articles+ search results
7,994 articles+ results
1 - 100
Next
Number of results to display per page
1 - 100
Next
Number of results to display per page
1. Technologies for implementing of artificial intelligence as a service based on hardware accelerators [2023]
-
Artem Perepelitsyn, Yelyzaveta Kasapien, Herman Fesenko, and Vyacheslav Kharchenko
- Авіаційно-космічна техніка та технологія, Vol 0, Iss 6, Pp 57-65 (2023)
- Subjects
-
штучний інтелект, fpga, ші як сервіс, гетерогенні проєкти ші систем, апаратні прискорювачі ші, dpu, інструментальні засоби розробки ші, xrt, Motor vehicles. Aeronautics. Astronautics, and TL1-4050
- Abstract
-
The subject of study in this article is modern technologies, tools and methods of building AI systems as a service using FPGA as a platform. The goal is to analyze modern technologies and tools used to develop FPGA-based projects for systems that implement artificial intelligence as a service and to prepare a practical AI service prototype. Task: to analyze the evolution of changes in the products of leading manufacturers of programmable logic devices and experimental and practical examples of the implementation of the paradigm of continuous reprogramming of programmable logic; analyze the dynamics of changes in the development environment of programmable logic systems for AI; analyze the essential elements of building projects for AI systems using programmable logic. According to the tasks, the following results were obtained. The area of application of hardware implementation of artificial intelligence for on-board and embedded systems including airspace industry, smart cars and medical systems is analyzed. The process of programming FPGA accelerators for AI projects is analyzed. The analysis of the capabilities of FPGA with HBM for building projects that require enough of high speed memory is performed. Description languages, frameworks, the hierarchy of tools for building of hardware accelerators for AI projects are analyzed in detail. The stages of prototyping of AI projects using new FPGA development tools and basic DPU blocks are analyzed. The parameters of the DPU blocks were analyzed. Practical steps for building such systems are offered. The practical recommendations for optimizing the neural network for FPGA implementation are given. The stages of neural network optimization are provided. The proposed steps include pruning of branches with low priority and the use of fixed point computations with custom range based on the requirements of an exact neural network. Based on these solutions, a practical case of AI service was prepared, trained and tested. Conclusions. The main contribution of this study is that, based on the proposed ideas and solutions, the next steps to create heterogeneous systems based on the combination of three elements are clear: AI as a service, FPGA accelerators as a technology for improving performance, reliability and security, and cloud or Edge resources to create FPGA infrastructure and AI as service. The development of this methodological and technological basis is the direction of further R&D.
- Full text View record in DOAJ
-
Chunxu Li, Fengbo Sun, Jingjing Tian, Jiahao Li, Haidan Sun, Yong Zhang, Shigong Guo, Yuanhua Lin, Xiaodan Sun, and Yu Zhao
- Bioactive Materials, Vol 24, Iss , Pp 361-375 (2023)
- Subjects
-
3D printing, Zinc submicron particles, Osteoinductivity, Anti-inflammatory, Bone defect repair, Materials of engineering and construction. Mechanics of materials, TA401-492, Biology (General), and QH301-705.5
- Abstract
-
Long-term nonunion of bone defects has always been a major problem in orthopedic treatment. Artificial bone graft materials such as Poly (lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds are expected to solve this problem due to their suitable degradation rate and good osteoconductivity. However, insufficient mechanical properties, lack of osteoinductivity and infections after implanted limit its large-scale clinical application. Hence, we proposed a novel bone repair bioscaffold by adding zinc submicron particles to PLGA/β-TCP using low temperature rapid prototyping 3D printing technology. We first screened the scaffolds with 1 wt% Zn that had good biocompatibility and could stably release a safe dose of zinc ions within 16 weeks to ensure long-term non-toxicity. As designed, the scaffold had a multi-level porous structure of biomimetic cancellous bone, and the Young's modulus (63.41 ± 1.89 MPa) and compressive strength (2.887 ± 0.025 MPa) of the scaffold were close to those of cancellous bone. In addition, after a series of in vitro and in vivo experiments, the scaffolds proved to have no adverse effects on the viability of BMSCs and promoted their adhesion and osteogenic differentiation, as well as exhibiting higher osteogenic and anti-inflammatory properties than PLGA/β-TCP scaffold without zinc particles. We also found that this osteogenic and anti-inflammatory effect might be related to Wnt/β-catenin, P38 MAPK and NFkB pathways. This study lay a foundation for the follow-up study of bone regeneration mechanism of Zn-containing biomaterials. We envision that this scaffold may become a new strategy for clinical treatment of bone defects.
- Full text View on content provider's site
-
Marc Schmitt
- Intelligent Systems with Applications, Vol 18, Iss , Pp 200188- (2023)
- Subjects
-
Artificial intelligence, Machine learning, AutoML, Business analytics, Data-driven decision making, Digital transformation, Cybernetics, Q300-390, Electronic computers. Computer science, and QA75.5-76.95
- Abstract
-
The realization that AI-driven decision-making is indispensable in today's fast-paced and ultra-competitive marketplace has raised interest in industrial machine learning (ML) applications significantly. The current demand for analytics experts vastly exceeds the supply. One solution to this problem is to increase the user-friendliness of ML frameworks to make them more accessible for the non-expert. Automated machine learning (AutoML) is an attempt to solve the problem of expertise by providing fully automated off-the-shelf solutions for model choice and hyperparameter tuning. This paper analyzed the potential of AutoML for applications within business analytics, which could help to increase the adoption rate of ML across all industries. The H2O AutoML framework was benchmarked against a manually tuned stacked ML model on three real-world datasets. The manually tuned ML model could reach a performance advantage in all three case studies used in the experiment. Nevertheless, the H2O AutoML package proved to be quite potent. It is fast, easy to use, and delivers reliable results, which come close to a professionally tuned ML model. The H2O AutoML framework in its current capacity is a valuable tool to support fast prototyping with the potential to shorten development and deployment cycles. It can also bridge the existing gap between supply and demand for ML experts and is a big step towards automated decisions in business analytics. Finally, AutoML has the potential to foster human empowerment in a world that is rapidly becoming more automated and digital.
- Full text View record in DOAJ
-
García-Moll L, Sixto A, Carrasco-Correa EJ, and Miró M
Talanta [Talanta] 2023 Apr 01; Vol. 255, pp. 124211. Date of Electronic Publication: 2022 Dec 24.
- Subjects
-
Printing, Three-Dimensional, Hydrogen Peroxide, and Luminescence
- Abstract
-
Low force stereolithography is exploited for the first time for one-step facile fabrication of chemiluminescence (CL) flow-through cells that bear unrivalled features as compared to those available through milling or blowing procedures or alternative 3D printing technologies. A variety of bespoke cross-section geometries with polyhedral features (namely, triangular, square, and five-side polygon) as well as semicircular cross-section are herein critically evaluated in terms of analytical performance against the standardcircular cross-section in a flat spirally-shape format. The idea behind is to maximize capture of elicited light by the new designs while leveraging 3D printing further for fabrication of (i) customized gaskets that enable reliable attaching of the active mixing zone of the CL cell to the detection window, (ii) in-line 3D-printed serpentine reactors, and (iii) flow confluences with tailorable shapes for enhancing mixing of samples with CL reagents. Up to twenty transparent functional cells were simultaneously fabricated without inner supports following post-curing and surface treatment protocols lasting less than 5 h. In fact, previous attempts to print spirally-shaped cells in one-step by resorting to less cost effective photopolymer inkjet printing technologies were unsuccessful because of the requirement of lengthy procedures (>15 days) for quantitative removal of the support material. By exploiting the phthalazinedione-hydrogen peroxide chemistry as a model reaction, the five-side irregular pentagon cell exhibited superior analytical figures of merit in terms of LOD, dynamic range and intermediate precision as compared to alternative designs. Computational fluid dynamic simulations for mapping velocities at the entry region of the spiral cell corroborated the fact that the 5-side polygon cross-section flow-cell with Y-type confluence permitted the most efficient mixing of reagents and sample while enabling larger flow velocities near the inlet that contribute to a more efficient capture of the photons from the flash-type reaction. The applicability of the 3D-printed 5-side polygon CL cell for automatic determination of hydrogen peroxide using a computerized hybrid flow system was demonstrated for the analysis of high matrix samples, viz., seawater and saliva, with relative recoveries ranging from 83 to 103%.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
D'Astous A, Cereza G, Papp D, Gilbert KM, Stockmann JP, Alonso-Ortiz E, and Cohen-Adad J
Magnetic resonance in medicine [Magn Reson Med] 2023 Apr; Vol. 89 (4), pp. 1401-1417. Date of Electronic Publication: 2022 Nov 28.
- Subjects
-
Brain diagnostic imaging, Algorithms, Image Processing, Computer-Assisted methods, Magnetic Resonance Imaging methods, and Software
- Abstract
-
Purpose: Introduce Shimming Toolbox ( https://shimming-toolbox.org), an open-source software package for prototyping new methods and performing static, dynamic, and real-time B0 shimming as well as B1 shimming experiments.
Methods: Shimming Toolbox features various field mapping techniques, manual and automatic masking for the brain and spinal cord, B0 and B1 shimming capabilities accessible through a user-friendly graphical user interface. Validation of Shimming Toolbox was demonstrated in three scenarios: (i) B0 dynamic shimming in the brain at 7T using custom AC/DC coils, (ii) B0 real-time shimming in the spinal cord at 3T, and (iii) B1 static shimming in the spinal cord at 7T.
Results: The B0 dynamic shimming of the brain at 7T took about 10 min to perform. It showed a 47% reduction in the standard deviation of the B0 field, associated with noticeable improvements in geometric distortions in EPI images. Real-time dynamic xyz-shimming in the spinal cord took about 5 min and showed a 30% reduction in the standard deviation of the signal distribution. B1 static shimming experiments in the spinal cord took about 10 min to perform and showed a 40% reduction in the coefficient of variation of the B1 field.
Conclusion: Shimming Toolbox provides an open-source platform where researchers can collaborate, prototype and conveniently test B0 and B1 shimming experiments. Future versions will include additional field map preprocessing techniques, optimization algorithms, and compatibility across multiple MRI manufacturers.
(© 2022 International Society for Magnetic Resonance in Medicine.)
- Full text View on content provider's site
-
Teekayupak K, Aumnate C, Lomae A, Preechakasedkit P, Henry CS, Chailapakul O, and Ruecha N
Talanta [Talanta] 2023 Mar 01; Vol. 254, pp. 124131. Date of Electronic Publication: 2022 Dec 01.
- Subjects
-
Humans, Creatinine chemistry, Limit of Detection, Smartphone, Electrochemical Techniques, Electrodes, Graphite chemistry, and Nanoparticles chemistry
- Abstract
-
3D printing technologies are an attractive for fabricating electrochemical sensors due to their ease of operation, freedom of design, fast prototyping, low waste, and low cost. We report the fabrication of a simple 3D-printed electrochemical sensing device for non-enzymatic detection of creatinine, an important indicator of renal function. To create the 3D-printed electrodes (3DE), carbon black/polylactic acid (CB/PLA) composite filament was used. The 3DE was activated using 0.5 M NaOH via amperometry prior to use to improve electrochemical performance. To give selectivity for creatinine, the activated 3DE was modified with a copper oxide nanoparticle-ionic liquid/reduced graphene oxide (CuO-IL/rGO) composite. The modified 3DE was characterized using microscopy and electrochemistry. Cyclic voltammetry and amperometry were used to evaluate sensor performance. The modified 3DE provided electrocatalytic activity towards creatinine without enzymes. Under optimal conditions, the modified 3DE directly coupled with a portable smartphone potentiostat exhibited the linear detection range of 0.5-35.0 mM, and the limit of detection was 37.3 μM, which is sufficient for detecting creatinine in human urine samples. Furthermore, the other physiological compounds present in human urine were not detected on the modified 3DE. Therefore, the modified 3DE could be a tool for effective creatinine screening in the urine.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022 Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Ahmed M, Ali S, and Soliman S
Journal of maxillofacial and oral surgery [J Maxillofac Oral Surg] 2023 Mar; Vol. 22 (1), pp. 239-244. Date of Electronic Publication: 2022 May 30.
- Abstract
-
Purpose: to evaluate the efficacy of dual-purpose computer-generated splint in guiding the proximal and the distal segment in bilateral sagittal split osteotomy.
Patients and Method: It was a prospective case series study directed on 8 class III patients indicating the need of maxillary advancement and mandibular set back by bilateral sagittal split osteotomy. A CAD/CAM splint is generated to guide the distal segment to the stable maxilla and at the same time a grooved extension to engage the proximal segment ensuring the condyle in its planned position during fixation. The primary outcome was measured by calculating the difference between the pre- and post-operative condylar segment position.
Results: The present study included five female patient and three male patient with mean age of 28.4 ± 5.1 years. The accuracy of the splint in positioning the mandibular proximal segment showed promising results ranging from 2.59 to 0.49.
Conclusion: The dual-purpose splint introduced in this study showed satisfied results in maintaining the pre-operative condylar position while securing the distal segment in the desired plan.
Competing Interests: Conflict of interestThe authors declare that there is no conflict of interest (Mamdouh Ahmed declares that there is no conflict of interest, Sherif Ali declares that there is no conflict of interest and Sara Soliman declares that there is no conflict of interest).
(© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.)
- Full text View on content provider's site
-
Tayyaba Sahar, Muhammad Rauf, Ahmar Murtaza, Lehar Asip Khan, Hasan Ayub, Syed Muslim Jameel, and Inam Ul Ahad
- Results in Engineering, Vol 17, Iss , Pp 100803- (2023)
- Subjects
-
Metal additive manufacturing (MAM), Laser powder bed fusion (L-PBF), Machine learning (ML), Process parameter optimization, Anomaly detection, and Technology
- Abstract
-
Metal Additive Manufacturing (MAM) applications are growing rapidly in high-tech industries such as biomedical and aerospace, and in many other industries including tooling, casting, automotive, oil and gas for production and prototyping. The onset of Laser Powder Bed Fusion (L-PBF) technology proved to be an efficient technique that can convert metal additive manufacturing into a reformed process if anomalies occurred during this process are eliminated. Industrial applications demand high accuracy and risk-free products whereas prototyping using MAM demand lower process and product development time. In order to address these challenges, Machine Learning (ML) experts and researchers are trying to adopt an efficient method for anomaly detection in L-PBF so that the MAM process can be optimized and desired final part properties can be achieved. This review provides an overview of L-PBF and outlines the ML methods used for anomaly detection in L-PBF. The paper also explains how ML methods are being used as a step forward toward enabling the real-time process control of MAM and the process can be optimized for higher accuracy, lower production time, and less material waste. Authors have a strong believe that ML techniques can reform MAM process, whereas research concerned to the anomaly detection using ML techniques is limited and needs attention.This review has been done with a hope that ML experts can easily find a direction and contribute in this field.
- Full text View record in DOAJ
9. Design and prototyping of a robotic hand for sign language using locally-sourced materials [2023]
-
Ibrahim A. Adeyanju, Sheriffdeen O. Alabi, Adebimpe O. Esan, Bolaji A. Omodunbi, Oluwaseyi O. Bello, and Samuel Fanijo
- Scientific African, Vol 19, Iss , Pp e01533- (2023)
- Subjects
-
Android, Communication, Deaf, Disability, Dumb, Hardware, and Science
- Abstract
-
People living with disability constitute a significant percentage of the world population. For many people with disabilities, assistance and support are prerequisites for participating in societal activities. This research work developed a hardware prototype of a robotic hand forfor sign language communication with persons living with hard-of-hearing disabilities (deaf and/or dumb). The prototype has three basic modules: the input unit, the control unit, and the robotic hand. The input unit is designed as an Android-based mobile application with speech recognition capabilities while the control unit is ATMEGA 2560 microcontroller board. The robotic hand is constructed using locally available materials (bathroom Slippers, expandable rubber, straw pipe, and tiny rope) together with three servo motors and is designed to look and perform movements similar to a human hand. The prototype was evaluated quantitatively in terms of empirical accuracy and response time. It was also evaluated qualitatively by thirty-five (35) users which included fifteen (15) experience ASL users, eighteen (18) non-experience ASL users, and two (2) ASL experts, who completed questionnaires to rate the prototype on a 5-point Likert scale in terms of five parameters: functionality, reliability, ease of use, efficiency, and portability. An accuracy of 78.43% with an average response time of 2 s was obtained from empirical experiments. Statistical analysis of user responses showed that 97%, 68%, 77%, 80%, and 83% of users rated the system as above average for functionality, reliability, ease of use, efficiency, and portability, respectively. The robotic hand effectively communicates American Sign Language which includes English Alphabets, numbers (1–9), and some selected common words, which can be demonstrated with a single hand for hard of hearing persons. To the best of our knowledge, this work is the first ASL robotic hand that is based on locally sourced cost-effective materials, and we build on flaws from existing literature, most of which are either template-based, not real-time, or expensive. In terms of future work, the prototype can be improved by extending the single robotic hand to a fully robotic body with two hands.
- Full text View record in DOAJ
-
Mohaghegh Montazeri M and Taghipour F
Water research [Water Res] 2023 Feb 15; Vol. 230, pp. 119581. Date of Electronic Publication: 2023 Jan 05.
- Subjects
-
Hydrodynamics, Kinetics, Ultraviolet Rays, Disinfection methods, and Water Purification methods
- Abstract
-
We developed and studied one of the first high-flow UV-LED water disinfection reactors applicable to point-of-entry (POE) water disinfection. A multiphysics computational model was created to predict the performance of UV reactor design concepts by modeling the synergic effect of radiation, hydrodynamics, and the inactivation kinetics of microorganisms. The geometrical optics that describe light propagation in terms of rays were employed to model the radiation profile of multiple UV-LEDs with optical components in complex reactor geometries, the first account of such an approach. The computational solution of the mass, momentum, and species equations was applied to model the hydrodynamics and kinetics. We designed a reactor through a detailed computational study of the optical and hydrodynamic performance of various design strategies. Highly efficient UV fluence distribution in the reactor was achieved by creating nearly collimated UV radiation beams across the reactor and managing the hydrodynamics using a flow distributor. We fabricated a prototype of the optimized reactor design for experimental studies. Biodosimetry tests were conducted for various flow rates and UV transmittances (UVTs), and the experimental results were compared with the model predictions. The design, which employed 14 UV-LEDs assembled over custom-made optical modules, resulted in a reduction equivalent dose (RED) of 65 mJ/cm 2 at a flow rate of 20 liters per minute (LPM) while consuming about 50 W energy. This reactor design required only 0.05 W radiant power per LPM flow rate to achieve an NSF Class A UV dose equivalent of 40 mJ/cm 2 . The findings of this study provide insights into UV-LED reactor development strategies as well as the creation and application of reactor virtual prototyping tools for designing and optimizing highly efficient UV-LED reactors.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023. Published by Elsevier Ltd.)
- Full text View on content provider's site
11. Fanpy: A python library for prototyping multideterminant methods in ab initio quantum chemistry. [2023]
-
Kim TD, Richer M, Sánchez-Díaz G, Miranda-Quintana RA, Verstraelen T, Heidar-Zadeh F, and Ayers PW
Journal of computational chemistry [J Comput Chem] 2023 Feb 15; Vol. 44 (5), pp. 697-709. Date of Electronic Publication: 2022 Nov 28.
- Subjects
-
Electrons, Quantum Theory, and Software
- Abstract
-
Fanpy is a free and open-source Python library for developing and testing multideterminant wavefunctions and related ab initio methods in electronic structure theory. The main use of Fanpy is to quickly prototype new methods by making it easier to convert the mathematical formulation of a new wavefunction ansätze to a working implementation. Fanpy is designed based on our recently introduced Flexible Ansatz for N-electron Configuration Interaction (FANCI) framework, where multideterminant wavefunctions are represented by their overlaps with Slater determinants of orthonormal spin-orbitals. In the simplest case, a new wavefunction ansatz can be implemented by simply writing a function for evaluating its overlap with an arbitrary Slater determinant. Fanpy is modular in both implementation and theory: the wavefunction model, the system's Hamiltonian, and the choice of objective function are all independent modules. This modular structure makes it easy for users to mix and match different methods and for developers to quickly explore new ideas. Fanpy is written purely in Python with standard dependencies, making it accessible for various operating systems. In addition, it adheres to principles of modern software development, including comprehensive documentation, extensive testing, quality assurance, and continuous integration and delivery protocols. This article is considered to be the official release notes for the Fanpy library.
(© 2022 Wiley Periodicals LLC.)
- Full text View on content provider's site
-
Borda E, Medagoda DI, Airaghi Leccardi MJI, Zollinger EG, and Ghezzi D
Biomaterials [Biomaterials] 2023 Feb; Vol. 293, pp. 121979. Date of Electronic Publication: 2022 Dec 27.
- Subjects
-
Mice, Animals, Electrodes, Prostheses and Implants, Brain, Sulfhydryl Compounds chemistry, and Nervous System
- Abstract
-
Off-stoichiometry thiol-ene-epoxy (OSTE+) thermosets show low permeability to gases and little absorption of dissolved molecules, allow direct low-temperature dry bonding without surface treatments, have a low Young's modulus, and can be manufactured via UV polymerisation. For these reasons, OSTE+ thermosets have recently gained attention for the rapid prototyping of microfluidic chips. Moreover, their compatibility with standard clean-room processes and outstanding mechanical properties make OSTE+ an excellent candidate as a novel material for neural implants. Here we exploit OSTE+ to manufacture a conformable multilayer micro-electrocorticography array with 16 platinum electrodes coated with platinum black. The mechanical properties allow conformability to curved surfaces such as the brain. The low permeability and strong adhesion between layers improve the stability of the device. Acute experiments in mice show the multimodal capacity of the array to record and stimulate the neural tissue by smoothly conforming to the mouse cortex. Devices are not cytotoxic, and immunohistochemistry stainings reveal only modest foreign body reaction after two and six weeks of chronic implantation. This work introduces OSTE+ as a promising material for implantable neural interfaces.
Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Diego Ghezzi reports financial support was provided by Medtronic plc.
(Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Full text View on content provider's site
13. Design thinking competence as self-perceived by nursing students in Taiwan: A cross-sectional study. [2023]
-
Liu HY
Nurse education today [Nurse Educ Today] 2023 Feb; Vol. 121, pp. 105696. Date of Electronic Publication: 2022 Dec 12.
- Subjects
-
Humans, Cross-Sectional Studies, Taiwan, Creativity, Problem Solving, Clinical Competence, Students, Nursing, and Education, Nursing, Baccalaureate
- Abstract
-
Background: Competence in design thinking plays a pivotal role when undertaking innovative problem-solving. Our knowledge on nursing students' self-perceived design thinking competence, however, is noticeably lacking, particularly in Taiwan.
Object: To examine Taiwanese nursing students' self-perceived competence in design thinking.
Design: Descriptive, cross-sectional, quantitative study.
Participants: One hundred and one nursing students enrolled in the interdisciplinary capstone courses, which were jointly offered to industrial design students, as part of a 4-year nursing program at a science and technology university in northern Taiwan.
Methods: Self-reported questionnaire data were collected from students, including their demographics and self-perceived competence in design thinking as measured by the Creative Synthesis Inventory and the Design Thinking Traits Questionnaire between January 2020 and January 2021.
Results: Distinctive and reliable individual differences were found in nursing students' self-perceived competence in design thinking. In addition, students perceived a significantly higher creative synthesis skill of discovery in developing an understanding of potential users and a significantly lower design thinking trait of optimism, not backing down from challenging problems. Finally, greater perceived competence in creative synthesis skills were significantly correlated with greater perceived competence in all design thinking traits, except the trait of optimism.
Conclusions: Results indicated that significant individual differences exist in Taiwanese nursing students' self-perceived design thinking competence, suggesting opportunities for helping students with lower perceived competence. Overall, Taiwanese students believed themselves to be less skilled in visualization, prototyping, and evaluation as well as lacking an attribute of optimism when encountering challenging problems. Therefore, as informed by the design thinking framework, nursing schools should focus on developing strategies through training and practice to foster creative synthesis skills and designer traits in students, particularly targeting those who self-perceived as less competent and those skills and traits self-perceived as weaknesses.
Competing Interests: Declaration of competing interest No competing interests are declared by the authors.
(Copyright © 2022 The Author. Published by Elsevier Ltd.. All rights reserved.)
-
Alarçin E, İzbudak B, Yüce Erarslan E, Domingo S, Tutar R, Titi K, Kocaaga B, Guner FS, and Bal-Öztürk A
Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2023 Feb; Vol. 111 (2), pp. 209-223. Date of Electronic Publication: 2022 Oct 10.
- Subjects
-
Nanogels
- Abstract
-
Layered double hydroxides (LDHs) offer unique source of inspiration for design of bone mimetic biomaterials due to their superior mechanical properties, drug delivery capability and regulation cellular behaviors, particularly by divalent metal cations in their structure. Three-dimensional (3D) bioprinting of LDHs holds great promise as a novel strategy thanks to highly tunable physiochemical properties and shear-thinning ability of LDHs, which allow shape fidelity after deposition. Herein, we introduce a straightforward strategy for extrusion bioprinting of cell laden nanocomposite hydrogel bioink of gelatin methacryloyl (GelMA) biopolymer and LDHs nanoparticles. First, we synthesized LDHs by co-precipitation process and systematically examined the effect of LDHs addition on printing parameters such as printing pressure, extrusion rate, printing speed, and finally bioink printability in creating grid-like constructs. The developed hydrogel bioinks provided precise control over extrudability, extrusion uniformity, and structural integrity after deposition. Based on the printability and rheological analysis, the printability could be altered by controlling the concentration of LDHs, and printability was found to be ideal with the addition of 3 wt % LDHs. The addition of LDHs resulted in remarkably enhanced compressive strength from 652 kPa (G-LDH0) to 1168 kPa (G-LDH3). It was shown that the printed nanocomposite hydrogel scaffolds were able to support encapsulated osteoblast survival, spreading, and proliferation in the absence of any osteoinductive factors taking advantage of LDHs. In addition, cells encapsulated in G-LDH3 had a larger cell spreading area and higher cell aspect ratio than those encapsulated in G-LDH0. Altogether, the results demonstrated that the developed GelMA/LDHs nanocomposite hydrogel bioink revealed a high potential for extrusion bioprinting with high structural fidelity to fabricate implantable 3D hydrogel constructs for repair of bone defects.
(© 2022 Wiley Periodicals LLC.)
- Full text View on content provider's site
-
Yuan J, Cheng J, Fan C, Wu P, Zhang Y, Cao M, and Shi T
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2023 Feb; Vol. 107 (2-3), pp. 985.
- Full text View on content provider's site
-
Hammood M, Lin S, Yun H, Luan E, Chrostowski L, and Jaeger NAF
Optics letters [Opt Lett] 2023 Feb 01; Vol. 48 (3), pp. 582-585.
- Abstract
-
We demonstrate a method to emulate the optical performance of silicon photonic devices fabricated using advanced deep-ultraviolet lithography (DUV) processes on a rapid-prototyping electron-beam lithography process. The method is enabled by a computational lithography predictive model generated by processing SEM image data of the DUV lithography process. We experimentally demonstrate the emulation method's accuracy on integrated silicon Bragg grating waveguides and grating-based, add-drop filter devices, two devices that are particularly susceptible to DUV lithography effects. The emulation method allows silicon photonic device and system designers to experimentally observe the effects of DUV lithography on device performance in a low-cost, rapid-prototyping, electron-beam lithography process to enable a first-time-right design flow.
- Full text View on content provider's site
-
Davidson JB, Cashaback JGA, and Fischer SL
Computer methods in biomechanics and biomedical engineering [Comput Methods Biomech Biomed Engin] 2023 Feb; Vol. 26 (2), pp. 187-198. Date of Electronic Publication: 2022 Mar 17.
- Subjects
-
Humans, Computer Simulation, and Posture physiology
- Abstract
-
Multi-objective optimization digital human models permit users to predict postures that follow performance criteria, such as minimizing torques. Currently, it is unknown how to weight different objective functions to best predict postures. Objective one was to describe a response surface method to determine optimal objective function weightings to predict lift postures. Objective two was to evaluate the sensitivity of different error calculation methods. Our response surface approach has utility for determining optimal objective function weightings when using a digital human model to evaluate human-system interactions in early design stages. The approach was not dependent on variations in error calculation methods.
- Full text View on content provider's site
-
Silcock J, Marques I, Olaniyan J, Raynor DK, Baxter H, Gray N, Zaidi STR, Peat G, Fylan B, Breen L, Benn J, and Alldred DP
Health expectations : an international journal of public participation in health care and health policy [Health Expect] 2023 Feb; Vol. 26 (1), pp. 399-408. Date of Electronic Publication: 2022 Nov 24.
- Subjects
-
Humans, Aged, Caregivers, United Kingdom, Polypharmacy, Frailty, and Deprescriptions
- Abstract
-
Background: In older people living with frailty, polypharmacy can lead to preventable harm like adverse drug reactions and hospitalization. Deprescribing is a strategy to reduce problematic polypharmacy. All stakeholders should be actively involved in developing a person-centred deprescribing process that involves shared decision-making.
Objective: To co-design an intervention, supported by a logic model, to increase the engagement of older people living with frailty in the process of deprescribing.
Design: Experience-based co-design is an approach to service improvement, which uses service users and providers to identify problems and design solutions. This was used to create a person-centred intervention with the potential to improve the quality and outcomes of the deprescribing process. A 'trigger film' showing older people talking about their healthcare experiences was created and facilitated discussions about current problems in the deprescribing process. Problems were then prioritized and appropriate solutions were developed. The review located the solutions in the context of current processes and procedures. An ideal care pathway and a complex intervention to deliver better care were developed.
Setting and Participants: Older people living with frailty, their informal carers and professionals living and/or working in West Yorkshire, England, UK. Deprescribing was considered in the context of primary care.
Results: The current deprescribing process differed from an ideal pathway. A complex intervention containing seven elements was required to move towards the ideal pathway. Three of these elements were prototyped and four still need development. The complex intervention responded to priorities about (a) clarity for older people about what was happening at all stages in the deprescribing process and (b) the quality of one-to-one consultations.
Conclusions: Priorities for improving the current deprescribing process were successfully identified. Solutions were developed and structured as a complex intervention. Further work is underway to (a) complete the prototyping of the intervention and (b) conduct feasibility testing.
Patient or Public Contribution: Older people living with frailty (and their informal carers) have made a central contribution, as collaborators, to ensure that a complex intervention has the greatest possible potential to enhance the experience of deprescribing medicines.
(© 2022 The Authors. Health Expectations published by John Wiley & Sons Ltd.)
- Full text
View/download PDF
-
Simon Orlob, Christoph Hobisch, Johannes Wittig, Daniel Auinger, Otto Touzil, Gabriel Honnef, Otmar Schindler, Philipp Metnitz, Georg Feigl, and Gerhard Prause
- Data in Brief, Vol 46, Iss , Pp 108767- (2023)
- Subjects
-
cardiopulmonary resuscitation, Mechanical ventilation, Mechanical chest-compression, Respiratory monitoring, Thiel embalmed cadaver, Biomechanics, Computer applications to medicine. Medical informatics, R858-859.7, Science (General), and Q1-390
- Abstract
-
The data presented in this article relate to the research article, “Reliability of mechanical ventilation during continuous chest compressions: a crossover study of transport ventilators in a human cadaver model of CPR” [1].This article contains raw data of continuous recordings of airflow, airway and esophageal pressure during the whole experiment. Data of mechanical ventilation was obtained under ongoing chest compressions and from repetitive measurements of pressure-volume curves. All signals are presented as raw time series data with a sample rate of 200Hz for flow and 500 Hz for pressure. Additionally, we hereby publish extracted time series recordings of force and compression depth from the used automated chest compression device. Concomitantly, we report tables with time stamps from our laboratory book by which the data can be sequenced into different phases of the study protocol.We also present a dataset of derived volumes which was used for statistical analysis in our research article together with the used exclusion list.The reported dataset can help to understand mechanical properties of Thiel-embalmed cadavers better and compare different models of cardiopulmonary resuscitation (CPR). Future research may use this data to translate our findings from bench to bedside. Our recordings may become useful in developing respiratory monitors for CPR, especially in prototyping and testing algorithms of such devices.
- Full text View on content provider's site
-
Jonathan Silcock, Iuri Marques, Janice Olaniyan, David K. Raynor, Helen Baxter, Nicky Gray, Syed T. R. Zaidi, George Peat, Beth Fylan, Liz Breen, Jonathan Benn, and David P. Alldred
- Health Expectations, Vol 26, Iss 1, Pp 399-408 (2023)
- Subjects
-
aged, deprescribing, frailty, polypharmacy, primary health care, referral and consultation, Medicine (General), R5-920, Public aspects of medicine, and RA1-1270
- Abstract
-
Abstract Background In older people living with frailty, polypharmacy can lead to preventable harm like adverse drug reactions and hospitalization. Deprescribing is a strategy to reduce problematic polypharmacy. All stakeholders should be actively involved in developing a person‐centred deprescribing process that involves shared decision‐making. Objective To co‐design an intervention, supported by a logic model, to increase the engagement of older people living with frailty in the process of deprescribing. Design Experience‐based co‐design is an approach to service improvement, which uses service users and providers to identify problems and design solutions. This was used to create a person‐centred intervention with the potential to improve the quality and outcomes of the deprescribing process. A ‘trigger film’ showing older people talking about their healthcare experiences was created and facilitated discussions about current problems in the deprescribing process. Problems were then prioritized and appropriate solutions were developed. The review located the solutions in the context of current processes and procedures. An ideal care pathway and a complex intervention to deliver better care were developed. Setting and Participants Older people living with frailty, their informal carers and professionals living and/or working in West Yorkshire, England, UK. Deprescribing was considered in the context of primary care. Results The current deprescribing process differed from an ideal pathway. A complex intervention containing seven elements was required to move towards the ideal pathway. Three of these elements were prototyped and four still need development. The complex intervention responded to priorities about (a) clarity for older people about what was happening at all stages in the deprescribing process and (b) the quality of one‐to‐one consultations. Conclusions Priorities for improving the current deprescribing process were successfully identified. Solutions were developed and structured as a complex intervention. Further work is underway to (a) complete the prototyping of the intervention and (b) conduct feasibility testing. Patient or Public Contribution Older people living with frailty (and their informal carers) have made a central contribution, as collaborators, to ensure that a complex intervention has the greatest possible potential to enhance the experience of deprescribing medicines.
- Full text
View/download PDF
-
Russell Galea, Pierre-Sandre Farrugia, Krzysztof K. Dudek, Daphne Attard, Joseph N. Grima, and Ruben Gatt
- Materials & Design, Vol 226, Iss , Pp 111596- (2023)
- Subjects
-
Perforations, Subtractive manufacturing, Negative Poisson’s ratio, 3D auxetic structures, Materials of engineering and construction. Mechanics of materials, and TA401-492
- Abstract
-
Prototyping of three-dimensional mechanical metamaterials that exhibit negative Poisson’s ratio is usually performed through additive manufacturing. Although this technique has a huge potential, its use to engineer mechanical metamaterials for consumer products is still challenging. In this work, a novel design method is being proposed where 3D auxetic metamaterials can be produced by introducing continuous voids of constant cross-sectional area. Such voids would be inserted at strategic positions in different perpendicular planes of a solid block to obtain a continuous three-dimensional mechanical metamaterial that can exhibit the desired mechanical characteristics. The use of continuous voids to design the 3D meatamaterial makes it possible to use additive manufacturing, subtractive manufacturing as well as casting to produce these systems. The proposed design method is explained by using continuous voids having a diamond shaped cross-sectional area. The resulting group of structures can be described as connected polygons and were found to exhibit a negative or zero Poisson’s ratio. The analysed systems were also found to have a strain independent Poisson’s ratio up to at least 7% strain. The proposed design method can thus facilitate the availability of three dimensional auxetic metamaterials in the consumer market which to date is conspicuous by their absence.
- Full text View on content provider's site
-
Francesca Usai, Giada Loi, Franca Scocozza, Massimo Bellato, Ignazio Castagliuolo, Michele Conti, and Lorenzo Pasotti
- Materials Today Bio, Vol 18, Iss , Pp 100526- (2023)
- Subjects
-
Bioprinting, Engineered living materials, Biosensors, Synthetic biology, Engineered bacteria, Medicine (General), R5-920, Biology (General), and QH301-705.5
- Abstract
-
The intertwined adoption of synthetic biology and 3D bioprinting has the potential to improve different application fields by fabricating engineered living materials (ELMs) with unnatural genetically-encoded sense & response capabilities. However, efforts are still needed to streamline the fabrication of sensing ELMs compatible with field use and improving their functional complexity. To investigate these two unmet needs, we adopted a workflow to reproducibly construct bacterial ELMs with synthetic biosensing circuits that provide red pigmentation as visible readout in response to different proof-of-concept chemical inducers. We first fabricated single-input/single-output ELMs and we demonstrated their robust performance in terms of longevity (cell viability and evolutionary stability >15 days, and long-term storage >1 month), sensing in harsh, non-sterile or nutrient-free conditions compatible with field use (soil, water, and clinical samples, including real samples from Pseudomonas aeruginosa infected patients). Then, we fabricated ELMs including multiple spatially-separated biosensor strains to engineer: level-bar materials detecting molecule concentration ranges, multi-input/multi-output devices with multiplexed sensing and information processing capabilities, and materials with cell-cell communication enabling on-demand pattern formation. Overall, we showed successful field use and multiplexed functioning of reproducibly fabricated ELMs, paving the way to a future automation of the prototyping process and boosting applications of such devices as in-situ monitoring tools or easy-to-use sensing kits.
- Full text View on content provider's site
-
Kling A, Dirscherl L, and Dittrich PS
Lab on a chip [Lab Chip] 2023 Jan 31; Vol. 23 (3), pp. 534-541. Date of Electronic Publication: 2023 Jan 31.
- Subjects
-
Male, Humans, Prostate, Proteins, Polymers, Antibodies, Biomarkers, Tumor, and Prostatic Neoplasms diagnosis
- Abstract
-
Immunoassays are frequently used for analysis of protein biomarkers. The specificity of antibodies enables parallel analysis of several target proteins, at the same time. However, the implementation of such multiplexed assays into cost-efficient and mass-producible thermoplastic microfluidic platforms remains difficult due to the lack of suitable immobilization strategies for different capture antibodies. Here, we introduce and characterize a method to functionalize the surfaces of microfluidic devices manufactured in the thermoplastic material cyclic olefin copolymer (COC) by a rapid prototyping process. A laser-induced immobilization process enables the surface patterning of anchor biomolecules at a spatial resolution of 5 μm. We employ the method for the analysis of prostate cancer associated biomarkers by competitive immunoassays in a microchannel with a total volume of 320 nL, and successfully detected the proteins PSA, CRP, CEA and IGF-1 at clinically relevant concentrations. Finally, we also demonstrate the simultaneous analysis of three markers spiked into undiluted human plasma. In conclusion, this method opens the way to transfer multiplexed immunoassays into mass-producible microfluidic platforms that are suitable for point of care applications.
- Full text View on content provider's site
24. Structural and optical variation of pseudoisocyanine aggregates nucleated on DNA substrates. [2023]
-
Chiriboga M, Green CM, Mathur D, Hastman DA, Melinger JS, Veneziano R, Medintz IL, and Díaz SA
Methods and applications in fluorescence [Methods Appl Fluoresc] 2023 Jan 31; Vol. 11 (1). Date of Electronic Publication: 2023 Jan 31.
- Subjects
-
DNA chemistry, DNA, Single-Stranded, Circular Dichroism, and Quinolines chemistry
- Abstract
-
Coherently coupled pseudoisocyanine (PIC) dye aggregates have demonstrated the ability to delocalize electronic excitations and ultimately migrate excitons with much higher efficiency than similar designs where excitations are isolated to individual chromophores. Here, we report initial evidence of a new type of PIC aggregate, formed through heterogeneous nucleation on DNA oligonucleotides, displaying photophysical properties that differ significantly from previously reported aggregates. This new aggregate, which we call the super aggregate (SA) due to the need for elevated dye excess to form it, is clearly differentiated from previously reported aggregates by spectroscopic and biophysical characterization. In emission spectra, the SA exhibits peak narrowing and, in some cases, significant quantum yield variation, indicative of stronger coupling in cyanine dyes. The SA was further characterized with circular dichroism and atomic force microscopy observing unique features depending on the DNA substrate. Then by integrating an AlexaFluor TM 647 (AF) dye as an energy transfer acceptor into the system, we observed mixed energy transfer characteristics using the different DNA. For example, SA formed with a rigid DNA double crossover tile (DX-tile) substrate resulted in AF emission sensitization. While SA formed with more flexible non-DX-tile DNA (i.e. duplex and single strand DNA) resulted in AF emission quenching. These combined characterizations strongly imply that DNA-based PIC aggregate properties can be controlled through simple modifications to the DNA substrate's sequence and geometry. Ultimately, we aim to inform rational design principles for future device prototyping. For example, one key conclusion of the study is that the high absorbance cross-section and efficient energy transfer observed with rigid substrates made for better photonic antennae, compared to flexible DNA substrates.
(Creative Commons Attribution license.)
- Full text View on content provider's site
-
Johnson EA, Rainbow JG, and Carrington JM
Computers, informatics, nursing : CIN [Comput Inform Nurs] 2023 Jan 30. Date of Electronic Publication: 2023 Jan 30.
- Abstract
-
The expanded access to clinical trials has provided more patients the opportunity to participate in novel therapeutics research. There is an increased likelihood of a patient, as a pediatric oncology clinical trial participant, to present for clinical care outside the research site, such as at an emergency room or urgent care center. A novel wearable universal serial bus device is a proposed technology to bridge potential communication gaps, pertaining to critical information such as side effects and permitted therapies, between research teams and clinical teams where investigational agents may be contraindicated to standard treatments. Fifty-five emergency and urgent care nurses across the United States were presented, via online survey without priming to the context of clinical trials or the device, a picture of a pediatric patient wearing the novel wearable device prompted to identify significant, environmental cues important for patient care. Of the 40 nurses observing the patient photo, three identified the wearable device within Situational Awareness Global Assessment Tool formatted narrative response fields. Analysis of the narrative nurse-participant responses of significant clinical findings upon initial assessment of the pediatric patient photo is described, as well as the implications for subsequent prototyping of the novel universal serial bus prototype.
(Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.)
- Full text View on content provider's site
-
Martin J, Rasor B, DeBonis J, Karim AS, Jewett MC, Tyo KEJ, and Broadbelt LJ
Metabolic engineering [Metab Eng] 2023 Jan 29. Date of Electronic Publication: 2023 Jan 29.
- Abstract
-
Cell-free systems are useful tools for prototyping metabolic pathways and optimizing the production of various bioproducts. Mechanistically-based kinetic models are uniquely suited to analyze dynamic experimental data collected from cell-free systems and provide vital qualitative insight. However, to date, dynamic kinetic models have not been applied with rigorous biological constraints or trained on adequate experimental data to the degree that they would give high confidence in predictions and broadly demonstrate the potential for widespread use of such kinetic models. In this work, we construct a large-scale dynamic model of cell-free metabolism with the goal of understanding and optimizing butanol production in a cell-free system. Using a combination of parameterization methods, the resultant model captures experimental metabolite measurements across two experimental conditions for nine metabolites at timepoints between 0 and 24 h. We present analysis of the model predictions, provide recommendations for butanol optimization, and identify the aldehyde/alcohol dehydrogenase as the primary bottleneck in butanol production. Sensitivity analysis further reveals the extent to which various parameters are constrained, and our approach for probing valid parameter ranges can be applied to other modeling efforts.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023. Published by Elsevier Inc.)
- Full text View on content provider's site
-
Rüfenacht E, Kamath A, Suter Y, Poel R, Ermiş E, Scheib S, and Reyes M
Computer methods and programs in biomedicine [Comput Methods Programs Biomed] 2023 Jan 28; Vol. 231, pp. 107374. Date of Electronic Publication: 2023 Jan 28.
- Abstract
-
Background and Objective: Despite fast evolution cycles in deep learning methodologies for medical imaging in radiotherapy, auto-segmentation solutions rarely run in clinics due to the lack of open-source frameworks feasible for processing DICOM RT Structure Sets. Besides this shortage, available open-source DICOM RT Structure Set converters rely exclusively on 2D reconstruction approaches leading to pixelated contours with potentially low acceptance by healthcare professionals. PyRaDiSe, an open-source, deep learning framework independent Python package, addresses these issues by providing a framework for building auto-segmentation solutions feasible to operate directly on DICOM data. In addition, PyRaDiSe provides profound DICOM RT Structure Set conversion and processing capabilities; thus, it applies also to auto-segmentation-related tasks, such as dataset construction for deep learning model training.
Methods: The PyRaDiSe package follows a holistic approach and provides DICOM data handling, deep learning model inference, pre-processing, and post-processing functionalities. The DICOM data handling allows for highly automated and flexible handling of DICOM image series, DICOM RT Structure Sets, and DICOM registrations, including 2D-based and 3D-based conversion from and to DICOM RT Structure Sets. For deep learning model inference, extending given skeleton classes is straightforwardly achieved, allowing for employing any deep learning framework. Furthermore, a profound set of pre-processing and post-processing routines is included that incorporate partial invertibility for restoring spatial properties, such as image origin or orientation.
Results: The PyRaDiSe package, characterized by its flexibility and automated routines, allows for fast deployment and prototyping, reducing efforts for auto-segmentation pipeline implementation. Furthermore, while deep learning model inference is independent of the deep learning framework, it can easily be integrated into famous deep learning frameworks such as PyTorch or Tensorflow. The developed package has successfully demonstrated its capabilities in a research project at our institution for organs-at-risk segmentation in brain tumor patients. Furthermore, PyRaDiSe has shown its conversion performance for dataset construction.
Conclusions: The PyRaDiSe package closes the gap between data science and clinical radiotherapy by enabling deep learning segmentation models to be easily transferred into clinical research practice. PyRaDiSe is available on https://github.com/ubern-mia/pyradise and can be installed directly from the Python Package Index using pip install pyradise.
Competing Interests: Declaration of Competing Interest Authors declare that they have no conflict of interest.
(Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Spencer M, Kameneva T, Grayden DB, Burkitt AN, and Meffin H
Journal of neural engineering [J Neural Eng] 2023 Jan 27; Vol. 20 (1). Date of Electronic Publication: 2023 Jan 27.
- Subjects
-
Visual Acuity, Vision, Ocular, Visual Perception physiology, Retina physiology, and Visual Prosthesis
- Abstract
-
Objective. Visual prostheses currently restore only limited vision. More research and pre-clinical work are required to improve the devices and stimulation strategies that are used to induce neural activity that results in visual perception. Evaluation of candidate strategies and devices requires an objective way to convert measured and modelled patterns of neural activity into a quantitative measure of visual acuity. Approach. This study presents an approach that compares evoked patterns of neural activation with target and reference patterns. A d-prime measure of discriminability determines whether the evoked neural activation pattern is sufficient to discriminate between the target and reference patterns and thus provides a quantified level of visual perception in the clinical Snellen and MAR scales. The magnitude of the resulting value was demonstrated using scaled standardized 'C' and 'E' optotypes. Main results. The approach was used to assess the visual acuity provided by two alternative stimulation strategies applied to simulated retinal implants with different electrode pitch configurations and differently sized spreads of neural activity. It was found that when there is substantial overlap in neural activity generated by different electrodes, an estimate of acuity based only upon electrode pitch is incorrect; our proposed method gives an accurate result in both circumstances. Significance. Quantification of visual acuity using this approach in pre-clinical development will allow for more rapid and accurate prototyping of improved devices and neural stimulation strategies.
(© 2023 IOP Publishing Ltd.)
- Full text View on content provider's site
-
Inagawa A, Iimura KI, and Uehara N
Analytical methods : advancing methods and applications [Anal Methods] 2023 Jan 26; Vol. 15 (4), pp. 537-542. Date of Electronic Publication: 2023 Jan 26.
- Abstract
-
A stencil printing method utilizing sticky notes, a thermal transfer ink ribbon, and office appliances for paper-based analytical device (PAD) fabrication was proposed. A sticky note was attached to a filter paper, and a mask pattern was cut using a cutting machine. A commercially available thermal ink ribbon was then placed over the mask and laminated. We have characterized the fabricated devices. This approach could be used for the fast and mass prototyping of PADs using simple office appliances with no need for a wax printer.
- Full text View on content provider's site
-
Rasor BJ, Chirania P, Rybnicky GA, Giannone RJ, Engle NL, Tschaplinski TJ, Karim AS, Hettich RL, and Jewett MC
ACS synthetic biology [ACS Synth Biol] 2023 Jan 26. Date of Electronic Publication: 2023 Jan 26.
- Abstract
-
Cell-free systems derived from crude cell extracts have developed into tools for gene expression, with applications in prototyping, biosensing, and protein production. Key to the development of these systems is optimization of cell extract preparation methods. However, the applied nature of these optimizations often limits investigation into the complex nature of the extracts themselves, which contain thousands of proteins and reaction networks with hundreds of metabolites. Here, we sought to uncover the black box of proteins and metabolites in Escherichia coli cell-free reactions based on different extract preparation methods. We assess changes in transcription and translation activity from σ 70 promoters in extracts prepared with acetate or glutamate buffer and the common post-lysis processing steps of a runoff incubation and dialysis. We then utilize proteomic and metabolomic analyses to uncover potential mechanisms behind these changes in gene expression, highlighting the impact of cold shock-like proteins and the role of buffer composition.
- Full text View on content provider's site
-
Chesnais F, Joel J, Hue J, Shakib S, Di Silvio L, Grigoriadis AE, Coward T, and Veschini L
Lab on a chip [Lab Chip] 2023 Jan 26. Date of Electronic Publication: 2023 Jan 26.
- Abstract
-
Creating vascularised cellular environments in vitro is a current challenge in tissue engineering and a bottleneck towards developing functional stem cell-derived microtissues for regenerative medicine and basic investigations. Here we have developed a new workflow to manufacture vasculature on chip (VoC) systems efficiently, quickly, and inexpensively. We have employed 3D printing for fast-prototyping of bespoke VoC and coupled them with a refined organotypic culture system (OVAA) to grow patent capillaries in vitro using tissue-specific endothelial and stromal cells. Furthermore, we have designed and implemented a pocket-size flow driver to establish physiologic perfusive flow throughout our VoC-OVAA with minimal medium use and waste. Using our platform, we have created vascularised microtissues and perfused them at physiologic flow rates for extended time (>2 weeks) observing flow-dependent vascular remodelling. Overall, we present for the first time a scalable and customisable system to grow vascularised and perfusable microtissues, a key initial step to grow mature and functional tissues in vitro . We envision that this technology will empower fast prototyping and validation of increasingly biomimetic in vitro systems, including interconnected multi-tissue systems.
- Full text View on content provider's site
-
Tan M, Dharani D, Dong X, Maiorana C, Chaudhuri B, Nagapudi K, Chang SY, and Ma AWK
International journal of pharmaceutics [Int J Pharm] 2023 Jan 25; Vol. 631, pp. 122540. Date of Electronic Publication: 2022 Dec 23.
- Subjects
-
Delayed-Action Preparations, Powders, Printing, Three-Dimensional, Tablets, Excipients, Hypromellose Derivatives, Drug Liberation, Technology, Pharmaceutical methods, and Acetaminophen
- Abstract
-
The additive nature and versatility of 3D printing show great promise in the rapid prototyping of solid dosage forms for clinical trials and mass customization for personalized medicine applications. This paper reports the formulation and process development of sustained release solid dosage forms, termed "printlets", using a pilot-scale binder jetting (BJT) 3D printer and acetaminophen (APAP) as the model drug. With the inclusion of hydroxypropyl methylcellulose (HPMC) as a release retardant polymer in the print powder, the drug release time of APAP increased considerably from minutes to hours. However, given the swelling propensity of HPMC, a thicker layer of powder must be laid down during printing to avoid any shape distortion of the printlets. For a fixed print volume, the level of binder saturation (i.e., ratio between the liquid binder and powder in the as-printed sample) is inversely proportional to the thickness of the spread powder layer. An increase in the spread powder layer inadvertently resulted in a lower level of binder saturation and consequently weaker printlets. By increasing the level of binder saturation with jetting from more print heads, the mechanical strength of printlets containing 18% HPMC was successfully restored. The resultant printlets have a drug release time of 3.5 h and a breaking force of 12.5 kgf that is comparable to the fast-disintegrating printlets containing no HPMC and surpasses manually pressed tablets with the same HPMC content.
Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Anson Ma reports financial support was provided by Genentech. Anson Ma reports equipment, drugs, or supplies was provided by Kerry Inc. Anson Ma reports equipment, drugs, or supplies was provided by BASF Corp. Anson Ma reports equipment, drugs, or supplies was provided by Ashland Inc. Anson Ma reports equipment, drugs, or supplies was provided by Anton Paar USA Inc. Anson Ma reports a relationship with A.D.A.M. that includes: board membership.
(Copyright © 2022 Elsevier B.V. All rights reserved.)
-
Govoni FA, Felici N, Ornelli M, Marcelli VA, Migliano E, Pesucci BA, and Pistilli R
Maxillofacial plastic and reconstructive surgery [Maxillofac Plast Reconstr Surg] 2023 Jan 23; Vol. 45 (1), pp. 6. Date of Electronic Publication: 2023 Jan 23.
- Abstract
-
Background: The need for whole mandibular bone reconstruction and bilateral joint replacement is fortunately rare, but it is an extremely challenging topic in maxillofacial surgery, due to its functional implications. CAD-CAM techniques development has opened new broad horizons in the surgical planning of complex maxillofacial reconstructions, in terms of accuracy, predictability, and functional cosmetic results. The review of the literature has revealed a small number of scientific reports on total mandibulectomy including the condyles, with only eleven cases from 1980. Most of the works describe reconstructions secondary to dysplastic or inflammatory diseases affecting the lower jaw. The aim of this work, reporting a rare case of massive fibrous dysplasia of the whole mandible, is to share our experience in the management of extended mandibular and bilateral joint reconstruction, using porous titanium patient-specific implants.
Case Presentation: The authors present a 20-year-old male patient suffering from massive bone fibrous dysplasia of the mandible. The mandibular body and both the rami and the condylar processes had been involved, causing severe functional impairment, tooth loss, and facial deformation. The young patient, after repeated ineffective conservative surgical treatments, has required a biarticular mandibular replacement. Using virtual surgical planning (VSP) software, the authors, in collaboration with medical engineers, have created a custom-made original titanium porous mandibular implant, suspended from a bilateral artificial temporomandibular joint. The mandibular titanium implant body has been specifically designed to support soft tissues and to fix, in the alveolar region, a free fibular bone graft, for delayed dental implant prosthetic rehabilitation.
Conclusion: The surgical and technical details, as well as the new trends in mandibular reconstructions using porous titanium implants, are reported, and discussed, reviewing literature reports on this topic. Satisfactory functional and cosmetic restorative results have been obtained, and no major complications have occurred. The patient, currently in the 18 th month clinical and radiological follow-up, has recently completed the functional restoration program by an implant-supported full-arch dental prosthesis.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
Rein C, Toner M, and Sevenler D
Scientific reports [Sci Rep] 2023 Jan 22; Vol. 13 (1), pp. 1232. Date of Electronic Publication: 2023 Jan 22.
- Subjects
-
Dimethylpolysiloxanes, Microfluidics methods, and Microfluidic Analytical Techniques
- Abstract
-
Soft lithography has permitted rapid prototyping of precise microfluidic features by patterning a deformable elastomer such as polydimethylsiloxane (PDMS) with a photolithographically patterned mold. In microfluidics applications where the flexibility of PDMS is a drawback, a variety of more rigid materials have been proposed. Compared to alternatives, devices fabricated from epoxy and glass have superior mechanical performance, feature resolution, and solvent compatibility. Here we provide a detailed step-by-step method for fabricating rigid microfluidic devices from soft lithography patterned epoxy and glass. The bonding protocol was optimized yielding devices that withstand pressures exceeding 500 psi. Using this method, we demonstrate the use of rigid high aspect ratio spiral microchannels for high throughput cell focusing.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
van der Windt M, van Zundert SKM, Schoenmakers S, van Rossem L, and Steegers-Theunissen RPM
Journal of medical Internet research [J Med Internet Res] 2023 Jan 20; Vol. 25, pp. e37537. Date of Electronic Publication: 2023 Jan 20.
- Subjects
-
Humans, Pregnancy, Female, Pilot Projects, Feasibility Studies, Pregnancy Outcome, Life Change Events, and Prenatal Care
- Abstract
-
Background: A healthy lifestyle plays a key role in the prevention of lifestyle-related diseases, including subfertility and pregnancy complications. Although the benefits of a healthy lifestyle are well-known, long-term adherence is limited. Moreover, memory for lifestyle-related information as well as medical information provided by the medical professional is often poor and insufficient. In order to innovate and improve health care for both the patients and health care professionals, we developed a prototype of a digital life course care platform (Smarter Health app), providing personalized lifestyle care trajectories integrated in medical care journeys.
Objective: This pilot study aimed to evaluate the feasibility, defined as the actual app use, and the acceptability, which included patient satisfaction and appreciation, of the Smarter Health app.
Methods: Between March 17, 2021, and September 30, 2021, pregnant women familiar with the Dutch language seeking tertiary preconception and pregnancy care were offered the app as part of standard medical care at the outpatient clinic Healthy Pregnancy of the Department of Obstetrics and Gynecology of the Erasmus University Medical Center. Three months after activation of the app, patients received a digital questionnaire consisting of aspects of feasibility and acceptability.
Results: During this pilot study, 440 patients visited the outpatient clinic Healthy Pregnancy. Of the 440 patients, 293 (66.6%) activated the app. Of the 293 patients who activated the app, 125 (42.7%) filled out the questionnaire. Of these 125 patients, 48 (38.4%) used the app. Most app users used it occasionally and logged in 8 times during their medical care trajectory. Overall, app users were satisfied with the app (median 5-point Likert scale=2.4, IQR 2.0-3.3).
Conclusions: Our findings showed that the Smarter Health app, which integrates lifestyle care in medical care, is a feasible health care innovation, and that patients were satisfied with the app. Follow-up and evaluation of pregnancy outcomes should be performed to further substantiate wider clinical implementation.
(©Melissa van der Windt, Sofie Karolina Maria van Zundert, Sam Schoenmakers, Lenie van Rossem, Régine Patricia Maria Steegers-Theunissen. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 20.01.2023.)
- Full text View on content provider's site
36. Agile Methodologies Applied to the Development of Internet of Things (IoT)-Based Systems: A Review. [2023]
-
Guerrero-Ulloa G, Rodríguez-Domínguez C, and Hornos MJ
Sensors (Basel, Switzerland) [Sensors (Basel)] 2023 Jan 10; Vol. 23 (2). Date of Electronic Publication: 2023 Jan 10.
- Subjects
-
Humans, Internet, Research Personnel, Software, and Internet of Things
- Abstract
-
Throughout the evolution of software systems, empirical methodologies have been used in their development process, even in the Internet of Things (IoT) paradigm, to develop IoT-based systems (IoTS). In this paper, we review the fundamentals included in the manifesto for agile software development, especially in the Scrum methodology, to determine its use and role in IoTS development. Initially, 4303 documents were retrieved, a number that was reduced to 186 after applying automatic filters and by the relevance of their titles. After analysing their contents, only 60 documents were considered. Of these, 38 documents present the development of an IoTS using some methodology, 8 present methodologies focused on the construction of IoTS software, and 14 present methodologies close to the systems life cycle (SLC). Finally, only one methodology can be considered SLC-compliant. Out of 38 papers presenting the development of some IoTS following a methodology for traditional information systems (ISs), 42.1% have used Scrum as the only methodology, while 10.5% have used Scrum combined with other methodologies, such as eXtreme Programming (XP), Kanban and Rapid Prototyping. In the analysis presented herein, the existing methodologies for developing IoTSs have been grouped according to the different approaches on which they are based, such as agile, modelling, and service oriented. This study also analyses whether the different proposals consider the standard stages of the development process or not: planning and requirements gathering, solution analysis, solution design, solution coding and unit testing (construction), integration and testing (implementation), and operation and maintenance. In addition, we include a review of the automated frameworks, platforms, and tools used in the methodologies analysed to improve the development of IoTSs and the design of their underlying architectures. To conclude, the main contribution of this work is a review for IoTS researchers and developers regarding existing methodologies, frameworks, platforms, tools, and guidelines for the development of IoTSs, with a deep analysis framed within international standards dictated for this purpose.
- Full text View on content provider's site
37. Computer-Aided Greenery Design-Prototype Green Structure Improving Human Health in Urban Ecosystem. [2023]
-
Sędzicki D, Cudzik J, and Nyka L
International journal of environmental research and public health [Int J Environ Res Public Health] 2023 Jan 10; Vol. 20 (2). Date of Electronic Publication: 2023 Jan 10.
- Subjects
-
Humans, Cities, Urbanization, Public Health, Ecosystem, and Quality of Life
- Abstract
-
Increasing population and urbanization, with climate change consequences, such as rising temperatures, influence public health and well-being. The search to improve the quality of life in cities becomes one of the priority objectives. A solution can be found in the role of greenery in an urban environment and its impact on human health. This opens a path toward experimentation on microclimate green structures that can be inserted into dense urban spaces providing human and environmental benefits. The article proposes an automated greenery design method combined with rapid prototyping for such interventions. A theoretical analysis of the problem preceded the introduction of the method. The research process was developed in accordance with the main objectives of the CDIO framework (Conceive, Design, Implement, and Operate) with the SiL (Software in the Loop) and HiL (Hardware in the Loop) methods. Moreover, the applied test model allows for complex evaluation in order to ensure quality and directions for further development.
- Full text View on content provider's site
38. Customizable 3D printed perfusion bioreactor for the engineering of stem cell microenvironments. [2023]
-
Dupard SJ, Garcia AG, and Bourgine PE
Frontiers in bioengineering and biotechnology [Front Bioeng Biotechnol] 2023 Jan 09; Vol. 10, pp. 1081145. Date of Electronic Publication: 2023 Jan 09 (Print Publication: 2022).
- Abstract
-
Faithful modeling of tissues and organs requires the development of systems reflecting their dynamic 3D cellular architecture and organization. Current technologies suffer from a lack of design flexibility and complex prototyping, preventing their broad adoption by the scientific community. To make 3D cell culture more available and adaptable we here describe the use of the fused deposition modeling (FDM) technology to rapid-prototype 3D printed perfusion bioreactors. Our 3D printed bioreactors are made of polylactic acid resulting in reusable systems customizable in size and shape. Following design confirmation, our bioreactors were biologically validated for the culture of human mesenchymal stromal cells under perfusion for up to 2 weeks on collagen scaffolds. Microenvironments of various size/volume (6-12 mm in diameter) could be engineered, by modulating the 3D printed bioreactor design. Metabolic assay and confocal microscopy confirmed the homogenous mesenchymal cell distribution throughout the material pores. The resulting human microenvironments were further exploited for the maintenance of human hematopoietic stem cells. Following 1 week of stromal coculture, we report the recapitulation of 3D interactions between the mesenchymal and hematopoietic fractions, associated with a phenotypic expansion of the blood stem cell populations.Our data confirm that perfusion bioreactors fit for cell culture can be generated using a 3D printing technology and exploited for the 3D modeling of complex stem cell systems. Our approach opens the gates for a more faithful investigation of cellular processes in relation to a dynamic 3D microenvironment.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Dupard, Garcia and Bourgine.)
- Full text View on content provider's site
-
Kwan YH, Ong ZQ, Choo DYX, Phang JK, Yoon S, and Low LL
Patient preference and adherence [Patient Prefer Adherence] 2023 Jan 05; Vol. 17, pp. 1-11. Date of Electronic Publication: 2023 Jan 05 (Print Publication: 2023).
- Abstract
-
Background: Diabetes is a global public health issue, causing burden on healthcare system and increasing risk of mortality. Mobile applications (apps) can be a promising approach to facilitate diabetes self-management. An increasingly utilized approach to facilitate engagement with mobile health (mHealth) technology is to involve potential users in the creation of the technology.
Objective: The aim of this study was to use co-design for type 2 diabetes mellitus (T2DM) self-management mHealth development.
Methods: Three rounds of iterative rapid prototyping panel sessions were conducted with a total of 9 T2DM participants in an Asian setting between Oct 2020 and April 2021. The participants were recruited through convenience sampling. For each round, feedback was gathered through qualitative interviews, and the feedback was used as a reference by the development team to develop and test a more refined version of the app in the next round. Transcribed semi-structured interview data was analyzed thematically using an inductive approach.
Results: Participants' ages ranged from 40 to 69 years. Data saturation was reached, with no new themes emerging from the data. During the sessions, the participants expressed a variety of concerns and feedback on T2DM self-management using EMPOWER app and raised suggestions on the features of ideal T2DM self-management app. Important features include 1) reminders and notifications for medications, 2) Bluetooth integration with glucometers and blood pressure machines to minimize manual entry, 3) enlarged local food database including information on sugar content and recommendations for healthier options, 4) one touch for logging of routine medications and favorite foods, 5) export function for data sharing with physicians. Overall inputs concerned aspects such as user-friendliness of the app, customization possibilities, and educational content for the features in the mobile app.
Conclusion: In this study, we explored users' opinions on a T2DM self-management mobile app using co-design approach. This study adds to the growing body of literature on co-designing behavioral mHealth interventions and can potentially guide researchers in mobile app design for other chronic conditions.
Competing Interests: The authors declare that they have no other competing interests.
(© 2023 Kwan et al.)
- Full text View on content provider's site
-
Chen L, Zhang C, Yadav V, Wong A, Senapati S, and Chang HC
Scientific reports [Sci Rep] 2023 Jan 05; Vol. 13 (1), pp. 184. Date of Electronic Publication: 2023 Jan 05.
- Subjects
-
Microfluidics methods, Cell Encapsulation, Polymerase Chain Reaction, Microfluidic Analytical Techniques methods, and Microgels
- Abstract
-
Droplet microfluidics offers a platform from which new digital molecular assay, disease screening, wound healing and material synthesis technologies have been proposed. However, the current commercial droplet generation, assembly and imaging technologies are too expensive and rigid to permit rapid and broad-range tuning of droplet features/cargoes. This rapid prototyping bottleneck has limited further expansion of its application. Herein, an inexpensive home-made pipette droplet microfluidics kit is introduced. This kit includes elliptical pipette tips that can be fabricated with a simple DIY (Do-It-Yourself) tool, a unique tape-based or 3D printed shallow-center imaging chip that allows rapid monolayer droplet assembly/immobilization and imaging with a smart-phone camera or miniature microscope. The droplets are generated by manual or automatic pipetting without expensive and lab-bound microfluidic pumps. The droplet size and fluid viscosity/surface tension can be varied significantly because of our particular droplet generation, assembly and imaging designs. The versatility of this rapid prototyping kit is demonstrated with three representative applications that can benefit from a droplet microfluidic platform: (1) Droplets as microreactors for PCR reaction with reverse transcription to detect and quantify target RNAs. (2) Droplets as microcompartments for spirulina culturing and the optical color/turbidity changes in droplets with spirulina confirm successful photosynthetic culturing. (3) Droplets as templates/molds for controlled synthesis of gold-capped polyacrylamide/gold composite Janus microgels. The easily fabricated and user-friendly portable kit is hence ideally suited for design, training and educational labs.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
Wang YC, Chen HC, Wong CC, Chang WP, Lin CH, Liaw CK, Chen CH, and Weng PW
Orthopaedic journal of sports medicine [Orthop J Sports Med] 2023 Jan 05; Vol. 11 (1), pp. 23259671221142242. Date of Electronic Publication: 2023 Jan 05 (Print Publication: 2023).
- Abstract
-
Background: Single-row (SR) and double-row repair techniques have been described to treat rotator cuff tears. We present a novel surgical strategy of arthroscopic-assisted mini-open repair in which a locking-loop suture bridge (LLSB) is used.
Purpose: To compare the functional outcomes and repair integrity of LLSB technique to the SR technique for arthroscopic-assisted mini-open repair of small to medium rotator cuff tears.
Study Design: Cohort study; Level of evidence, 3.
Methods: Included were 39 patients who underwent LLSB repair (LLSB group) and 44 patients who underwent SR suture anchor repair (SR group) from 2015 to 2018. We evaluated all patients preoperatively and at 3, 6, 12, and 24 months postoperatively using the visual analog scale (VAS) for pain, Oxford Shoulder Score (OSS), and American Shoulder and Elbow Surgeons (ASES) score. Also, shoulder sonography was performed at 12 months postoperatively to evaluate repair integrity using the Sugaya classification system. The independent-sample t test was used to analyze functional outcomes (VAS, OSS, and ASES scores), and the Fisher exact test was used to analyze postoperative sonography results.
Results: Patients in both the LLSB and SR groups saw a significant improvement on all 3 outcome measures from preoperatively to 24 months postoperatively ( P < .001 for all). However, when comparing scores between groups, only the scores at 3 months postoperatively differed significantly (VAS: P = .002; OSS: P < .001; ASES: P = .005). Shoulder sonography at 12 months postoperatively revealed no significant difference in repair integrity between the LLSB and SR groups (retear rate: 10.26% and 6.82%, respectively; P = .892).
Conclusion: Better outcome scores were seen at 3-month follow-up in the LLSB group, with no difference in retear rates compared with the SR group at 12 months postoperatively. The LLSB technique was found to be a reliable technique for rotator cuff repair of small- to medium-sized tears.
Competing Interests: The authors declared that there are no conflicts of interest in the authorship and publication of this contribution. AOSSM checks author disclosures against the Open Payments Database (OPD). AOSSM has not conducted an independent investigation on the OPD and disclaims any liability or responsibility relating thereto.
(© The Author(s) 2023.)
- Full text View on content provider's site
-
Smith MA and Nigro S
The Annals of pharmacotherapy [Ann Pharmacother] 2023 Jan 05, pp. 10600280221147014. Date of Electronic Publication: 2023 Jan 05.
- Abstract
-
Design thinking is an approach to problem solving that focuses on a solution to a problem. This systematic approach can be applied to practice-based research or implementation projects in your practice setting. It may be useful for starting new projects as well as revisiting past projects that may not have yielded meaningful results. The design-thinking process begins with identifying a problem or knowledge gap and then the steps include: (1) understanding the problem, (2) observing the problem, (3) defining the problem, (4) brainstorming possible solutions, (5) prototyping the best solution, and (6) testing the solution.
- Full text View on content provider's site
-
Bauer R, Zacher J, Strasser T, Schmid A, and Rosentritt M
International journal of computerized dentistry [Int J Comput Dent] 2023 Jan 05; Vol. 0 (0), pp. 1-14. Date of Electronic Publication: 2023 Jan 05.
- Abstract
-
Aim: The aim of this in vitro study was the evaluation of the in-vitro performance and fracture force of 3D-printed anterior implant-supported temporary partial dentures (TPD) with different filler content.
Materials and Methods: Identical anterior resin-based TPDs (tooth situation 11-13; n=8 per material) were 3D-printed of methacrylate resins with different filler content. A cartridge polymethacrylate (PMMA) material was used as a reference. After temporary cementation, combined thermal cycling and mechanical loading (TCML) was performed on all restorations to mimic clinical application. Behavior during TCML and fracture force was determined and failures were analyzed. Data were statistically investigated (Kolmogorov- Smirnov-test, one-way-ANOVA; post-hoc-Bonferroni, Kaplan-Meier-survival, α=0.05).
Result: Failure during TCML varied between three failures and total failure during loading time. Mean survival time varied between 93±206 x10³ cycles and 329±84 x10³ cycles. Significant different survival cycles between individual materials could be determined (Log Rank test Mantel Cox: Chi2 21,861, df =4, p<0.001). A correlation between filler level and survival cycles could be found (Pearson: 0.186, p=0.065). Fracture values of the surviving TPDs varied between 499 N and 835 N. Failures were characterized by fracture of the connector (n=24) followed by fractures at the abutment (n=10).
Conclusion: TDPs showed different filler-dependent survival. Individual 3D-printed materials provided comparable or even better performance than a standard cartridge system, and might be sufficient for temporary application of at least half a year.
-
Alimenti A, Torokhtii K, Vidal García P, Pompeo N, and Silva E
Sensors (Basel, Switzerland) [Sensors (Basel)] 2023 Jan 03; Vol. 23 (1). Date of Electronic Publication: 2023 Jan 03.
- Abstract
-
The spread of additive manufacturing techniques in the prototyping and realization of high-frequency applications renewed the interest in the characterization of the electromagnetic properties of both dielectric and conductive materials, as well as the design of new versatile measurement techniques. In this framework, a new configuration of a dielectric-loaded resonator is presented. Its optimization, realization, and use are presented. A measurement repeatability of about one order of magnitude lower than the commonly found values (10-3 on the Q -factor and 15×10-6 on the resonance frequency, given in terms of the relative standard deviations of repeated measurements) was reached thanks to the design of a closed resonator in which the samples can be loaded without disassembling the whole measurement fixture. The uncertainty levels, the ease of use, and the versatility of the realized system make its use of potential interest in numerous scenarios.
- Full text View on content provider's site
-
Pizzi M, De Gaetano F, Ferroni M, Boschetti F, and Annoni M
Micromachines [Micromachines (Basel)] 2023 Jan 03; Vol. 14 (1). Date of Electronic Publication: 2023 Jan 03.
- Abstract
-
The mechanisms of deep-hole microdrilling of pure Mg material were experimentally studied in order to find a suitable setup for a novel intraocular drug delivery device prototyping. Microdrilling tests were performed with 0.20 mm and 0.35 mm microdrills, using a full factorial design in which cutting speed vc and feed fz were varied over two levels. In a preliminary phase, the chip shape was evaluated for low feeds per tooth down to 1 μm, to verify that the chosen parameters were appropriate for machining. Subsequently, microdrilling experiments were carried out, in which diameter, burr height and surface roughness of the drilled holes were examined. The results showed that the burr height is not uniform along the circumference of the holes. In particular, the maximum burr height increases with higher cutting speed, due to the thermal effect that plasticizes Mg. Hole entrance diameters are larger than the nominal tool diameters due to tool runout, and their values are higher for high vc and fz. In addition, the roughness of the inner surface of the holes increases as fz increases.
- Full text View on content provider's site
46. Tailoring inkjet-printed PEDOT:PSS composition toward green, wearable device fabrication. [2023]
-
Galliani M, Ferrari LM, Bouet G, Eglin D, and Ismailova E
APL bioengineering [APL Bioeng] 2023 Jan 03; Vol. 7 (1), pp. 016101. Date of Electronic Publication: 2023 Jan 03 (Print Publication: 2023).
- Abstract
-
Inkjet printing remains one of the most cost-efficient techniques for device prototyping and manufacturing, offering considerable freedom of digital design, non-contact, and additive fabrication. When developing novel wearable devices, a balanced approach is required between functional, user-safe materials and scalable manufacturing processes. Here, we propose a tailor-made ink formulation, based on non-hazardous materials, to develop green electronic devices aimed at interfacing with humans. We demonstrate that developed ink exhibits high-resolution inkjet printability, in line with theoretical prediction, on multiple wearable substrates. The ink's chemical composition ensures the pattern's enhanced electrical properties, mechanical flexibility, and stability in water. The cytocompatibility evaluations show no noxious effects from printed films in contact with human mesenchymal stem cells. Finally, we fabricated a printed wearable touch sensor on a non-woven fabric substrate, capable of tracking human steps. This is a step toward the development of green wearable electronics manufacturing, demonstrating a viable combination of materials and processes for biocompatible devices.
(© 2023 Author(s).)
- Full text View on content provider's site
47. Implementation of Automated Pipeline for Resting-State fMRI Analysis with PACS Integration. [2023]
-
Li XT, Allen JW, and Hu R
Journal of digital imaging [J Digit Imaging] 2023 Jan 03. Date of Electronic Publication: 2023 Jan 03.
- Abstract
-
In recent years, the quantity and complexity of medical imaging acquisition and processing have increased tremendously. The explosion in volume and need for advanced imaging analysis have led to the creation of numerous software programs, which have begun to be incorporated into clinical practice for indications such as automated stroke assessment, brain tumor perfusion processing, and hippocampal volume analysis. Despite these advances, there remains a need for specialized, custom-built software for advanced algorithms and new areas of research that is not widely available or adequately integrated in these "out-of-the-box" solutions. The purpose of this paper is to describe the implementation of an image-processing pipeline that is versatile and simple to create, which allows for rapid prototyping of image analysis algorithms and subsequent testing in a clinical environment. This pipeline uses a combination of Orthanc server, custom MATLAB code, and publicly available FMRIB Software Library and RestNeuMap tools to automatically receive and analyze resting-state functional MRI data collected from a custom filter on the MR scanner output. The processed files are then sent directly to Picture Archiving and Communications System (PACS) without the need for user input. This initial experience can serve as a framework for those interested in simple implementation of an automated pipeline customized to clinical needs.
(© 2022. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.)
- Full text View on content provider's site
-
Prestby TJ, Robinson AC, McLaughlin D, Dudas PM, and Grozinger CM
Journal of environmental management [J Environ Manage] 2023 Jan 01; Vol. 325 (Pt A), pp. 116416. Date of Electronic Publication: 2022 Oct 13.
- Subjects
-
Bees, Animals, and Pesticides
- Abstract
-
Interactive maps can serve as powerful environmental decision-support tools. However, designing an interactive map that meets the needs of diverse constituencies is a challenge. In this article, we evaluate and characterize user needs for an interactive map and spatial decision-support tool called Beescape. Beescape is designed to visualize resources and environmental risks to bees and other pollinators (such as availability of nutritional resources from flowering plants and exposure to pesticides) in order to help users make informed decisions about managing bee populations and associated landscapes. We conducted a needs assessment workshop with twenty stakeholders from four user groups including beekeepers, growers, conservationists, and pollinator scientists to elicit their knowledge to guide future Beescape development. The results of the workshop identify current analytical gaps with the existing Beescape prototype, including the need for predictive and historical tools, more actionable data layers, finer-grain spatial data, and better explanations on what data represent and how they were created. Our findings on user's analytical, informational, and interface needs can be utilized to guide the future development of spatial decision support tools like Beescape, and our methodological approach may apply to other environmental informatics tools where it is important to design for multiple constituent user groups.
Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Timothy J. Prestby reports financial support was provided by United States Department of Agriculture. Anthony C. Robinson reports financial support was provided by United States Department of Agriculture and Agriculture. Christina M. Grozinger reports financial support was provided by United States Department of Agriculture.
(Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Full text View on content provider's site
-
Zhao Z, Ma Y, Mushtaq A, Radhakrishnan V, Hu Y, Ren H, Song W, and Tse ZTH
Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine [Proc Inst Mech Eng H] 2023 Jan; Vol. 237 (1), pp. 3-17. Date of Electronic Publication: 2022 Nov 15.
- Subjects
-
Printing, Three-Dimensional, Phantoms, Imaging, Radiology, Interventional education, and Virtual Reality
- Abstract
-
Training medical students in surgical procedures and evaluating their performance are both necessary steps to ensure the safety and efficacy of surgeries. Traditionally, trainees practiced on live patients, cadavers or animals under the supervision of skilled physicians, but realistic anatomical phantom models have provided a low-cost alternative because of the advance of material technology that mimics multi-layer tissue structures. This setup provides safer and more efficient training. Many research prototypes of phantom models allow rapid in-house prototyping for specific geometries and tissue properties. The gel-based method and 3D printing-based method are two major methods for developing phantom prototypes. This study excluded virtual reality based technologies and focused on physical phantoms, total 189 works published between 2015 and 2020 on anatomical phantom prototypes made for interventional radiology were reviewed in terms of their functions and applications. The phantom prototypes were first categorized based on fabrication methods and then subcategorized based on the organ or body part they simulated; the paper is organized accordingly. Engineering specifications and applications were analyzed and summarized for each study. Finally, current challenges in the development of phantom models and directions for future work were discussed.
-
Sánchez-Salcedo S, García A, González-Jiménez A, and Vallet-Regí M
Acta biomaterialia [Acta Biomater] 2023 Jan 01; Vol. 155, pp. 654-666. Date of Electronic Publication: 2022 Nov 01.
- Subjects
-
Silicon Dioxide, Staphylococcus aureus, Escherichia coli, Biocompatible Materials chemistry, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents chemistry, Polymers, Printing, Three-Dimensional, Glass chemistry, Tissue Scaffolds chemistry, Porosity, Silver pharmacology, and Metal Nanoparticles
- Abstract
-
The development of new biomaterials for bone tissue regeneration with high bioactivity abilities and antibacterial properties is being intensively investigated. We have synthesized nanocomposites formed by mesoporous bioactive glasses (MBGs) in the ternary SiO 2 , CaO and P 2 O 5 system doped with metallic silver nanoparticles (AgNPs) that were homogenously embedded in the MBG matrices. Ag/MBG nanocomposites have been directly synthesized and silver species were spontaneously reduced to metallic AgNPs by high temperatures (700 °C) obtained of last MBG synthesis step. Three-dimensional silver-containing mesoporous bioactive glass scaffolds were fabricated showing uniformly interconnected ultrapores, macropores and mesopores. The manufacture method consisted of a combination of a single-step sol-gel route in the mesostructure directing agent (P123) presence and a biomacromolecular polymer such as (hydroxypropyl)methyl cellulose (HPMC) as the macrostructure template, followed by rapid prototyping (RP) technique. Biological properties of Ag/MBG nanocomposites were evaluated by MC3T3-E1 preosteoblastic cells culture tests and bacterial (E. coli and S. aureus) assays. The results showed that the MC3T3-E1 cells morphology was not affected while preosteoblastic proliferation decreased when the presence of silver increased. Antimicrobial assays indicated that bacterial growth inhibition and biofilm destruction were directly proportional to the increased presence of AgNPs in the MBG matrices. Furthermore, in vitro co-culture of MC3T3-E1 cells and S. aureus bacteria confirmed that AgNPs presence was necessary for antibacterial activity, and AgNPs slightly affected cell proliferation parameters. Therefore, 3D printed scaffolds with hierarchical pore structure and high antimicrobial capacity have potential applications in bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study combines three key scientific aspects for bone tissue engineering: (i) materials with high bioactivity to repair and regenerate bone tissue that (ii) contain antibacterial agents to reduce the infection risk (iii) in the form of three-dimensional scaffolds with hierarchical porosity. Innovative methodology is described here: sol-gel method, which is employed to obtain mesoporous bioactive glass matrices doped with metallic silver nanoparticles where different polymer templates facilitate the different size scales presence, and rapid prototyping technique that provides ultra-large macroporosity according to computer-aided design. The dual scaffolds obtained are biocompatible and deliver active doses of silver capable of combating bone infections, which represent one of the most serious complications associated to surgical treatments of bone diseases and fractures.
Competing Interests: Declaration of Competing Interest The authors declare no conflict of interest.
(Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Full text View on content provider's site
-
He Q, Rao P, Wang L, Li Y, Fu G, and Xiao J
Oral surgery, oral medicine, oral pathology and oral radiology [Oral Surg Oral Med Oral Pathol Oral Radiol] 2023 Jan; Vol. 135 (1), pp. 24-32. Date of Electronic Publication: 2022 May 14.
- Subjects
-
Humans, Titanium, Pilot Projects, Surgical Mesh, Orbit surgery, Plastic Surgery Procedures, Dental Implants, Orbital Fractures diagnostic imaging, and Orbital Fractures surgery
- Abstract
-
Objective: The aim was to preliminarily evaluate the effect of individualized preformed titanium mesh in the treatment of orbital wall fractures with superior orbital fissure syndrome (SOFS).
Study Design: This study consisted of 10 patients of orbital wall fracture and SOFS who were treated at the Affiliated Stomatology Hospital of Southwest Medical University. On the basis of preoperative computed tomography data, individualized titanium mesh was produced by mirror engineering and rapid prototyping, and it was implanted into defects in the orbital walls to restore the normal anatomy. Early orbital wall reconstruction was performed to improve the SOFS. Postoperatively, the ocular and facial appearance and eye function were evaluated.
Results: The orbital structure, volume, and size of the SOF were restored in the 10 patients using the individualized titanium mesh. The symptoms of SOFS completely disappeared in all patients with no severe postoperative complications. Significant recovery of ocular and facial appearance and eye function was reported.
Conclusions: This pilot study demonstrated that individualized preformed titanium mesh can accurately restore the orbital walls and the structure and size of the SOF, and it is useful in the treatment of SOFS without intraorbital bone fragment displacement.
(Copyright © 2022 Elsevier Inc. All rights reserved.)
- Full text View on content provider's site
-
Hossain MY and Zaman L
Multimedia tools and applications [Multimed Tools Appl] 2023; Vol. 82 (3), pp. 4671-4708. Date of Electronic Publication: 2022 Apr 13.
- Abstract
-
Game development is a collective process in which a variety of different professionals from different backgrounds collaborate together not only by means of conversational interaction but also collaborative participation, one of which is programming. While collaborative and pair programming solutions exist for text-based programming languages, visual programming has not enjoyed as much attention. These solutions would not only address advanced forms of business communication among team members but could find their use in distance learning, which would have been useful during the pandemic. In our work, we propose a solution for collaborative behavioral animation of NPCs using behavior trees through synchronous and asynchronous modes of collaboration. We conducted a user study with 12 moderately skilled game development university students who were placed in groups of two and engaged in joint fixed behavior tree development tasks using the synchronous and asynchronous modes and auxiliary features of live preview, access and restoration of previous states from behavior tree history, conflict resolution, and instant messaging. Participants also completed a control task where no collaboration was involved and auxiliary features were not available. Feedback form Creativity Support Index, a self-developed questionnaire, and a semi-structured interview were collected. Additionally, task completion times were logged. The results indicate that the two collaborative modes provide expected improvement over the control condition. No significant differences were found between the two collaborative modes. However, the semi-structed interview revealed that the synchronous mode could be useful for quick prototyping, while the asynchronous mode - for most other situations.
Supplementary Information: The online version contains supplementary material available at 10.1007/s11042-022-12307-2.
Competing Interests: Conflict of interestAuthors declare that they have no conflict of interest.
(© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.)
- Full text View on content provider's site
-
Shepherd KA, Janzen J, Brackett WW, and Romero MF
General dentistry [Gen Dent] 2023 Jan-Feb; Vol. 71 (1), pp. 72-76.
- Subjects
-
Humans, Vertical Dimension, Composite Resins, Dental Occlusion, Denture, Partial, Removable, Anodontia, Mouth, Edentulous, and Jaw, Edentulous, Partially
- Abstract
-
Full-mouth rehabilitation can be challenging due to the complexity of restoring the vertical dimension of occlusion (VDO) and replacing missing teeth. In partially edentulous patients, the concept of a bonded composite resin prototype for increasing the VDO has previously been applied through the use of an overlay removable partial denture (RPD) with acrylic resin covering the existing dentition. Unfortunately, this type of prosthesis does not always accurately model the function and phonetics intended for the definitive prostheses, and the esthetic result often is less than ideal. It would be advantageous if direct bonding could be used with the patient's existing RPD to model the increased VDO, but this approach has not been reported in the literature. This case report describes the direct bonding of an existing RPD to create a prototype for increased VDO in a partially edentulous patient with a skeletal Class II malocclusion. The successful outcome has been maintained for more than 1 year.
Competing Interests: No conflicts of interest reported.
-
Frazier-Aich L, Beaudry J, MacDonald M, and Giacumo LA
TechTrends : for leaders in education & training [TechTrends] 2023; Vol. 67 (1), pp. 68-83. Date of Electronic Publication: 2022 Dec 16.
- Abstract
-
The COVID-19 pandemic made being socially distant an essential practice to upskill employees. As employers incorporate measures to keep employees socially distant from one another, they also need to consider technology to make this practice possible. Our project with a large state-wide, multi-campus food bank (FB) in the pacific northwest occurred during the late summer and early fall of 2020. The FB partnered with our group of three graduate students and one faculty member to improve self-audits of their coolers. This project used technology and rapid prototyping to design an instructional intervention that allowed social distancing in a workplace where employees were required to be present. We conducted a front-end analysis including training requirements, learner and environmental analysis and task analysis. This article describes the process of the analyses and design of instructional materials that allowed the FB to scale their audit process to their other warehouses.
(© Association for Educational Communications & Technology 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
- Full text View on content provider's site
-
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, and Lee J
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2023 Jan; Vol. 35 (4), pp. e2203433. Date of Electronic Publication: 2022 Nov 27.
- Subjects
-
Cell-Free System and Synthetic Biology
- Abstract
-
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
(© 2022 Wiley-VCH GmbH.)
- Full text View on content provider's site
-
Lacroix R, Timonina-Farkas A, and Seifert RW
Journal of intelligent manufacturing [J Intell Manuf] 2023; Vol. 34 (1), pp. 281-301. Date of Electronic Publication: 2022 Sep 27.
- Abstract
-
Additive manufacturing (AM), originally used for prototyping, is increasingly adopted for custom final part production across different industries. However, printing speed and production volume are two barriers for the adoption of AM for product customization at large scale. Nevertheless, manufacturers could aim to combine the benefits of AM for product customization with traditional mass customization (MC) technologies over the product life cycle (PLC). This approach is showcased in our paper as a manufacturing opportunity and is addressed via a non convex-concave optimization model that considers a monopolist manufacturer producing horizontally differentiated products at scale. To satisfy individual customer preferences under capacity considerations, the firm jointly decides on the inventory, production quantity, product variety, optimal technology-switching times (between AM and MC) and pricing strategy. Our approach can be implemented by decision-makers to leverage customer-centricity and benefit from this novel hybrid manufacturing practice. By deriving a closed-form solution for the production quantity based on an adaptive inventory policy, the resulting optimization problem is solved using the Sample Average Approximation framework grounded by analytical results. Our results demonstrate that the new usage of AM with MC can benefit a manufacturer for customer-centric driven strategies. Significant profit improvements can be achieved with an AM-MC-AM technology-switching scenario under certain capacity conditions and with an increasing-decreasing pricing strategy. Our results also indicate that the benefits of pricing flexibility are highest when capacity is unlimited or when the firm does not hold inventory. Under capacity constraints, a simple decreasing pricing policy combined with inventory performs very well.
(© The Author(s) 2022.)
- Full text View on content provider's site
-
Spaletta G, Sofroniou M, Barbaro F, di Conza G, Mosca S, and Toni R
Tissue engineering. Part A [Tissue Eng Part A] 2023 Jan; Vol. 29 (1-2), pp. 47-57.
- Subjects
-
Adult, Animals, Humans, Computer Simulation, Bioengineering, Arteries, Biocompatible Materials, Printing, Three-Dimensional, Mammals, Thyroid Gland blood supply, and Bioartificial Organs
- Abstract
-
We recently designed an innovative scaffold-bioreactor unit for the bioengineering of a three-dimensional (3D) bioartificial human thyroid gland or its miniaturized replica as a part of a microfluidic chip test system. This device is based on the evidence that the 3D geometry of the intraglandular stromal/vascular scaffold (SVS; i.e., the fibrous and vascular matrix) of mammalian viscera plays a key role in guiding growth and differentiation of in vitro seeded cells. Therefore, we initiated a research program focused on computer-aided reconstruction of the 2nd to 4th order intralobar arterial network (IAN) of the human thyroid gland as a reliable surrogate for its 3D SVS, to be used as an input for rapid prototyping of a biomaterial replica. To this end, we developed a computational template that works within the Mathematica environment, giving rise to a quasi-fractal growth of the IAN distribution, constrained within an approximation of the thyroid lobe shape as a closed surface. Starting from edge detection of planar images of real human thyroid lobes acquired by in vivo real-time ultrasonography, we performed data approximation of the lobar profiles based on splines and Bezier curves, providing 3D lobar shapes as geometric boundaries for vessel growth by a diffusion-limited aggregation model. Our numerical procedures allowed for a robust connection between development of lobar arterial trees and thyroid lobe shape, led to a vascular self-similarity consistent with that of a cadaveric lobar arterial cast, and reproduced arterial vessels in a proportion not statistically different from that described for the real human thyroid gland. We conclude that our algorithmic template offers a reliable reproduction of the extremely complex IAN of the adult human thyroid lobe, potentially useful as a computational guidance for bioprinting of thyroid lobe matrix replicas. In addition, due to the simplicity and limited number of morphometrical parameters required by our system, we predict its application to the design of a number of patient-tailored human bioartificial organs and organs-on-chip, including parenchymal viscera and bones. Impact statement The study introduces the computer simulation of the three-dimensional (3D) intrinsic vascular matrix of the human thyroid gland, offering a general concept applicable to a number of other human viscera. Indeed, it provides a flexible software tool for reproduction of a 3D surrogate of the organ's 3D stromal matrix, suitable for eventual 3D bioprinting with biomaterials, and recellularization with organ-specific stem cells/progenitors. The final expectation is the design of patient-tailored 3D organ's matrices upon clinical request.
- Full text View on content provider's site
-
MacRitchie J, Floridou GA, Christensen J, Timmers R, and de Witte L
Dementia (London, England) [Dementia (London)] 2023 Jan; Vol. 22 (1), pp. 252-280. Date of Electronic Publication: 2022 Oct 04.
- Subjects
-
Humans, Aged, Communication, Technology, Dementia psychology, Cognitive Dysfunction, and Music
- Abstract
-
For older adults living with mild cognitive impairment or dementia, creative arts-based activities can offer many benefits from enjoyment as leisure/recreation to an avenue to maintain cognitive, social and emotional wellbeing. With growing interest and recognition that technology could have potential to assist in delivering these activities in more accessible and personalised ways, a scoping review was undertaken to systematically examine the scientific literature for technology-assisted creative arts activities for older adults living with dementia. We searched PubMed, PsychINFO, Web of Science, Scopus and ACM Digital Library databases using keywords centering on population with dementia, an intervention using technology, and a context of creative arts, with no restrictions on the type of outcome measured. We retrieved 3739 records, with an additional 22 from hand-searching. 51 full-text articles met the inclusion and exclusion criteria. Findings of the review indicate technologies principally being designed for music activities (listening, and music-making), as well as storytelling and visual arts. The majority of devices were custom-made, with studies mainly reporting on validating the success of the device/intervention. This suggests most work in the field is currently at prototyping stage, although a few devices are now commercially available. Recommendations for future research includes involvement of participants reporting on their previous experiences in the arts and how this influences co-design choices, and inclusion of different severities of dementia in the participant/co-design group. Furthering device development past prototyping stage as well as collaboration between teams would enable comparisons to be made across different types of devices used for the same activity, and comparisons across arts-based activities that could lead to cross-disciplinary outcomes for the design of creative arts-based assistive technologies.
- Full text View on content provider's site
-
Bochnia J
Materials (Basel, Switzerland) [Materials (Basel)] 2023 Jan 01; Vol. 16 (1). Date of Electronic Publication: 2023 Jan 01.
- Abstract
-
Additive manufacturing is being increasingly used both for rapid prototyping as well as the fabrication of finished components. It is important to determine how the properties of 3D printed materials change over time and how they affect the durability and usability of products. The aim of the research presented in this article was to find out what influence the natural aging period had on the mechanical properties, especially the tensile strength and modulus of elasticity, of specimens made from the selected photocurable resins using the PolyJet Matrix (PJM) technology. The tests involved determining the tensile strength and modulus of elasticity of specimens fabricated in 2013 and 2014 using two types of photosensitive resins, i.e., FullCure 720 and VeroWhite, respectively. Some of the specimens were stored under laboratory conditions until July 2022 and then tested using a universal testing machine. The experimental data obtained in 2022 for the naturally aged models were compared with those reported for the as-printed specimens. One of the main findings of this study was that the tensile strength and modulus of elasticity of the naturally aged specimens were largely dependent on the printing direction (model orientation on the build tray). The test results show that aging generally decreased the tensile strength of the specimens. In one case, however, an increase in this property was observed. For the X and Y printing directions, R m declined by 27.1% and 30.7%, respectively. For the Z direction, a decrease of only 5.5% was reported, for Full Cure 720. The modulus of elasticity of the models tested in 2022 differed considerably from that reported for the as-printed objects. Higher values of the modulus of elasticity implied that the material stiffness increased over time, and this is a common phenomenon in polymers. Interesting results were obtained for VeroWhite specimens. The modulus of elasticity decreased significantly by 25.1% and 42.4% for the specimens printed in the X and Z directions, respectively. However, for the models built in the Y direction, it increased by 27.4%. The experimental data may be of significance to users of products manufactured using the PJM method as well as to researchers dealing with the durability and reliability of such materials.
- Full text View on content provider's site
-
Malewski A, Kozłowski M, Podwórny J, Środa M, and Sumelka W
Materials (Basel, Switzerland) [Materials (Basel)] 2023 Jan 01; Vol. 16 (1). Date of Electronic Publication: 2023 Jan 01.
- Abstract
-
Architectural soda-lime silicate glass (SLS) is increasingly taking on complex shapes that require more detailed numerical analysis. Glass modeling is a thoroughly described topic with validated constitutive models. However, these models require a number of precise material parameters for SLS glass, and these are very sensitive to changes in glass composition. The currently available information is based on SLS glass tested in the late 1990s. As a result, most current publications are based on the above data. The object of this work was to analyze the available sources and update the information on selected key parameters for modeling. Using the currently utilized SLS glass in construction, the coefficient of thermal expansion (CTE), glass transition temperature, and the Young's modulus have been experimentally investigated. The updated material parameters will allow for more accurate modeling of the SLS glass currently used in construction, and in consequence will make the prototyping process for glass with complex geometries possible to be transferred from the production stage to the design stage, resulting in shorter production times.
- Full text View on content provider's site
-
Sebastian-Camilo Vanegas-Ayala, Julio Barón-Velandia, and Daniel-David Leal-Lara
- Advances in Fuzzy Systems, Vol 2023 (2023)
- Subjects
-
Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Computer software, and QA76.75-76.765
- Abstract
-
Establishing the indoor and outdoor humidity values in a greenhouse allows us to describe the crop yield during its entire developmental cycle. This study seeks to develop a predictive model of indoor relative humidity values in a greenhouse with high accuracy and interpretability through the use of optimized fuzzy inference systems, in order to offer greenhouse users a clear and simple description of their behaviour. The three-phase methodology applied made use of descriptive statistics techniques, correlation analysis, and prototyping paradigm for the iterative and incremental development of the predictive model, validated through error measurement. The research resulted in six models which define the behaviour of humidity as a result of temperature, CO2, and soil moisture, with percentages of effectiveness above 90%. The implementation of a Mamdani-type fuzzy inference system, optimized by a hybrid method combining genetic and interior point algorithms, allowed to predict the relative humidity in greenhouses with high interpretability and precision, with an effectiveness percentage of 90.97% and MSE (mean square error) of 8.2e − 3.
- Full text View on content provider's site
-
Michela Tramonti, Alden Meirzhanovich Dochshanov, and Assel Sagnayevna Zhumabayeva
- Applied Sciences, Vol 13, Iss 858, p 858 (2023)
- Subjects
-
3D printing, Arduino, educational robotics, design thinking, open-source project, open-source platform, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
The dynamic spread of 3D printing technologies and open-source electronics prototyping platforms has significantly enriched the diversity of instruments used within educational robotics (ER) settings. An active, low-entry-level community offering ready-to-use libraries for a broad variety of devices assists in the development of quite sophisticated projects. However, the flipside of the coin is represented by the current research findings, which reveal that students’ interest in science, technology, engineering and mathematics (STEM) subjects has declined across Europe, as manifested in difficulties when approaching scientific topics and dealing with problems and phenomena studied from a multidisciplinary perspective. Consequently, a significant percentage of youths are at risk of social exclusion due to the direct relationship between low academic achievements and school dropout. Moreover, learners lack guidance in applied and life-context skills, such as creative thinking, problem solving, and collaboration, which highlights the need to introduce innovative pedagogical approaches. In this context, the design thinking (DT) methodology was proposed to tackle the problem. Originating in the development of psychological studies on creativity in the 1950s within the educational context, DT is known to foster creative thinking, help develop empathy, promote action-oriented actions, improve meta-cognitive awareness, contribute to problem-solving skills, and enhance students’ imagination. The last point supports the students’ development of critical thinking, social inclusion, teamwork skills, and academic performance. Thus, this paper introduces a methodological framework combining DT with ER classes. First, to approach the problem, the teachers’ survey data were collected and analysed to reveal the respondents’ level of integration of the DT methodology into current school curricula. Then, the work focused on the application of this framework in a learning experience by addressing the weakest points established and their elaboration through the combined ER and DT classes in the context of secondary schools.
- Full text View on content provider's site
-
Vyacheslav Rybin, Timur Karimov, Oleg Bayazitov, Dmitriy Kvitko, Ivan Babkin, Kirill Shirnin, Georgii Kolev, and Denis Butusov
- Applied Sciences, Vol 13, Iss 936, p 936 (2023)
- Subjects
-
chaos-based communication, covert transmission, secure communication systems, hardware chaos generators, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, and QD1-999
- Abstract
-
Chaos-based communications are a promising application of chaos theory and nonlinear dynamics. Their key features include concealed transmission, high security, and native broadband signals. Many studies have recently been published devoted to this technology. However, the practical implementations of chaos-based communications are rare due to multiple shortcomings: high hardware requirements, complex signal processing algorithms, and a lack of efficient modulation techniques for chaotic signals. In this study, we consider a simple hardware prototype of a coherent chaos-based communication system based on a novel type of modulation: adaptive symmetry of the finite-difference scheme used in a chaos generator. We explicitly demonstrate the possibility of covertly transmitting data using a chaotic transmitter and receiver implemented in a general-purpose microcontroller unit. A comparison between traditional parameter and symmetry modulation is given through a return map analysis and bit error rate estimation. The communication secrecy is analyzed using quantified return map analysis. The obtained results confirm the possibility of creating chaos-based communication systems based on symmetry modulation.
- Full text View on content provider's site
-
Mahdi Katsumata Shah, Bruno Jactat, Toshiyuki Yasui, and Murod Ismailov
- Education Sciences, Vol 13, Iss 53, p 53 (2023)
- Subjects
-
prototyping, design thinking, higher education institution, HEI management, cognitive biases, and Education
- Abstract
-
A project using design thinking (DT) was conducted among internal stakeholders of a large state Japanese university to design a user-centric brochure promoting study abroad programs at francophone partner universities. The low-fidelity prototype and the final product created with DT were tested by asking potential student-users to compare it with a standard brochure through two sets of surveys. Analysis of the quantitative and qualitative data revealed that low-fidelity prototyping was effective to enhance both the utility and usability of the final product. We also show how DT helped expose cognitive biases among designers.
- Full text View on content provider's site
-
Michał Szelka, Andrzej Drwięga, Jarosław Tokarczyk, Marek Szyguła, Kamil Szewerda, Marian Banaś, Krzysztof Kołodziejczyk, and Krzysztof Kędzia
- Energies, Vol 16, Iss 542, p 542 (2023)
- Subjects
-
axial fan, ventilation, efficiency, rapid prototyping, CFD, FEM, and Technology
- Abstract
-
The article discusses the process of designing and testing as well as their results, carried out in order to increase the efficiency of axial fans, implemented as part of the European project INESI. Modifications of existing solutions based on rapid prototyping methods were presented. Scanning, FEM and CFD numerical calculations and 3D printing were used for that purpose. Rapid prototyping involved the use of a steel blade base and 3D-printed complex aerodynamic shapes that were bonded to create completely new blades. After their installation on the new rotor, enabling the angle of attack adjusting, a number of verifying tests of the fan were carried out. The solution was successfully tested and the results are discussed in the article.
- Full text View on content provider's site
-
Loris Ventura, Roberto Finesso, and Stefano A. Malan
- Energies, Vol 16, Iss 907, p 907 (2023)
- Subjects
-
diesel engine, machine learning engine management, neural network models, control system coordination, and Technology
- Abstract
-
The tightening of diesel pollutant emission regulations has made Internal Combustion Engine (ICE) management through steady-state maps obsolete. To overcome the map’s scarce performance and efficiently manage the engine, control systems must cope with ICE transient operations, the coupling between its subsystem dynamics, and the tradeoff between different requirements. The work demonstrates the effectiveness of a reference generator that coordinates the air path and combustion control systems of a turbocharged heavy-duty diesel engine. The control system coordinator is based on neural networks and allows for following different engine-out Nitrogen Oxide (NOx) targets while satisfying the load request. The air path control system provides the global conditions for the correct functioning of the engine, targeting O2 concentration and pressure in the intake manifold. Through cooperation, the combustion control targets Brake Mean Effective Pressure (BMEP) and NOx to react to rapid changes in the engine operating state and compensates for the remaining deviations with respect to load and NOx targets. The reference generator and the two controller algorithms are suitable for real-time implementation on rapid-prototyping hardware. The performance overall was good, allowing the engine to follow different NOx targets with 150 ppm of deviation and to achieve an average BMEP error of 0.3 bar.
- Full text View on content provider's site
-
Cahyo Hasanudin, Subyantoro, Ida Zulaeha, and Rahayu Pristiwati
- European Journal of Educational Research, Vol 12, Iss 1, Pp 435-453 (2023)
- Subjects
-
Education
- Abstract
-
This study aims to investigate lecturers' needs for academic writing learning materials and determine their prototypes. This study is qualitative research in the form of an exploratory case study. The research instruments were semi-open-ended questionnaires and unstructured and open-ended interview guides. The data were analyzed using content analysis. The results show that the developed learning material for academic writing skills contains seven needs for lecturers in the Department of Indonesian Language and Literature. Four of them have not been found by previous researchers. The results from this study provide new knowledge and contribution to the literature about the need to prototype the learning materials. The lecturers or other researchers can use these seven needs in prototyping learning materials for academic writing skills, such as the needs of learning materials, their forms, presentation system, language use, evaluation form, main menu design, and the way of creating learning materials.
- Full text View record in DOAJ
68. Customizable 3D printed perfusion bioreactor for the engineering of stem cell microenvironments [2023]
-
Steven J. Dupard, Alejandro Garcia Garcia, and Paul E. Bourgine
- Frontiers in Bioengineering and Biotechnology, Vol 10 (2023)
- Subjects
-
3D printing, polylactic acid, bioreactor, mesenchymal niche, hematopoiesis, collagen scaffold, Biotechnology, and TP248.13-248.65
- Abstract
-
Faithful modeling of tissues and organs requires the development of systems reflecting their dynamic 3D cellular architecture and organization. Current technologies suffer from a lack of design flexibility and complex prototyping, preventing their broad adoption by the scientific community. To make 3D cell culture more available and adaptable we here describe the use of the fused deposition modeling (FDM) technology to rapid-prototype 3D printed perfusion bioreactors. Our 3D printed bioreactors are made of polylactic acid resulting in reusable systems customizable in size and shape. Following design confirmation, our bioreactors were biologically validated for the culture of human mesenchymal stromal cells under perfusion for up to 2 weeks on collagen scaffolds. Microenvironments of various size/volume (6–12 mm in diameter) could be engineered, by modulating the 3D printed bioreactor design. Metabolic assay and confocal microscopy confirmed the homogenous mesenchymal cell distribution throughout the material pores. The resulting human microenvironments were further exploited for the maintenance of human hematopoietic stem cells. Following 1 week of stromal coculture, we report the recapitulation of 3D interactions between the mesenchymal and hematopoietic fractions, associated with a phenotypic expansion of the blood stem cell populations.Our data confirm that perfusion bioreactors fit for cell culture can be generated using a 3D printing technology and exploited for the 3D modeling of complex stem cell systems. Our approach opens the gates for a more faithful investigation of cellular processes in relation to a dynamic 3D microenvironment.
- Full text View on content provider's site
-
Lamees M. Al Qassem, Thanos Stouraitis, Ernesto Damiani, and Ibrahim Abe M. Elfadel
- IEEE Access, Vol 11, Pp 2570-2585 (2023)
- Subjects
-
Microservices, autoscalers, resource allocation, resource utilization, machine learning, random forest, Electrical engineering. Electronics. Nuclear engineering, and TK1-9971
- Abstract
-
Cloud service providers have been shifting their workloads to microservices to take advantage of their modularity, flexibility, agility, and scalability. However, numerous obstacles remain to achieving the most out of microservice deployments, especially in terms of a Quality of Service (QoS). One possible approach to overcoming these obstacles is to perform autoscaling, which is the ability of cloud infrastructure and services to scale themselves up or down by changing their resource pool. There are two major categories of autoscaling: reactive and proactive. In reactive autoscaling, a feedback loop based on current workload resource usage is implemented to guide resource scaling. One disadvantage of reactive autoscaling is that it may result in inconsistencies between workload demand and resource allocation. In proactive autoscaling, a prediction model is used to guide the future allocation of resources according to current workload metrics. In this paper, a novel proactive autoscaling method is introduced where a two-state, machine-learning Random Forest (RF) model is designed to forecast the future CPU and memory utilization values required by the microservice workload. These predicted values are then used to adjust the resource pool both vertically (hardware resources) and horizontally (microservice replicas). The RF proactive autoscaler has been implemented on a home-grown, open-source microservice prototyping platform and verified using real-world workloads. The experiments show that the RF proactive autoscaler outperforms state-of-the-art ones in terms of allocated resources and latency. The increase in the utilization of allocated resources can reach 90% and the improvement in end-to-end latency, measured by the $95^{th}$ percentile, can reach 95%.
- Full text View on content provider's site
-
Carolina Blanco-Angulo, Andrea Martinez-Lozano, Julia Arias-Rodriguez, Alberto Rodriguez-Martinez, Jose Maria Vicente-Samper, Jose Maria Sabater-Navarro, and Ernesto Avila-Navarro
- IEEE Access, Vol 11, Pp 4010-4022 (2023)
- Subjects
-
Direct-ink-writing, silver-conductive ink, additive manufacturing, printed electronics, ultra-wideband antennas, electrical conductivity, Electrical engineering. Electronics. Nuclear engineering, and TK1-9971
- Abstract
-
Direct ink writing (DIW) of conductive ink is a printed electronics technology that allows a variety of electronic circuits to be produced in a simple way and with minimal waste of materials. In recent years it has been used for rapid prototyping of RF circuits typically working at S-band frequencies (2–4 GHz). In an attempt to extend this frequency range while maintaining cost-effective prototyping, this work has focused on proving the feasibility of DIW of silver-conductive (SC) ink for the fabrication of planar microwave circuits beyond 10 GHz, more specifically, ultra-wideband (UWB) antennas for medical applications. For this purpose, the DC and RF performance of the SC ink, as well as the FR4 substrate used, were first evaluated. Based on the comparison between experimental and simulated results, we have found that the effective RF conductivity of the SC ink is approximately 27.6% of its DC value and 3.4% of the copper conductivity. A few test microstrip circuits were fabricated by DIW, namely two S-band filters and one UWB antenna. The overall measured performance of all of them agreed well with simulations. In particular, the DIW antenna exhibited a bandwidth of 8.2 GHz (between 2.4 and 10.6 GHz), and was compared with an identical copper antenna showing that both have very similar characteristics. It was also found that the lower conductivity of SC ink as compared to copper led to a gain reduction of only 0.3 dB.
- Full text View on content provider's site
-
Levi Bieber, Liwei Wang, Juri Jatskevich, and Wei Li
- IEEE Access, Vol 11, Pp 4228-4241 (2023)
- Subjects
-
FPGA, hybrid multilevel converter, modular multilevel converter (MMC), rapid control prototyping (RCP), real-time simulation, voltage-source converter high voltage direct current (VSC-HVDC), Electrical engineering. Electronics. Nuclear engineering, and TK1-9971
- Abstract
-
Real-time simulation is important for ensuring the reliable operation of VSC-HVDC converters in power grids, particularly through the use of rapid control prototyping (RCP) and hardware-in-the-loop (HIL) based converter controllers. While real-time simulation is a common practice for modular multilevel converters (MMCs), it has been less frequently applied to the new class of hybrid cascaded multilevel converters (HCMCs). In this study, a universal equivalent model (UEM) is proposed for a range of HCMC topologies that combines accuracy and computational efficiency through the use of both CPUs and field-programmable gate arrays (FPGAs). The proposed UEM is derived using the hybrid five-level converter (H5LC), a compact, efficient, and fault-tolerant VSC within the HCMC family. The UEM relies on CPUs to simulate the main circuits and controls of the main converter, and utilizes FPGAs to calculate the instantaneous voltages of a large number of full-bridge submodules (FBSMs), flying capacitors, and DC-side pole capacitors. In addition, the FBSMs’ voltage-balancing and switching algorithms are implemented on the FPGAs. The proposed real-time CPU/FPGA-based H5LC-UEM is compared to an offline CPU-based detailed equivalent model to verify its accuracy.
- Full text View on content provider's site
72. Development of the Hands-free AI Speaker System Supporting Hands-on Science Laboratory Class [2023]
-
Gyeong-Geon Lee, Minji Choi, Taesoo An, Seonyeong Mun, and Hun-Gi Hong
- International Journal of Emerging Technologies in Learning (iJET), Vol 18, Iss 01 (2023)
- Subjects
-
AI in education (AIEd), hands-free AI speaker, hands-on science laboratory class, rapid prototyping, natural language processing (NLP), Education, Information technology, and T58.5-58.64
- Abstract
-
The recent progress of natural language processing (NLP), speech recognition, and speech generation envisions using hands-free artificial intelligence (AI) speakers in classrooms to support student learning. In science education, the conventional hands-on laboratory education has been considered crucial in fostering students’ manipulative experimentation skills. However, touching things with gloved hands other than experimental equipment and apparatuses is strictly restricted because of the safety issue, which calls for another channel to get timely support. Therefore, we ideated that adopting hands-free AI speakers in the hands-on science laboratory classroom would support student learning. Using the rapid prototyping method, we designed and developed an AI speaker-based system that answers student queries concerning solution-making, experimental process, and waste liquid disposal, which corresponds to the initial, middle, and final phases of a laboratory class. The system was internally validated by usability tests of 9 expert panels and 18 university students, and then revised. The revised system was externally validated in an analytical chemistry experiment class for 3 sessions with 13 university students. We present the result of the prototype development, internal and external validations with quantitative and qualitative data. The AI speaker system enabled students to use the auditory learning mode in the laboratory while concentrating on the experimentation with their hands in the external validation.
- Full text View on content provider's site
73. Computer-Aided Greenery Design—Prototype Green Structure Improving Human Health in Urban Ecosystem [2023]
-
Dominik Sędzicki, Jan Cudzik, and Lucyna Nyka
- International Journal of Environmental Research and Public Health, Vol 20, Iss 1198, p 1198 (2023)
- Subjects
-
greenery, automated design, sustainability, public health, landscape design, architecture, and Medicine
- Abstract
-
Increasing population and urbanization, with climate change consequences, such as rising temperatures, influence public health and well-being. The search to improve the quality of life in cities becomes one of the priority objectives. A solution can be found in the role of greenery in an urban environment and its impact on human health. This opens a path toward experimentation on microclimate green structures that can be inserted into dense urban spaces providing human and environmental benefits. The article proposes an automated greenery design method combined with rapid prototyping for such interventions. A theoretical analysis of the problem preceded the introduction of the method. The research process was developed in accordance with the main objectives of the CDIO framework (Conceive, Design, Implement, and Operate) with the SiL (Software in the Loop) and HiL (Hardware in the Loop) methods. Moreover, the applied test model allows for complex evaluation in order to ensure quality and directions for further development.
- Full text View on content provider's site
-
Belinda Li, Tammara Soma, Nadia Springle, and Tamara Shulman
- International Journal of Qualitative Methods, Vol 22 (2023)
- Subjects
-
Social sciences (General) and H1-99
- Abstract
-
Qualitative research methods had to quickly adapt to using online platforms due to the COVID-19 pandemic to limit in-person interactions. Online platforms have been used extensively for interviews and focus groups, but workshops with larger groups requiring more complex interactions have not been widely implemented. This paper presents a case study of a fully virtual social innovation lab on bioplastics packaging, which was adapted from a series of in-person workshops. A positive outcome of the online setting was diversifying the types of participants who could participate. Highly interactive activities such as icebreakers, networking, bricolage, and prototyping were particularly challenging to shift from in-person to online using traditional web conferencing platforms like Zoom. Creative use of online tools, such as Gather.Town and Kahoot!, helped unlock more innovative thinking by employing novel techniques such as gamification. However, challenges such as adapting facilitation for an online environment and exclusion of groups that do not have consistent access to internet and/or computers still need to be addressed. The reflections and lessons learned from this paper can help researchers adapt qualitative methods to virtual environments.
- Full text View on content provider's site
-
Ahmed ELbarbary and Noha Magdy
- Journal of Architecture, Art & Humanistic Science, Vol 8, Iss 37, Pp 121-143 (2023)
- Subjects
-
3dtechnology, pattern, prototyping, garment factories, virtual simulation), Fine Arts, Architecture, and NA1-9428
- Abstract
-
3D technology is considered one of the Pattern digital technologies that help this technology to increase, ease and speed of completion of industrial processes. This study deals with how to take advantage of 3D technology in developing the performance of the samples department in the technical department of ready-to-wear factories, in order to solve the problems of the samples section associated with the implementation of the 2D Pattern, as this problem was concluded through field study and practical experiences in ready-to-wear factories in Egypt.Controlling the fitting Pattern of clothes in the samples section faces many difficulties, the most important of which is the incompatibility of the industrial Pattern drawn with the human body “Pattern ". Where defects appeared in the product after conducting and implementing the first sample, which required making adjustments to the industrial Pattern and re-executing the sample a second time until it became free from defects and ready to perform the grading according to the measurements and the "order" of the operation order required to be executed to start production processes, which results in it. In the presence of lost time to implement the sample, as well as wasted effort, and wastes in the raw materials used in the implementation of the sample (fabric/ accessories / threads / and direct and indirect costs) that will be quantified after that.In order to find a solution to this problem, this research presents a case study using the "CLO5.1" program to improve the industrial Pattern in order to improve the quality of the male industrial Pattern drawing using 3D technology by making adjustments to some areas where the stress and stress ratios are high due to the lack of nan fitting of the Pattern. Industrial, which does not appear clearly even during implementation. The study concluded that the implementation of the CLO5.1 program in the sample section has succeeded in reducing the time wastage for sample production and the wastage of raw materials, thus reducing the cost of sample productionKey words :( 3Dtechnology ، pattern، Prototyping ، Garment Factories ،virtual simulation)
- Full text View record in DOAJ
-
Caterina Credi, Roberto Bernasconi, Marinella Levi, and Luca Magagnin
- Journal of Materials Research and Technology, Vol 22, Iss , Pp 1855-1867 (2023)
- Subjects
-
Stereolithography, Composite, Nickel, Electroless plating, Selective metallization, Mining engineering. Metallurgy, and TN1-997
- Abstract
-
The integration of multifunctional elements directly embedded in three-dimensional (3D) printed parts is the cutting-edge of additive manufacturing (AM) and it is crucial for enlarging as well as for strengthening AM role in industrial applications. Here, a straightforward and low-cost method that synergically combines stereolithography (SLA) and selective electroless metallization (EM) is presented for the fabrication of 3D parts characterized by complex shapes and end-use multifunctionalities (conductive, magnetic, mechanical properties). To this end, a novel photocurable composite based on acrylate resin loaded with nickel (Ni) particles is developed for high-resolution SLA-printing of features with self-catalytic properties for EM. Ni particles are loaded in the resin to trigger metal deposition avoiding time consuming and expensive laser-based surface activation. The effect of Ni content on SLA behavior as well as on the efficiency of EM process is studied. Metallized SLA cured samples show good electrical and magnetic properties as well as improved robustness with respect to their non-loaded counterparts. Then, selective metallization of 3D printed parts is successfully achieved by implementing a multi-material SLA-printing where loaded and non-loaded resins are properly interchanged with strong adhesion at the interface, thus offering a cost-effective approach for rapid prototyping of functional free-form features on 3D structures.
- Full text View record in DOAJ
-
Indrie Noor Aini, Zulkardi, Ratu Ilma Indra Putri, and Poppy Yaniawati
- Journal on Mathematics Education, Vol 13, Iss 4, Pp 723-738 (2023)
- Subjects
-
design research, historical buildings’ context, pisa-like math problems, space and shape, Mathematics, and QA1-939
- Abstract
-
The essential purpose of developing PISA-like questions is to train students' reasoning abilities so that students' ability to solve PISA-like questions increases. Therefore, this research aims to produce PISA-like math problems in the context of historical buildings in the Karawang Regency that are valid, practical, and potentially affect mathematics learning. The subjects of this study were junior high school students at SMPN 2 Karawang Barat. This research uses design research with development studies, consisting of preliminary and prototyping phases. The preliminary stage consists of two stages: needs analysis and design, while the prototyping stage consists of 5 phases: self-evaluation, expert review, one-to-one, small group, and field tests. The data collection techniques in this study were in the form of PISA-like math problems in the context of shape and space with the context of Historic Buildings in Karawang, observations, questionnaires, and interviews. All data obtained were analyzed descriptively. The results show that this study resulted in nine PISA-like math problems in the context of shape and space with the context of Historic Buildings in Karawang that are valid, practical, and potentially affect learning mathematics. The potential effect is related to students' interest in PISA-like questions and students' ability to understand and answer PISA-like questions. Finally, the results of this study have an impact on students who are getting trained in solving PISA-like math problems.
- Full text View record in DOAJ
-
Nourma Pramestie Wulandari, Nani Kurniati, Nurul Hikmah, and Wahidaturrahmi Wahidaturrahmi
- Jurnal Elemen, Vol 9, Iss 1, Pp 98-108 (2023)
- Subjects
-
mathematical literacy, minimum competency assessment, numeracy problems, numeration, question exercise book, Mathematics, and QA1-939
- Abstract
-
Numeracy has become part of the Minimum Competency Assessment (MCA) used in the National Assessment (NA) since it was established in 2021. However, previous research shows that the numeracy skills of junior high school students are still in the low category. The purpose of this study was to obtain a prototype of a practice book about preparation for dealing with numeracy MCA for junior high school students that were valid, according to experts. This research was development research (RD) using the Plomp development model, which consists of preliminary research, a prototyping phase, and an assessment phase. At the end of the development stage, there was a formative evaluation to assess the product development's validity by two experts. The instrument used was the validation sheet for the numerical problems book. The results of this study obtained a prototype of the book that contains at least 90 numeracy problems for Junior High School students, which was categorized as valid with an average score of 89 and an excellent classification. The questions used include multiple choice, multiple complex choice, matchmaking, short essay questions, and essay. The dominant portion is in the form of complex multiple-choice questions. This book is suitable for students' preparation for the numeracy MCA.
- Full text View record in DOAJ
79. Rancang Bangun Aplikasi Computer-based Test (CBT) serta Optimasinya Menggunakan Cache dan Queue Job [2023]
-
Rahmat Siswanto and Dwi Senjaya A. Morang
- Jurnal Komputer Terapan, Vol 8, Iss 2, Pp 391-407 (2023)
- Subjects
-
cbt, queue job, prototyping, cache, Science, Electronic computers. Computer science, and QA75.5-76.95
- Abstract
-
Examinations in schools that still use paper require a great deal of time, effort and money to implement, especially in the activities of printing, duplicating and distributing exam questions to students who will take the exam. Therefore, we need a system that can facilitate the filling, duplication and distribution of questions at a small cost. Based on these problems, a web-based CBT application was built that can be accessed anywhere and anytime and can work on multiple platforms (multi-platform). This system was built using the prototyping method to make it easier for developers and users to develop applications from the initial prototype to the production stage. In practice, this application is expected to be able to accommodate exam activities for all students in the school at the same time. Based on this, the application that is made must have reliability and accuracy starting from the process of carrying out the exam to displaying the results. Researchers apply a cache and queue job system to the application to get maximum results. From the results of tests that have been carried out in three stages, the results show that this web-based CBT application is able to accommodate exam activities in schools with a total of 250 students in one exam session and can display a recap of exam results from all participants.
- Full text View record in DOAJ
-
Andrzej Malewski, Marcin Kozłowski, Jacek Podwórny, Marcin Środa, and Wojciech Sumelka
- Materials, Vol 16, Iss 397, p 397 (2023)
- Subjects
-
glass formation, soda-lime silicate glass, numerical modeling, modern architecture, literature review, glass production, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Architectural soda-lime silicate glass (SLS) is increasingly taking on complex shapes that require more detailed numerical analysis. Glass modeling is a thoroughly described topic with validated constitutive models. However, these models require a number of precise material parameters for SLS glass, and these are very sensitive to changes in glass composition. The currently available information is based on SLS glass tested in the late 1990s. As a result, most current publications are based on the above data. The object of this work was to analyze the available sources and update the information on selected key parameters for modeling. Using the currently utilized SLS glass in construction, the coefficient of thermal expansion (CTE), glass transition temperature, and the Young’s modulus have been experimentally investigated. The updated material parameters will allow for more accurate modeling of the SLS glass currently used in construction, and in consequence will make the prototyping process for glass with complex geometries possible to be transferred from the production stage to the design stage, resulting in shorter production times.
- Full text View on content provider's site
-
Jerzy Bochnia
- Materials, Vol 16, Iss 400, p 400 (2023)
- Subjects
-
3D printing, PJM, photocurable resins, polymers, polymer aging, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
Additive manufacturing is being increasingly used both for rapid prototyping as well as the fabrication of finished components. It is important to determine how the properties of 3D printed materials change over time and how they affect the durability and usability of products. The aim of the research presented in this article was to find out what influence the natural aging period had on the mechanical properties, especially the tensile strength and modulus of elasticity, of specimens made from the selected photocurable resins using the PolyJet Matrix (PJM) technology. The tests involved determining the tensile strength and modulus of elasticity of specimens fabricated in 2013 and 2014 using two types of photosensitive resins, i.e., FullCure 720 and VeroWhite, respectively. Some of the specimens were stored under laboratory conditions until July 2022 and then tested using a universal testing machine. The experimental data obtained in 2022 for the naturally aged models were compared with those reported for the as-printed specimens. One of the main findings of this study was that the tensile strength and modulus of elasticity of the naturally aged specimens were largely dependent on the printing direction (model orientation on the build tray). The test results show that aging generally decreased the tensile strength of the specimens. In one case, however, an increase in this property was observed. For the X and Y printing directions, Rm declined by 27.1% and 30.7%, respectively. For the Z direction, a decrease of only 5.5% was reported, for Full Cure 720. The modulus of elasticity of the models tested in 2022 differed considerably from that reported for the as-printed objects. Higher values of the modulus of elasticity implied that the material stiffness increased over time, and this is a common phenomenon in polymers. Interesting results were obtained for VeroWhite specimens. The modulus of elasticity decreased significantly by 25.1% and 42.4% for the specimens printed in the X and Z directions, respectively. However, for the models built in the Y direction, it increased by 27.4%. The experimental data may be of significance to users of products manufactured using the PJM method as well as to researchers dealing with the durability and reliability of such materials.
- Full text View on content provider's site
-
Muhammad Umer Shan and Salman Hussain
- Mehran University Research Journal of Engineering and Technology, Vol 42, Iss 1, Pp 42-55 (2023)
- Subjects
-
Technology, Engineering (General). Civil engineering (General), TA1-2040, and Science
- Abstract
-
In a contemporary era, Additive Manufacturing (AM), 3D printing or rapid prototyping has evolved as a distinctive method when compared with the traditional manufacturing. By addressing the topic of Design for Additive Manufacturing (DFAM), it is observed that the basic principles of DFAM and Design for Assembly (DFA) are well established and usually applicable on small-size AM parts. To address this critical manufacturing decision, our research work presents a new decision support system (DSS) for a large-size AM part which is based on compiling the existing DFAM methodologies. Before presenting the new DSS, the previous DFAM approaches are reviewed and investigated the research trends in part decomposition (PD), part consolidation (PC), and topology optimization (TO). The literature is categorized into six distinctive categories and among them the first phase is the information phase. Following this information requisite step, the next phase is parameter assessment phase and so on. The new DSS starts with the clarification of the design goal while in previous approaches this step was usually done at the later stages. Similarly, the remaining steps are efficiently integrated into the framework structure. The developed system is also guiding the post-decomposition assembly process. The developed DSS is validated using the case study of a 6-axis robotic arm. Moreover, a comprehensive concept for using the developed DSS framework is also presented in the research work.
- Full text View record in DOAJ
-
Margherita Pizzi, Francesco De Gaetano, Marco Ferroni, Federica Boschetti, and Massimiliano Annoni
- Micromachines, Vol 14, Iss 132, p 132 (2023)
- Subjects
-
microdrilling, magnesium, microholes, micromachinability, holes quality, chip formation, Mechanical engineering and machinery, and TJ1-1570
- Abstract
-
The mechanisms of deep-hole microdrilling of pure Mg material were experimentally studied in order to find a suitable setup for a novel intraocular drug delivery device prototyping. Microdrilling tests were performed with 0.20 mm and 0.35 mm microdrills, using a full factorial design in which cutting speed vc and feed fz were varied over two levels. In a preliminary phase, the chip shape was evaluated for low feeds per tooth down to 1 μm, to verify that the chosen parameters were appropriate for machining. Subsequently, microdrilling experiments were carried out, in which diameter, burr height and surface roughness of the drilled holes were examined. The results showed that the burr height is not uniform along the circumference of the holes. In particular, the maximum burr height increases with higher cutting speed, due to the thermal effect that plasticizes Mg. Hole entrance diameters are larger than the nominal tool diameters due to tool runout, and their values are higher for high vc and fz. In addition, the roughness of the inner surface of the holes increases as fz increases.
- Full text View on content provider's site
-
Antonella Sola, Wei Juene Chong, Dejana Pejak Simunec, Yuncang Li, Adrian Trinchi, Ilias (Louis) Kyratzis, and Cuie Wen
- Polymer Testing, Vol 117, Iss , Pp 107859- (2023)
- Subjects
-
Tensile properties, International standard, Size effect, Additive manufacturing, Fused filament fabrication, Fused deposition modeling, Polymers and polymer manufacture, and TP1080-1185
- Abstract
-
Additive manufacturing (AM, also commonly termed 3D printing) is progressing from being a rapid prototyping tool to serving as pillar of the Industry 4.0 revolution. Thanks to their low density and ease of printing, polymers are receiving increasing interest for the fabrication of structural and lightweight parts. Nonetheless, the lack of appropriate standards, specifically conceived to consistently verify the tensile properties of polymer parts and benchmark them against conventional products, is a major obstacle to the wider uptake of polymer AM in industry. After reviewing the standardisation needs in AM with a focus on mechanical testing, the paper closely examines the hurdles that are encountered when existing standards are applied to measure the tensile properties of polymer parts fabricated by fused filament fabrication (FFF, aka fused deposition modeling, FDM), which is presently the most popular material extrusion AM technique. Existing standards are unable to account for the numerous printing parameters that govern the mechanical response of FFF parts. Moreover, the literature suggests that the raster- and layer-induced anisotropic behaviour and the complicated interplay between structural features at different length scales (micro/meso/macro-structure) undermine pre-existing concepts regarding the specimen geometry and classical theories regarding the size effect, and ultimately jeopardise the transferability of conventional tensile test standards to FFF parts. Finally, the statistical analysis of the tensile properties of poly(lactic acid) (PLA) FFF specimens printed according to different standards (ASTM D638 type I and ASTM D3039) and in different sizes provides experimental evidence to confirm the literature-based argumentation. Ultimately, the literature survey, supported by the experimental results, demonstrates that, until dedicated standards become available, existing standards for tensile testing should be applied to FFF with prudence. Whilst not specified in conventional standards, set-up and printing parameters should be fully reported to ensure the repeatability of the results, rectangular geometries should be preferred to dumbbell-like ones in order to avoid premature failure at the fillets, and the size of the specimens should not be changed arbitrarily.
- Full text View record in DOAJ
-
Carlie Rein, Mehmet Toner, and Derin Sevenler
- Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
- Subjects
-
Medicine and Science
- Abstract
-
Abstract Soft lithography has permitted rapid prototyping of precise microfluidic features by patterning a deformable elastomer such as polydimethylsiloxane (PDMS) with a photolithographically patterned mold. In microfluidics applications where the flexibility of PDMS is a drawback, a variety of more rigid materials have been proposed. Compared to alternatives, devices fabricated from epoxy and glass have superior mechanical performance, feature resolution, and solvent compatibility. Here we provide a detailed step-by-step method for fabricating rigid microfluidic devices from soft lithography patterned epoxy and glass. The bonding protocol was optimized yielding devices that withstand pressures exceeding 500 psi. Using this method, we demonstrate the use of rigid high aspect ratio spiral microchannels for high throughput cell focusing.
- Full text View on content provider's site
-
Liao Chen, Chenguang Zhang, Vivek Yadav, Angela Wong, Satyajyoti Senapati, and Hsueh-Chia Chang
- Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
- Subjects
-
Medicine and Science
- Abstract
-
Abstract Droplet microfluidics offers a platform from which new digital molecular assay, disease screening, wound healing and material synthesis technologies have been proposed. However, the current commercial droplet generation, assembly and imaging technologies are too expensive and rigid to permit rapid and broad-range tuning of droplet features/cargoes. This rapid prototyping bottleneck has limited further expansion of its application. Herein, an inexpensive home-made pipette droplet microfluidics kit is introduced. This kit includes elliptical pipette tips that can be fabricated with a simple DIY (Do-It-Yourself) tool, a unique tape-based or 3D printed shallow-center imaging chip that allows rapid monolayer droplet assembly/immobilization and imaging with a smart-phone camera or miniature microscope. The droplets are generated by manual or automatic pipetting without expensive and lab-bound microfluidic pumps. The droplet size and fluid viscosity/surface tension can be varied significantly because of our particular droplet generation, assembly and imaging designs. The versatility of this rapid prototyping kit is demonstrated with three representative applications that can benefit from a droplet microfluidic platform: (1) Droplets as microreactors for PCR reaction with reverse transcription to detect and quantify target RNAs. (2) Droplets as microcompartments for spirulina culturing and the optical color/turbidity changes in droplets with spirulina confirm successful photosynthetic culturing. (3) Droplets as templates/molds for controlled synthesis of gold-capped polyacrylamide/gold composite Janus microgels. The easily fabricated and user-friendly portable kit is hence ideally suited for design, training and educational labs.
- Full text View on content provider's site
-
Andrea Alimenti, Kostiantyn Torokhtii, Pablo Vidal García, Nicola Pompeo, and Enrico Silva
- Sensors, Vol 23, Iss 518, p 518 (2023)
- Subjects
-
dielectric-loaded resonator, surface resistance measurement, complex permittivity measurement, microwave material characterization, 3D printing materials, Chemical technology, and TP1-1185
- Abstract
-
The spread of additive manufacturing techniques in the prototyping and realization of high-frequency applications renewed the interest in the characterization of the electromagnetic properties of both dielectric and conductive materials, as well as the design of new versatile measurement techniques. In this framework, a new configuration of a dielectric-loaded resonator is presented. Its optimization, realization, and use are presented. A measurement repeatability of about one order of magnitude lower than the commonly found values (10−3 on the Q-factor and 15×10−6 on the resonance frequency, given in terms of the relative standard deviations of repeated measurements) was reached thanks to the design of a closed resonator in which the samples can be loaded without disassembling the whole measurement fixture. The uncertainty levels, the ease of use, and the versatility of the realized system make its use of potential interest in numerous scenarios.
- Full text View on content provider's site
88. Agile Methodologies Applied to the Development of Internet of Things (IoT)-Based Systems: A Review [2023]
-
Gleiston Guerrero-Ulloa, Carlos Rodríguez-Domínguez, and Miguel J. Hornos
- Sensors, Vol 23, Iss 790, p 790 (2023)
- Subjects
-
Internet of Things (IoT), development methodologies, agile methodologies, software engineering, Model-Based Engineering, Model-Driven Engineering, Chemical technology, and TP1-1185
- Abstract
-
Throughout the evolution of software systems, empirical methodologies have been used in their development process, even in the Internet of Things (IoT) paradigm, to develop IoT-based systems (IoTS). In this paper, we review the fundamentals included in the manifesto for agile software development, especially in the Scrum methodology, to determine its use and role in IoTS development. Initially, 4303 documents were retrieved, a number that was reduced to 186 after applying automatic filters and by the relevance of their titles. After analysing their contents, only 60 documents were considered. Of these, 38 documents present the development of an IoTS using some methodology, 8 present methodologies focused on the construction of IoTS software, and 14 present methodologies close to the systems life cycle (SLC). Finally, only one methodology can be considered SLC-compliant. Out of 38 papers presenting the development of some IoTS following a methodology for traditional information systems (ISs), 42.1% have used Scrum as the only methodology, while 10.5% have used Scrum combined with other methodologies, such as eXtreme Programming (XP), Kanban and Rapid Prototyping. In the analysis presented herein, the existing methodologies for developing IoTSs have been grouped according to the different approaches on which they are based, such as agile, modelling, and service oriented. This study also analyses whether the different proposals consider the standard stages of the development process or not: planning and requirements gathering, solution analysis, solution design, solution coding and unit testing (construction), integration and testing (implementation), and operation and maintenance. In addition, we include a review of the automated frameworks, platforms, and tools used in the methodologies analysed to improve the development of IoTSs and the design of their underlying architectures. To conclude, the main contribution of this work is a review for IoTS researchers and developers regarding existing methodologies, frameworks, platforms, tools, and guidelines for the development of IoTSs, with a deep analysis framed within international standards dictated for this purpose.
- Full text View on content provider's site
-
Nicola Kristanto
- Sibatik Journal, Vol 2, Iss 2, Pp 609-622 (2023)
- Subjects
-
arduino, accelerometer, firebase, mysql, Social Sciences, and Technology
- Abstract
-
Indonesia berada dalam cincin api atau biasa disebut ring of fire karena dikelilingi oleh banyak gunung berapi sehingga kemungkinan untuk terjadinya bencana alam gempa cukup besar potensi nya. Ketika bencana alam gempa terjadi, masih banyak masyarakat kurang tanggap dalam menyadarinya, Banyak juga korban jiwa yang pada akhirnya tidak dapat menyelamatkan diri karena minimnya informasi gempa terjadi dan terlambat dalam melakukan evakuasi diri. Tujuan penelitian ini adalah untuk membuat inovasi untuk memberi solusi kepada masyarakat dengan membuat alat pendeteksi gempa yang dilengkapi oleh sensor Accelerometer adxl335 dan sensor getar SW-420 berbasis Arduino dengan sistem informasinya. Metode penelitian menggunakan metode pembuatan IoT pendeteksi gempa. Metode untuk perancangan dashboard akan menggunakan metode prototyping. Hasil penelitian antara lain adalah alat ini terdiri dari mikrokontroler Arduino Uno R3 untuk mengolah data output dari sensor, sensor getar SW-420 untuk mendeteksi besar getaran yang terjadi, sensor Accelerometer adxl335 untuk mendeteksi posisi dan gerak permukaan dengan sumbu X, Y, dan Z, serta dilengkapi dengan database mysql dan firebase sebagai wadah data untuk sistem informasinya.
- Full text View record in DOAJ
-
Rebeka Firsly Stephanie Harianja, Lili Rusdiana, and Catharina Elmayantie
- Sistemasi: Jurnal Sistem Informasi, Vol 12, Iss 1, Pp 70-78 (2023)
- Subjects
-
Technology, Information technology, and T58.5-58.64
- Abstract
-
As technology develops, the use of vending machines also develops. In addition to purchasing food and drinks, it can also be used to exchange medicine packaging for coins. To simplify the exchange process to make it more practical and not to spend a lot of time, a reverse vending machine was built for drug packaging containing metal as input. Collecting data using the method of observation and literature study. This type of research is prototyping because the results obtained are in the form of a prototype. This prototype used 3 buttons in main process. The first stage is pressing button 1 to detect metal, then pressing button 2 to weigh, and button 3 to release coins. The test results obtained from the Arduino-Based Reverse Vending Machine Metal Medicine Packaging Exchange indicate that the prototype is able to be used as a medium of exchange for drug packaging trash containing metal into a medium of exchange in money form. The prototype is able to provide a solution for reducing or managing medical trash which contains metal.
- Full text View record in DOAJ
91. Innover dans les forces spéciales [2023]
-
Jean Frances and Violette Larrieu
- Socio, Vol 17, Pp 161-185 (2023)
- Subjects
-
innovation logic and organisation logic, innovation by and for operational personnel, Special Forces, military equipment, “something on the side”, combatant work, and Social Sciences
- Abstract
-
How do military personnel succeed in designing or perfecting equipment useful to their mission? This paper will analyse the production of material innovations that are characterised by their ability to respond to an operational need, whose design is based on the skills, resources and abilities of soldiers in the field, and whose modelling and prototyping do not require the deployment of major research and development resources. We will show that these activities are based on an inverted form of “something on the side”. More generally, the question arises as to the capacity of an institution marked by the rigour of its hierarchy to make accessible to its personnel the margins of autonomy necessary for the engagement of frugal forms of technological research and development. Through an analysis centred on two case studies—a grenade-launching pole and an oxygen mask for dogs—of innovation by and for Special Forces operatives, we highlight the difficulty, for the military institution, of making an ‘innovation logic’ coexist with an ‘organisation logic’ and articulating them.
- Full text View on content provider's site
-
Juliana Kurek, Luciana Londero Brandli, Marcos Antonio Leite Frandoloso, Amanda Lange Salvia, and Janaina Mazutti
- Sustainability, Vol 15, Iss 988, p 988 (2023)
- Subjects
-
sustainability, innovation, innovative sustainable business models, design thinking, framework, Environmental effects of industries and plants, TD194-195, Renewable energy sources, TJ807-830, Environmental sciences, and GE1-350
- Abstract
-
The process of integrating sustainability into businesses and processes is still recent, both in startups, small and medium-sized companies and even multinationals. Sustainable business models became a phenomenon of global interest and Design Thinking has been increasingly used as a strategy to support this process. In this context, the aim of this article is to improve the understanding of how Design Thinking (DT) and its set of tools and methods contribute to the creation and innovation of sustainable business models (SBM). The analysis of frameworks indicates that the main methodologies linking Design Thinking and Sustainable Business Models are Workshops, Brainstorming, Co-creation and Prototyping. Also, approaches such as Circular Economy, Business Models and Product-Service System models are emerging as a means of enabling the collaborative consumption of products and services and with positive results for sustainable business. The analysis of the articles reveals that user-oriented innovation and analysis of stakeholder needs is present in practically all evaluated frames, but prototyping and experimentation represent a gap that should be better explored in the frameworks.
- Full text View on content provider's site
-
Georgi V. Georgiev and Vijayakumar Nanjappan
- Sustainability, Vol 15, Iss 1519, p 1519 (2023)
- Subjects
-
digital fabrication, design education, prototyping, FabLab, makerspace, sustainability education, Environmental effects of industries and plants, TD194-195, Renewable energy sources, TJ807-830, Environmental sciences, and GE1-350
- Abstract
-
Design education utilising digital fabrication is characterised by a dynamic project-based learning environment in which ideas are embodied in prototypes. This environment affects the way design and fabrication activities are taught, including sustainability considerations in the process and the outcomes. With the objectives of refining the sustainability indicators in the context of digital fabrication design education and identifying educational interventions for improving sustainability, we analyse the processes and outcomes of a digital fabrication course. We further develop a conceptual framework for sustainable prototyping based on the prototyping and testing stages in the design thinking model. The sustainability considerations in the prototyping process and outcomes in the design education context in FabLab are exemplified. The findings will help enhance sustainability and develop interventions in the context of design education.
- Full text View on content provider's site
94. Are educational robots any good for communicative English learning for primary school students? [2023]
-
Xiaotong Yu, Maria Angeles Gutierrez-Garcia, and Roberto Soto-Varela
- Texto Livre: Linguagem e Tecnologia, Vol 16 (2023)
- Subjects
-
Robot-assisted English learning, Communicative English learning, Exploratory prototyping, Rapid prototyping, Technology, and Language and Literature
- Abstract
-
This paper presents a pilot study that focuses on the exploratory and rapid prototyping within the human-in-the-loop control of a self-constructed and developed educational robot in assisting communicative English learning in primary Education in Madrid, Spain. The study sample was composed of 37 3rd graders that attended four English learning program sessions in November 2021, in which robot integration plays a leading role as learning material. To achieve the above, an easy-to-build, programmed and economical LEGO Education Mindstorms EV3 package was optioned. Pre-and-post questionnaires, classroom observations, and an evaluation sheet that measures self-evaluation, peer evaluation, and teacher evaluation were applied. The result reveals students’ perception of the pioneering robot and although preliminary, presents validation of the technology for English class assistance. Another finding suggests that students’ stress generated from communication in English among peers was reduced with the companion of the robot. Due to the nature of a pilot study, both the number of sessions and the sample size are limited to determine if the robot is helpful in students’ vocabulary acquisition in the long run. Further study is to be conducted with the pioneer model to teach vocabularies of different categories for a longer period. The findings of this pilot study will serve as a reference in the attempt to develop and reproduce promising robots to assist English teaching and learning that are accessible to public schools.
- Full text View on content provider's site
-
Li C, Sun F, Tian J, Li J, Sun H, Zhang Y, Guo S, Lin Y, Sun X, and Zhao Y
Bioactive materials [Bioact Mater] 2022 Dec 31; Vol. 24, pp. 361-375. Date of Electronic Publication: 2022 Dec 31 (Print Publication: 2023).
- Abstract
-
Long-term nonunion of bone defects has always been a major problem in orthopedic treatment. Artificial bone graft materials such as Poly (lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds are expected to solve this problem due to their suitable degradation rate and good osteoconductivity. However, insufficient mechanical properties, lack of osteoinductivity and infections after implanted limit its large-scale clinical application. Hence, we proposed a novel bone repair bioscaffold by adding zinc submicron particles to PLGA/β-TCP using low temperature rapid prototyping 3D printing technology. We first screened the scaffolds with 1 wt% Zn that had good biocompatibility and could stably release a safe dose of zinc ions within 16 weeks to ensure long-term non-toxicity. As designed, the scaffold had a multi-level porous structure of biomimetic cancellous bone, and the Young's modulus (63.41 ± 1.89 MPa) and compressive strength (2.887 ± 0.025 MPa) of the scaffold were close to those of cancellous bone. In addition, after a series of in vitro and in vivo experiments, the scaffolds proved to have no adverse effects on the viability of BMSCs and promoted their adhesion and osteogenic differentiation, as well as exhibiting higher osteogenic and anti-inflammatory properties than PLGA/β-TCP scaffold without zinc particles. We also found that this osteogenic and anti-inflammatory effect might be related to Wnt/β-catenin, P38 MAPK and NFkB pathways. This study lay a foundation for the follow-up study of bone regeneration mechanism of Zn-containing biomaterials. We envision that this scaffold may become a new strategy for clinical treatment of bone defects.
Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(© 2022 The Authors.)
- Full text View on content provider's site
-
Yuan Q, Wu M, Liao Y, Liang S, Lu Y, and Lin Y
Biotechnology and bioengineering [Biotechnol Bioeng] 2022 Dec 30. Date of Electronic Publication: 2022 Dec 30.
- Abstract
-
Engineering biological systems to test new pathway variants containing different enzyme homologs is laborious and time-consuming. To tackle this challenge, a strategy was developed for rapidly prototyping enzyme homologs by combining cell-free protein synthesis (CFPS) with split green fluorescent protein (GFP). This strategy featured two main advantages: (1) dozens of enzyme homologs were parallelly produced by CFPS within hours, and (2) the expression level and activity of each homolog was determined simultaneously by using the split GFP assay. As a model, this strategy was applied to optimize a 3-step pathway for nicotinamide mononucleotide (NMN) synthesis. Ten enzyme homologs from different organisms were selected for each step. Here, the most productive homolog of each step was identified within 24 h rather than weeks or months. Finally, the titer of NMN was increased to 1213 mg/L by improving physiochemical conditions, tuning enzyme ratios and cofactor concentrations, and decreasing the feedback inhibition, which was a more than 12-fold improvement over the initial setup. This strategy would provide a promising way to accelerate design-build-test cycles for metabolic engineering to improve the production of desired products.
(© 2023 Wiley Periodicals LLC.)
- Full text View on content provider's site
97. An Open-Source Platform for Indoor Environment Monitoring with Participatory Comfort Sensing. [2022]
-
Rosenberger J, Guo Z, Coffman A, Agdas D, and Barooah P
Sensors (Basel, Switzerland) [Sensors (Basel)] 2022 Dec 29; Vol. 23 (1). Date of Electronic Publication: 2022 Dec 29.
- Subjects
-
Air Conditioning, Environmental Monitoring, Data Management, Climate, and Air Pollution, Indoor analysis
- Abstract
-
We present an open-source wireless network and data management system for collecting and storing indoor environmental measurements and perceived comfort via participatory sensing in commercial buildings. The system, called a personal comfort and indoor environment measurement (PCIEM) platform, consists of several devices placed in office occupants' work areas, a wireless network, and a remote database to store the data. Each device, called a PCFN (personal comfort feedback node), contains a touchscreen through which the occupant can provide feedback on their perceived comfort on-demand, and several sensors to collect environmental data. The platform is designed to be part of an indoor climate control system that can enable personalized comfort control in real-time. We describe the design, prototyping, and initial deployment of a small number of PCFNs in a commercial building. We also provide lessons learned from these steps. Application of the data collected from the PCFNs for modeling and real-time control will be reported in future work. We use hardware components that are commercial and off-the-shelf, and our software design is based on open-source tools that are freely and publicly available to enable repeatability.
- Full text View on content provider's site
-
Zoccali F, Colizza A, Cialente F, Di Stadio A, La Mantia I, Hanna C, Minni A, Ralli M, Greco A, and de Vincentiis M
Healthcare (Basel, Switzerland) [Healthcare (Basel)] 2022 Dec 29; Vol. 11 (1). Date of Electronic Publication: 2022 Dec 29.
- Abstract
-
Background: Three-dimensional (3D) printing has allowed great progression in the medical field. In otolaryngology practice, 3D printing can be used for planning in case of malformation/complex surgery, for surgeon training, and for recreating missing tissues. This systematic review aimed to summarize the current benefits and the possible future application of 3D technologies in the otolaryngology field.
Methods: A systematic review of articles that discuss the use of 3D printing in the otolaryngology field was performed. All publications without the restriction of time and that were published by December 2021 in the English language were included. Searches were performed in the PubMed, MEDLINE, Scopus, and Embase databases. Keywords used were: "3D printing", "bioprinting", "three-dimensional printing", "tissue engineering" in combination with the terms: "head and neck surgery", "head and neck reconstruction", "otology", "rhinology", "laryngology", and "otolaryngology".
Results: Ninety-one articles were included in this systematic review. The articles describe the clinical application of 3D printing in different fields of otolaryngology, from otology to pediatric otolaryngology. The main uses of 3D printing technology discussed in the articles included in the review were surgical planning in temporal bone malformation, the reconstruction of missing body parts after oncologic surgery, allowing for medical training, and providing better information to patients.
Conclusion: The use of 3D printing in otolaryngology practice is constantly growing. However, available evidence is still limited, and further studies are needed to better evaluate the benefits of this technology.
- Full text View on content provider's site
-
Kim J, Menichella B, Lee H, Dayton PA, and Pinton GF
Sensors (Basel, Switzerland) [Sensors (Basel)] 2022 Dec 28; Vol. 23 (1). Date of Electronic Publication: 2022 Dec 28.
- Subjects
-
Equipment Design, Transducers, Printing, Three-Dimensional, Ultrasonography, Ultrasonics, and Ultrasonic Therapy
- Abstract
-
We present a rapid prototyping method for sub-megahertz single-element piezoelectric transducers by using 3D-printed components. In most of the early research phases of applying new sonication ideas, the prototyping quickness is prioritized over the final packaging quality, since the quickness of preliminary demonstration is crucial for promptly determining specific aims and feasible research approaches. We aim to develop a rapid prototyping method for functional ultrasonic transducers to overcome the current long lead time (>a few weeks). Here, we used 3D-printed external housing parts considering a single matching layer and either air backing or epoxy-composite backing (acoustic impedance > 5 MRayl). By molding a single matching layer on the top surface of a piezoceramic in a 3D-printed housing, an entire packaging time was significantly reduced (<26 h) compared to the conventional methods with grinding, stacking, and bonding. We demonstrated this prototyping method for 590-kHz single-element, rectangular-aperture transducers for moderate pressure amplitudes (mechanical index > 1) at focus with temporal pulse controllability (maximum amplitude by <5-cycle burst). We adopted an air-backing design (Type A) for efficient pressure outputs, and bandwidth improvement was tested by a tungsten-composite-backing (Type B) design. The acoustic characterization results showed that the type A prototype provided 3.3 kPa/V pp far-field transmitting sensitivity with 25.3% fractional bandwidth whereas the type B transducer showed 2.1 kPa/V pp transmitting sensitivity with 43.3% fractional bandwidth. As this method provided discernable quickness and cost efficiency, this detailed rapid prototyping guideline can be useful for early-phase sonication projects, such as multi-element therapeutic ultrasound array and micro/nanomedicine testing benchtop device prototyping.
- Full text View on content provider's site
100. Design and biofabrication of bacterial living materials with robust and multiplexed biosensing capabilities. [2022]
-
Usai F, Loi G, Scocozza F, Bellato M, Castagliuolo I, Conti M, and Pasotti L
Materials today. Bio [Mater Today Bio] 2022 Dec 24; Vol. 18, pp. 100526. Date of Electronic Publication: 2022 Dec 24 (Print Publication: 2023).
- Abstract
-
The intertwined adoption of synthetic biology and 3D bioprinting has the potential to improve different application fields by fabricating engineered living materials (ELMs) with unnatural genetically-encoded sense & response capabilities. However, efforts are still needed to streamline the fabrication of sensing ELMs compatible with field use and improving their functional complexity. To investigate these two unmet needs, we adopted a workflow to reproducibly construct bacterial ELMs with synthetic biosensing circuits that provide red pigmentation as visible readout in response to different proof-of-concept chemical inducers. We first fabricated single-input/single-output ELMs and we demonstrated their robust performance in terms of longevity (cell viability and evolutionary stability >15 days, and long-term storage >1 month), sensing in harsh, non-sterile or nutrient-free conditions compatible with field use (soil, water, and clinical samples, including real samples from Pseudomonas aeruginosa infected patients). Then, we fabricated ELMs including multiple spatially-separated biosensor strains to engineer: level-bar materials detecting molecule concentration ranges, multi-input/multi-output devices with multiplexed sensing and information processing capabilities, and materials with cell-cell communication enabling on-demand pattern formation. Overall, we showed successful field use and multiplexed functioning of reproducibly fabricated ELMs, paving the way to a future automation of the prototyping process and boosting applications of such devices as in-situ monitoring tools or easy-to-use sensing kits.
Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(© 2023 The Authors.)
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 100
Next