parents used a remote patient monitoring (RPM) bundle to collect patient heart rate, respiratory rate (RR), oxygen saturation, end-tidal carbon dioxide (EtCO 2 ), and ventilator pressure/volume over 8 weeks. User feedback was analyzed using qualitative methods and the System Usability Scale (SUS). Expected marginal mean differences within patient measures when awake, asleep, or after a break were calculated using mixed effects models.
Results: Patients were a median 2.9 years old and 11 (58%) took breaks off the ventilator. RPM data were entered on a mean of 83.7% (SD ± 29.1%) weeks. SUS scores were 84.8 (SD ± 10.5) for nurses and 91.8 (SD ± 10.1) for parents. Over 90% of parents agreed/strongly agreed that RPM data collection was feasible and relevant to their child's care. Within-patient comparisons revealed that EtCO 2 (break-vs-asleep 2.55 mmHg, d = 0.79 [0.42-1.15], p < .001; awake-vs-break 1.48, d = -0.49 [0.13-0.84], p = .02) and RR (break-vs-asleep 16.14, d = 2.12 [1.71-2.53], p < .001; awake-vs-break 3.44, d = 0.45 [0.10-0.04], p = .03) were significantly higher during ventilator breaks.
Conclusions: RPM data collection in children with IHMV was feasible, acceptable, and captured clinically meaningful vital sign changes during ventilator breaks, supporting the clinical utility of RPM in IHMV management.
(© 2023 The Authors. Pediatric Pulmonology published by Wiley Periodicals LLC.)
- Full text View on content provider's site
-
Fábrega MJ, Knödlseder N, Nevot G, Sanvicente M, Toloza L, Santos-Moreno J, and Güell M
ACS biomaterials science & engineering [ACS Biomater Sci Eng] 2023 Sep 11; Vol. 9 (9), pp. 5101-5110. Date of Electronic Publication: 2021 Dec 31.
- Subjects
-
Humans, Skin microbiology, Propionibacterium acnes genetics, Synthetic Biology, Acne Vulgaris genetics, and Acne Vulgaris microbiology
- Abstract
-
In the past few years, new bacterial-cell-free transcription-translation systems have emerged as potent and quick platforms for protein production as well as for prototyping of DNA regulatory elements, genetic circuits, and metabolic pathways. The Gram-positive commensal Cutibacterium acnes is one of the most abundant bacteria present in the human skin microbiome. However, it has recently been reported that some C. acnes phylotypes can be associated with common inflammatory skin conditions, such as acne vulgaris, whereas others seem to play a protective role, acting as possible "skin probiotics". This fact has made C. acnes become a bacterial model of interest for the cosmetic industry. In the present study we report for the first time the development and optimization of a C. acnes -based cell-free system (CFS) that is able to produce 85 μg/mL firefly luciferase. We highlight the importance of harvesting the bacterial pellet in mid log phase and maintaining CFS reactions at 30 °C and physiological pH to obtain the optimal yield. Additionally, a C. acnes promoter library was engineered to compare coupled in vitro TX-TL activities, and a temperature biosensor was tested, demonstrating the wide range of applications of this toolkit in the synthetic biology field.
- Full text View on content provider's site
-
Huang S, Wu J, Zheng L, Long Y, Chen J, Li J, Dai B, Lin F, Zhuang S, and Zhang D
Microsystems & nanoengineering [Microsyst Nanoeng] 2023 Sep 11; Vol. 9, pp. 111. Date of Electronic Publication: 2023 Sep 11 (Print Publication: 2023).
- Abstract
-
Reconfigurable modular microfluidics presents an opportunity for flexibly constructing prototypes of advanced microfluidic systems. Nevertheless, the strategy of directly integrating modules cannot easily fulfill the requirements of common applications, e.g., the incorporation of materials with biochemical compatibility and optical transparency and the execution of small batch production of disposable chips for laboratory trials and initial tests. Here, we propose a manufacturing scheme inspired by the movable type printing technique to realize 3D free-assembly modular microfluidics. Double-layer 3D microfluidic structures can be produced by replicating the assembled molds. A library of modularized molds is presented for flow control, droplet generation and manipulation and cell trapping and coculture. In addition, a variety of modularized attachments, including valves, light sources and microscopic cameras, have been developed with the capability to be mounted onto chips on demand. Microfluidic systems, including those for concentration gradient generation, droplet-based microfluidics, cell trapping and drug screening, are demonstrated. This scheme enables rapid prototyping of microfluidic systems and construction of on-chip research platforms, with the intent of achieving high efficiency of proof-of-concept tests and small batch manufacturing.
Competing Interests: Conflict of interestThe authors declare no competing interests.
(© Aerospace Information Research Institute, Chinese Academy of Sciences 2023.)
- Full text View on content provider's site
13. Biomechanical stress distribution of medical inelastic fabrics with different porosity structures. [2023]
-
Chen SY, You JW, Cho YC, Huang BH, Kuo HH, Huang J, Hsieh CC, Lan WC, and Ou KL
Journal of the mechanical behavior of biomedical materials [J Mech Behav Biomed Mater] 2023 Sep 09; Vol. 147, pp. 106105. Date of Electronic Publication: 2023 Sep 09.
- Abstract
-
Clothing fit and pressure comfort play important role in clothing comfort, especially in medical body sculpting clothing (MBSC). In the present study, different body movements (forward bending, side bending, and twisting) were adopted to simulate and investigate the biomechanical stress distribution of the human body with three kinds of porosity inelastic MBSCs through the finite element analysis method. The elastic modulus of the investigated MBSCs was also measured by means of tensile testing. Analytical results showed that in the compression region during body movements, the investigated inelastic MBSCs endured less compression stress, and most of the stress was transmitted to the human body. Moreover, the stresses on the body surface were decreased with the porosity increasing. However, most of the von Mises stresses on the human body were in the desired pressure comfort range. Therefore, these results could provide potential information in the modification of MBSC for medical applications.
Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Shyuan-Yow Chen reports financial support was provided by Cathay General Hospital. Jia-Wei You reports financial support was provided by Taipei Medical University Hospital.
(Copyright © 2023. Published by Elsevier Ltd.)
- Full text View on content provider's site
-
Waterval NFJ, van der Krogt MM, Veerkamp K, Geijtenbeek T, Harlaar J, Nollet F, and Brehm MA
Journal of neuroengineering and rehabilitation [J Neuroeng Rehabil] 2023 Sep 07; Vol. 20 (1), pp. 117. Date of Electronic Publication: 2023 Sep 07.
- Subjects
-
Humans, Ankle, Muscles, Walking, Knee Joint, Fatigue, Walking Speed, and Foot Orthoses
- Abstract
-
Background: The stiffness of a dorsal leaf AFO that minimizes walking energy cost in people with plantarflexor weakness varies between individuals. Using predictive simulations, we studied the effects of plantarflexor weakness, passive plantarflexor stiffness, body mass, and walking speed on the optimal AFO stiffness for energy cost reduction.
Methods: We employed a planar, nine degrees-of-freedom musculoskeletal model, in which for validation maximal strength of the plantar flexors was reduced by 80%. Walking simulations, driven by minimizing a comprehensive cost function of which energy cost was the main contributor, were generated using a reflex-based controller. Simulations of walking without and with an AFO with stiffnesses between 0.9 and 8.7 Nm/degree were generated. After validation against experimental data of 11 people with plantarflexor weakness using the Root-mean-square error (RMSE), we systematically changed plantarflexor weakness (range 40-90% weakness), passive plantarflexor stiffness (range: 20-200% of normal), body mass (+ 30%) and walking speed (range: 0.8-1.2 m/s) in our baseline model to evaluate their effect on the optimal AFO stiffness for energy cost minimization.
Results: Our simulations had a RMSE < 2 for all lower limb joint kinetics and kinematics except the knee and hip power for walking without AFO. When systematically varying model parameters, more severe plantarflexor weakness, lower passive plantarflexor stiffness, higher body mass and walking speed increased the optimal AFO stiffness for energy cost minimization, with the largest effects for severity of plantarflexor weakness.
Conclusions: Our forward simulations demonstrate that in individuals with bilateral plantarflexor the necessary AFO stiffness for walking energy cost minimization is largely affected by severity of plantarflexor weakness, while variation in walking speed, passive muscle stiffness and body mass influence the optimal stiffness to a lesser extent. That gait deviations without AFO are overestimated may have exaggerated the required support of the AFO to minimize walking energy cost. Future research should focus on improving predictive simulations in order to implement personalized predictions in usual care. Trial Registration Nederlands Trial Register 5170. Registration date: May 7th 2015. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=5170.
(© 2023. BioMed Central Ltd., part of Springer Nature.)
- Full text View on content provider's site
-
Baniya P, Tebyani M, Asefifeyzabadi N, Nguyen T, Hernandez C, Zhu K, Li H, Selberg J, Hsieh HC, Pansodtee P, Yang HY, Recendez C, Keller G, Hee WS, Aslankoohi E, Isseroff RR, Zhao M, Gomez M, Rolandi M, and Teodorescu M
Scientific reports [Sci Rep] 2023 Sep 07; Vol. 13 (1), pp. 14766. Date of Electronic Publication: 2023 Sep 07.
- Subjects
-
Animals, Mice, Dimethylpolysiloxanes, Disease Models, Animal, Wound Healing, and Capillary Tubing
- Abstract
-
The development of wearable bioelectronic systems is a promising approach for optimal delivery of therapeutic treatments. These systems can provide continuous delivery of ions, charged biomolecules, and an electric field for various medical applications. However, rapid prototyping of wearable bioelectronic systems for controlled delivery of specific treatments with a scalable fabrication process is challenging. We present a wearable bioelectronic system comprised of a polydimethylsiloxane (PDMS) device cast in customizable 3D printed molds and a printed circuit board (PCB), which employs commercially available engineering components and tools throughout design and fabrication. The system, featuring solution-filled reservoirs, embedded electrodes, and hydrogel-filled capillary tubing, is assembled modularly. The PDMS and PCB both contain matching through-holes designed to hold metallic contact posts coated with silver epoxy, allowing for mechanical and electrical integration. This assembly scheme allows us to interchange subsystem components, such as various PCB designs and reservoir solutions. We present three PCB designs: a wired version and two battery-powered versions with and without onboard memory. The wired design uses an external voltage controller for device actuation. The battery-powered PCB design uses a microcontroller unit to enable pre-programmed applied voltages and deep sleep mode to prolong battery run time. Finally, the battery-powered PCB with onboard memory is developed to record delivered currents, which enables us to verify treatment dose delivered. To demonstrate the functionality of the platform, the devices are used to deliver H[Formula: see text] in vivo using mouse models and fluoxetine ex vivo using a simulated wound environment. Immunohistochemistry staining shows an improvement of 35.86% in the M1/M2 ratio of H[Formula: see text]-treated wounds compared with control wounds, indicating the potential of the platform to improve wound healing.
(© 2023. Springer Nature Limited.)
- Full text View on content provider's site
16. Development of a Metaverse Online Learning System for Undergraduate Nursing Students: A Pilot Study. [2023]
-
Ryu H, Lee H, and Yoo HJ
Nurse educator [Nurse Educ] 2023 Sep 07. Date of Electronic Publication: 2023 Sep 07.
- Abstract
-
Background: An active online learning environment enables 2-way communication wherein students can engage in problem-based learning and projects, unlike fragmented lecture-style classes.
Purpose: This pilot study aimed to develop a metaverse-based online learning system and evaluate its usability.
Methods: A rapid prototyping model and Gather.town was used to design and develop a metaverse classroom. Participants were 10 nursing students from a college in South Korea. To evaluate usability, 10 tasks were configured and 2 pilot tests were conducted. The degree of difficulty, time required to perform tasks, and students' experience were investigated.
Results: The Metaverse for Education of Nursing Students was successfully completed, incorporating student feedback and addressing identified areas for improvement.
Conclusion: This study reflects a learner-centered educational environment through the direct participation in the development process of the instructors who conducted the lectures. The metaverse space can be widely applied in creative nursing education in the future.
Competing Interests: The authors disclose no conflicts of interest.
(Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.)
- Full text View on content provider's site
-
Ríos-Hernández M, Jacinto-Villegas JM, Zemiti N, Vilchis-González AH, Padilla-Castañeda MA, and Debien B
The international journal of medical robotics + computer assisted surgery : MRCAS [Int J Med Robot] 2023 Sep 06, pp. e2572. Date of Electronic Publication: 2023 Sep 06.
- Abstract
-
Background: Lumbar puncture is an essential medical procedure whose objective is to obtain cerebrospinal fluid. Lumbar puncture is considered a complex procedure, mainly for novice residents who suffer from stress and low confidence, which may result in harm to the patient.
Methods: The LPVirSim, has been developed in four stages: i) requirements analysis through user-centred design; ii) prototyping of the virtual environment and the haptic component; iii) preliminary tests with Ph.D. students and physicians using two haptic devices (Omega.7 and Sigma.7); iv) a user study where physicians evaluated the usability and user experience.
Results: The LPVirSim integrates non-technical skills and the possibility of representing different patients for training. Usability increased from 61.76 to 68.75 in the preliminary tests to 71.43 in the user study.
Conclusions: All the results showed good usability and demonstrated that the simulator arouses interest and realistically represents a Lumbar puncture, through the force and visual feedback.
(© 2023 John Wiley & Sons Ltd.)
- Full text View on content provider's site
-
Lotteraner L, Hofmann T, and Moller T
IEEE computer graphics and applications [IEEE Comput Graph Appl] 2023 Sep 06; Vol. PP. Date of Electronic Publication: 2023 Sep 06.
- Abstract
-
This design study presents an analysis and abstraction of temporal and spatial data, and workflows in the domain of hydrogeology and the design and development of an interactive visualization prototype. Developed in close collaboration with a group of hydrogeological researchers, the interface supports them in data exploration, selection of data for their numerical model calibration, and communication of findings to their industry partners. We highlight both pitfalls and learnings of the iterative design and validation process and explore the role of rapid prototyping. Some of the main lessons were that the ability to see their own data changed the engagement of skeptical users dramatically and that interactive rapid prototyping tools are thus powerful to unlock the advantage of visual analysis for novice users. Further, we observed that the process itself helped the domain scientists understand the potential and challenges of their data more than the final interface prototype.
- Full text View on content provider's site
-
Rubin DM, Letts RFR, Richards XL, Achari S, and Pantanowitz A
Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs [J Artif Organs] 2023 Sep 05. Date of Electronic Publication: 2023 Sep 05.
- Abstract
-
Models of urea kinetics facilitate a mechanistic understanding of urea transfer and provide a tool for optimizing dialysis efficacy. Dual-compartment models have largely replaced single-compartment models as they are able to accommodate the urea rebound on the cessation of dialysis. Modeling the kinetics of urea and other molecular species is frequently regarded as a rarefied academic exercise with little relevance at the bedside. We demonstrate the utility of System Dynamics in creating multi-compartment models of urea kinetics by developing a dual-compartment model that is efficient, intuitive, and widely accessible to a range of practitioners. Notwithstanding its simplicity, we show that the System Dynamics model compares favorably with the performance of a more complex volume-average model in terms of calibration to clinical data and parameter estimation. Its intuitive nature, ease of development/modification, and excellent performance with real-world data may make System Dynamics an invaluable tool in widening the accessibility of hemodialysis modeling.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
Morita N and Iwasaki W
Sensors (Basel, Switzerland) [Sensors (Basel)] 2023 Sep 04; Vol. 23 (17). Date of Electronic Publication: 2023 Sep 04.
- Abstract
-
Optical sensing offers several advantages owing to its non-invasiveness and high sensitivity. The miniaturization of optical sensors will mitigate spatial and weight constraints, expanding their applications and extending the principal advantages of optical sensing to different fields, such as healthcare, Internet of Things, artificial intelligence, and other aspects of society. In this study, we present the development of a miniature optical sensor for monitoring thrombi in extracorporeal membrane oxygenation (ECMO). The sensor, based on a complementary metal-oxide semiconductor integrated circuit (CMOS-IC), also serves as a photodiode, amplifier, and light-emitting diode (LED)-mounting substrate. It is sized 3.8 × 4.8 × 0.75 mm 3 and provides reflectance spectroscopy at three wavelengths. Based on semiconductor and microelectromechanical system (MEMS) processes, the design of the sensor achieves ultra-compact millimeter size, customizability, prototyping, and scalability for mass production, facilitating the development of miniature optical sensors for a variety of applications.
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 20
Next