articles+ search results
3,460 articles+ results
1 - 20
Next
Number of results to display per page
1 - 20
Next
Number of results to display per page
-
Alessio Bellino, Giorgio De Michelis, and Flavio De Paoli
- IEEE Access, Vol 11, Pp 13280-13292 (2023)
- Subjects
-
Interactive systems, rapid prototyping, interaction design, physical product design, design tools, design cycle, Electrical engineering. Electronics. Nuclear engineering, and TK1-9971
- Abstract
-
Designing interactive prototypes involves multiple tools and skills. In addition, several design cycles are required to iterate through idea generation, evaluation of design alternatives, and development. Consequently, prototyping tools should offer flexibility and adaptability to allow designers to quickly test and evaluate different ideas, design alternatives, materials, interactions, etc. To meet these requirements, we designed Protobject – a rapid prototyping tool aimed at making the early stages of prototyping interactive products more flexible. Protobject allows designers to reinvent and reuse existing objects for prototyping purposes by making them interactive. After introducing the features of Protobject and discussing the differences with similar tools, we present a user evaluation through two workshop sessions held in Milan during Brera Design Days and attended by 22 people. The results suggest that Protobject facilitates cooperation between people with different skills by allowing them to envision interactive prototypes together.
- Full text View on content provider's site
-
Jinghua Xu, Kunqian Liu, Linxuan Wang, Hongshuai Guo, Jiangtao Zhan, Xiaojian Liu, Shuyou Zhang, and Jianrong Tan
- Visual Computing for Industry, Biomedicine, and Art, Vol 6, Iss 1, Pp 1-18 (2023)
- Subjects
-
Robustness optimization design, Rapid prototyping, Functional artifacts, Fuzzy decision-making, Infrared thermographs, Visualized computing digital twins, Drawing. Design. Illustration, NC1-1940, Computer applications to medicine. Medical informatics, R858-859.7, Computer software, and QA76.75-76.765
- Abstract
-
Abstract This study presents a robustness optimization method for rapid prototyping (RP) of functional artifacts based on visualized computing digital twins (VCDT). A generalized multiobjective robustness optimization model for RP of scheme design prototype was first built, where thermal, structural, and multidisciplinary knowledge could be integrated for visualization. To implement visualized computing, the membership function of fuzzy decision-making was optimized using a genetic algorithm. Transient thermodynamic, structural statics, and flow field analyses were conducted, especially for glass fiber composite materials, which have the characteristics of high strength, corrosion resistance, temperature resistance, dimensional stability, and electrical insulation. An electrothermal experiment was performed by measuring the temperature and changes in temperature during RP. Infrared thermographs were obtained using thermal field measurements to determine the temperature distribution. A numerical analysis of a lightweight ribbed ergonomic artifact is presented to illustrate the VCDT. Moreover, manufacturability was verified based on a thermal-solid coupled finite element analysis. The physical experiment and practice proved that the proposed VCDT provided a robust design paradigm for a layered RP between the steady balance of electrothermal regulation and manufacturing efficacy under hybrid uncertainties.
- Full text View on content provider's site
-
Ahmed ELbarbary and Noha Magdy
- Journal of Architecture, Art & Humanistic Science, Vol 8, Iss 37, Pp 121-143 (2023)
- Subjects
-
3dtechnology, pattern, prototyping, garment factories, virtual simulation), Fine Arts, Architecture, and NA1-9428
- Abstract
-
3D technology is considered one of the Pattern digital technologies that help this technology to increase, ease and speed of completion of industrial processes. This study deals with how to take advantage of 3D technology in developing the performance of the samples department in the technical department of ready-to-wear factories, in order to solve the problems of the samples section associated with the implementation of the 2D Pattern, as this problem was concluded through field study and practical experiences in ready-to-wear factories in Egypt.Controlling the fitting Pattern of clothes in the samples section faces many difficulties, the most important of which is the incompatibility of the industrial Pattern drawn with the human body “Pattern ". Where defects appeared in the product after conducting and implementing the first sample, which required making adjustments to the industrial Pattern and re-executing the sample a second time until it became free from defects and ready to perform the grading according to the measurements and the "order" of the operation order required to be executed to start production processes, which results in it. In the presence of lost time to implement the sample, as well as wasted effort, and wastes in the raw materials used in the implementation of the sample (fabric/ accessories / threads / and direct and indirect costs) that will be quantified after that.In order to find a solution to this problem, this research presents a case study using the "CLO5.1" program to improve the industrial Pattern in order to improve the quality of the male industrial Pattern drawing using 3D technology by making adjustments to some areas where the stress and stress ratios are high due to the lack of nan fitting of the Pattern. Industrial, which does not appear clearly even during implementation. The study concluded that the implementation of the CLO5.1 program in the sample section has succeeded in reducing the time wastage for sample production and the wastage of raw materials, thus reducing the cost of sample productionKey words :( 3Dtechnology ، pattern، Prototyping ، Garment Factories ،virtual simulation)
- Full text View record in DOAJ
-
Tommaso Caldognetto, Andrea Petucco, Andrea Lauri, and Paolo Mattavelli
- HardwareX, Vol 14, Iss , Pp e00411- (2023)
- Subjects
-
Power electronics, Inverters, Rapid control prototyping, Experimental setups, Science (General), and Q1-390
- Abstract
-
A flexible power electronic converter embedding a rapid control prototyping platform suitable to be applied in research test setups and teaching laboratories is proposed and described in this paper. The electronic system is composed of three subsystems, namely, i) three half-bridge power boards, ii) a dc-link capacitor bank with a half-bridge power module for active dc-link control, iii) an interfacing board, called motherboard, to couple the power modules with a control unit, iv) a digital control unit with rapid control prototyping functionalities for controlling power electronic circuits. Power modules integrate sensors with related conditioning circuits, driving circuits for power switches, and protection circuits. Conversion circuits exploit GaN electronic switches for optimal performance. The architecture and implementation of the system are described in detail in this manuscript. Main applications are in the implementation of conversion circuits for supplying arbitrary ac or dc voltages or currents, testing of new control algorithms for power electronic converters, testing of systems of electronic converters in, for example, smart nanogrids or renewable energy applications, training of undergraduate and graduate students.
- Full text View on content provider's site
5. A novel axial air‐gap transverse flux switching PM generator: Design, simulation and prototyping [2023]
-
Aghil Ghaheri, Ebrahim Afjei, and Hossein Torkaman
- IET Electric Power Applications, Vol 17, Iss 4, Pp 452-463 (2023)
- Subjects
-
AC machines, AC motor drives, AC motors, AC‐AC power convertors, AC‐DC power convertors, brushless machines, Applications of electric power, and TK4001-4102
- Abstract
-
Abstract Wind energy as the cleanest source of renewable energy requires a highly efficient lightweight generator that provides maximum power density while having the least vibration noise and maintenance. In this study, an axial air gap transverse flux machine is presented, and all excitation sources are located in the stator. This structure provides lower core loss, weight and cost due to the full utilisation of the permanent magnets, SMC‐free structure and short magnetic flux path. In fact, by combining the features of a flux‐switching machine into a transverse flux generator with an axial air gap, it is possible to improve the performance of a direct‐drive wind turbine generator by overcoming traditional structures' challenges. To analyse the axial transverse flux switching permanent magnet generator performance characteristics, 3D finite element simulations have been performed, which have been validated by comparing them to the practical results of a single‐phase prototype. The results are in agreement with an acceptable error that is caused by manufacturing uncertainties.
- Full text View on content provider's site
-
Md Rafiul Kabir and Sandip Ray
- IEEE Access, Vol 11, Pp 31384-31398 (2023)
- Subjects
-
Digital twin, virtual platform, Internet of Things, cyber-physical systems, Electrical engineering. Electronics. Nuclear engineering, and TK1-9971
- Abstract
-
Modern technological industries fused with the Internet-of-Things (IoT) have been advancing rapidly. The joint usage of several technologies has led to the reshaping of the modeling and simulation techniques into the virtualization of physical systems. Thus, the concept of virtual prototyping has emerged as a significant development in distributed IoT applications that includes early exploration, optimization, and security assessments. Several industries have been employing various types of prototyping e.g., virtual platforms, digital twins, and application-specific virtualization techniques, to achieve individual needs for development. In this survey, we clarify some of these concepts and the distinctions between them, provide a comprehensive overview of various prototyping technologies, and discuss how several virtualization technologies play a transformative role in the design and operation of intelligent cyber-physical systems.
- Full text View on content provider's site
-
Liao Chen, Chenguang Zhang, Vivek Yadav, Angela Wong, Satyajyoti Senapati, and Hsueh-Chia Chang
- Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
- Subjects
-
Medicine and Science
- Abstract
-
Abstract Droplet microfluidics offers a platform from which new digital molecular assay, disease screening, wound healing and material synthesis technologies have been proposed. However, the current commercial droplet generation, assembly and imaging technologies are too expensive and rigid to permit rapid and broad-range tuning of droplet features/cargoes. This rapid prototyping bottleneck has limited further expansion of its application. Herein, an inexpensive home-made pipette droplet microfluidics kit is introduced. This kit includes elliptical pipette tips that can be fabricated with a simple DIY (Do-It-Yourself) tool, a unique tape-based or 3D printed shallow-center imaging chip that allows rapid monolayer droplet assembly/immobilization and imaging with a smart-phone camera or miniature microscope. The droplets are generated by manual or automatic pipetting without expensive and lab-bound microfluidic pumps. The droplet size and fluid viscosity/surface tension can be varied significantly because of our particular droplet generation, assembly and imaging designs. The versatility of this rapid prototyping kit is demonstrated with three representative applications that can benefit from a droplet microfluidic platform: (1) Droplets as microreactors for PCR reaction with reverse transcription to detect and quantify target RNAs. (2) Droplets as microcompartments for spirulina culturing and the optical color/turbidity changes in droplets with spirulina confirm successful photosynthetic culturing. (3) Droplets as templates/molds for controlled synthesis of gold-capped polyacrylamide/gold composite Janus microgels. The easily fabricated and user-friendly portable kit is hence ideally suited for design, training and educational labs.
- Full text View on content provider's site
-
Vladimir A. Ovchinnikov, Evgeny A. Kilmyashkin, Aleksey S. Knyazkov, Alena V. Ovchinnikova, Nikolay A. Zhalnin, and Evgeny S. Zykin
- Инженерные технологии и системы, Vol 32, Iss 4, Pp 222-234 (2022)
- Subjects
-
mineral fertilizers, energy-saving technologies, working tool, uniformity of distribution, 3d, cad model, prototyping, experimental research, Engineering (General). Civil engineering (General), TA1-2040, Technology (General), and T1-995
- Abstract
-
Introduction. Improvement of the agro-industrial complex involves the creation of new and modernizations of existing working tools and machines. The important conditions for this are the application of modern technologies and ongoing cooperation with the actual manufacturing. The aim of the research is to develop an adaptive centrifugal working tool and improve the quality of mineral fertilization. Materials and Methods. The adaptive centrifugal working tool was developed and manufactured based on studying the state of the matter and requirements to machines for mineral fertilization. At all stages of the research, there were used computer-aided design and rapid prototyping methods based on additive technologies. Results. As a result of the use of the presented working tools, the machine operating width has increased by 10.0‒22.5%. Experimental working tools, in comparison with serial ones, allow decreasing uneven distribution of mineral fertilizers by 13.4% due to their redistribution from the central zone to the edges. Discussion and Conclusion. As a result of experimental studies, the efficiency of the developed adaptive centrifugal working tools has been proved. It allows increasing uniformity of mineral fertilizer distribution and the machine operating width. Modern design methods make it possible to considerably reduce time and costs.
- Full text View record in DOAJ
9. Rapid Prototyping of H∞ Algorithm for Real-Time Displacement Volume Control of Axial Piston Pumps [2023]
-
Alexander Mitov, Tsonyo Slavov, and Jordan Kralev
- Algorithms, Vol 16, Iss 120, p 120 (2023)
- Subjects
-
H∞ algorithm, rapid prototyping, displacement volume control, axial piston pump, Industrial engineering. Management engineering, T55.4-60.8, Electronic computers. Computer science, and QA75.5-76.95
- Abstract
-
A system for the rapid prototyping of real-time control algorithms for open-circuit variable displacement axial-piston pumps is presented. In order to establish real-time control, and communication and synchronization with the programmable logic controller of an axial piston pump, the custom CAN communication protocol is developed. This protocol is realized as a Simulink® S-function, which is a part of main Simulink® model. This model works in real-time and allows for the implementation of rapid prototyping of various control strategies including advanced algorithms such as H∞ control. The aim of the algorithm is to achieve control system performance in the presence of various load disturbances with an admissible control signal rate and amplitude. In contrast to conventional systems, the developed solution suggests using an embedded approach for the prototyping of various algorithms. The obtained results show the advantages of the designed H∞ controller that ensure the robustness of a closed-loop system in the presence of significant load disturbances. These type of systems with displacement volume regulation are important for industrial hydraulic drive systems with relatively high power.
- Full text View on content provider's site
-
Michał Szelka, Andrzej Drwięga, Jarosław Tokarczyk, Marek Szyguła, Kamil Szewerda, Marian Banaś, Krzysztof Kołodziejczyk, and Krzysztof Kędzia
- Energies, Vol 16, Iss 542, p 542 (2023)
- Subjects
-
axial fan, ventilation, efficiency, rapid prototyping, CFD, FEM, and Technology
- Abstract
-
The article discusses the process of designing and testing as well as their results, carried out in order to increase the efficiency of axial fans, implemented as part of the European project INESI. Modifications of existing solutions based on rapid prototyping methods were presented. Scanning, FEM and CFD numerical calculations and 3D printing were used for that purpose. Rapid prototyping involved the use of a steel blade base and 3D-printed complex aerodynamic shapes that were bonded to create completely new blades. After their installation on the new rotor, enabling the angle of attack adjusting, a number of verifying tests of the fan were carried out. The solution was successfully tested and the results are discussed in the article.
- Full text View on content provider's site
11. Simulation device for shoulder reductions: overview of prototyping, testing, and design instructions [2023]
-
Sorab Taneja, Will Tenpas, Mehul Jain, Peter Alfonsi, Abhinav Ratagiri, Ann Saterbak, and Jason Theiling
- Advances in Simulation, Vol 8, Iss 1, Pp 1-10 (2023)
- Subjects
-
Shoulder reduction, Simulation device, Traction-countertraction, External rotation maneuver, Computer applications to medicine. Medical informatics, and R858-859.7
- Abstract
-
Abstract Background Shoulder dislocations are common occurrences, yet there are few simulation devices to train medical personnel on how to reduce these dislocations. Reductions require a familiarity with the shoulder and a nuanced motion against strong muscle tension. The goal of this work is to describe the design of an easily replicated, low-cost simulator for training shoulder reductions. Materials and methods An iterative, stepwise engineering design process was used to design and implement ReducTrain. A needs analysis with clinical experts led to the selection of the traction-countertraction and external rotation methods as educationally relevant techniques to include. A set of design requirements and acceptance criteria was established that considered durability, assembly time, and cost. An iterative prototyping development process was used to meet the acceptance criteria. Testing protocols for each design requirement are also presented. Step-by-step instructions are provided to allow the replication of ReducTrain from easily sourced materials, including plywood, resistance bands, dowels, and various fasteners, as well as a 3D-printed shoulder model, whose printable file is included at a link in the Additional file 1: Appendix. Results A description of the final model is given. The total cost for all materials for one ReducTrain model is under US $200, and it takes about 3 h and 20 min to assemble. Based on repetitive testing, the device should not see any noticeable changes in durability after 1000 uses but may exhibit some changes in resistance band strength after 2000 uses. Discussion The ReducTrain device fills a gap in emergency medicine and orthopedic simulation. Its wide variety of uses points to its utility in several instructional formats. With the rise of makerspaces and public workshops, the construction of the device can be easily completed. While the device has some limitations, its robust design allows for simple upkeep and a customizable training experience. Conclusion A simplified anatomical design allows for the ReducTrain model to serve as a viable training device for shoulder reductions.
- Full text View on content provider's site
-
Petar Piljek, Denis Kotarski, Alen Šćuric, and Tomislav Petanjek
- Tehnički Glasnik, Vol 17, Iss 2, Pp 179-184 (2023)
- Subjects
-
3D printing, BBC micro:bit, differential drive, Scratch, STEM education, and Technology
- Abstract
-
This paper describes the process of designing and prototyping a low-cost robotic platform based on existing equipment and projects that enable extracurricular STEM activities in Croatia and beyond. A robotic platform with a differential drive configuration was chosen for education from an early age due to its simplicity and a wide range of cheap and compatible components from which it can be made. From the aspect of integration into extracurricular or curricular activities, the BBC micro:bit ecosystem was considered, enabling block-based visual programming. Components with printable parts make up the assembly of the educational robot. The main steps in designing and creating a robot prototype are presented, which consist of the modelling, 3D printing of robot parts, and assembly into a functional system. After several stages of testing, an interactive workshop was held with 7th-grade primary school pupils. Further work is planned to create educational material for extracurricular STEM workshops.
- Full text View record in DOAJ
-
Carlie Rein, Mehmet Toner, and Derin Sevenler
- Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
- Subjects
-
Medicine and Science
- Abstract
-
Abstract Soft lithography has permitted rapid prototyping of precise microfluidic features by patterning a deformable elastomer such as polydimethylsiloxane (PDMS) with a photolithographically patterned mold. In microfluidics applications where the flexibility of PDMS is a drawback, a variety of more rigid materials have been proposed. Compared to alternatives, devices fabricated from epoxy and glass have superior mechanical performance, feature resolution, and solvent compatibility. Here we provide a detailed step-by-step method for fabricating rigid microfluidic devices from soft lithography patterned epoxy and glass. The bonding protocol was optimized yielding devices that withstand pressures exceeding 500 psi. Using this method, we demonstrate the use of rigid high aspect ratio spiral microchannels for high throughput cell focusing.
- Full text View on content provider's site
-
Kwan YH, Ong ZQ, Choo DYX, Phang JK, Yoon S, and Low LL
- Patient Preference and Adherence, Vol Volume 17, Pp 1-11 (2023)
- Subjects
-
type 2 diabetes mellitus, mhealth, mobile app, Medicine (General), and R5-920
- Abstract
-
Yu Heng Kwan,1– 4 Zhi Quan Ong,5 Dawn Yee Xi Choo,1 Jie Kie Phang,2,4 Sungwon Yoon,2,4 Lian Leng Low2,4,6– 9 1Department of Pharmacy, National University of Singapore, Singapore, Singapore; 2Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore; 3Internal Medicine Residency, SingHealth, Singapore, Singapore; 4Centre for Population Health Research and Implementation, SingHealth Regional Health System, Singapore, Singapore; 5School of Computing, National University of Singapore, Singapore, Singapore; 6Population Health & Integrated Care Office (PHICO), Singapore General Hospital, Singapore, Singapore; 7Department of Family Medicine and Continuing Care, Singapore General Hospital, Singapore, Singapore; 8Post-Acute and Continuing Care, Outram Community Hospital, Singapore, Singapore; 9SingHealth Duke-NUS Family Medicine Academic Clinical Program, Singapore, SingaporeCorrespondence: Lian Leng Low, Department of Family Medicine & Continuing Care, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore, Tel +65 63265872, Email low.lian.leng@singhealth.com.sgBackground: Diabetes is a global public health issue, causing burden on healthcare system and increasing risk of mortality. Mobile applications (apps) can be a promising approach to facilitate diabetes self-management. An increasingly utilized approach to facilitate engagement with mobile health (mHealth) technology is to involve potential users in the creation of the technology.Objective: The aim of this study was to use co-design for type 2 diabetes mellitus (T2DM) self-management mHealth development.Methods: Three rounds of iterative rapid prototyping panel sessions were conducted with a total of 9 T2DM participants in an Asian setting between Oct 2020 and April 2021. The participants were recruited through convenience sampling. For each round, feedback was gathered through qualitative interviews, and the feedback was used as a reference by the development team to develop and test a more refined version of the app in the next round. Transcribed semi-structured interview data was analyzed thematically using an inductive approach.Results: Participants’ ages ranged from 40 to 69 years. Data saturation was reached, with no new themes emerging from the data. During the sessions, the participants expressed a variety of concerns and feedback on T2DM self-management using EMPOWER app and raised suggestions on the features of ideal T2DM self-management app. Important features include 1) reminders and notifications for medications, 2) Bluetooth integration with glucometers and blood pressure machines to minimize manual entry, 3) enlarged local food database including information on sugar content and recommendations for healthier options, 4) one touch for logging of routine medications and favorite foods, 5) export function for data sharing with physicians. Overall inputs concerned aspects such as user-friendliness of the app, customization possibilities, and educational content for the features in the mobile app.Conclusion: In this study, we explored users’ opinions on a T2DM self-management mobile app using co-design approach. This study adds to the growing body of literature on co-designing behavioral mHealth interventions and can potentially guide researchers in mobile app design for other chronic conditions.Keywords: type 2 diabetes mellitus, mHealth, mobile app
- Full text View on content provider's site
15. STUDY OF ELECTROLESS NICKEL PLATING ON RAPID PROTOTYPING MODEL USING ACRYLONITRILE BUTADIENE STYRENE [2022]
-
Putu Hadi Setyarini, Elvin Stefano, and Slamet Wahyudi
- Rekayasa Mesin, Vol 13, Iss 1, Pp 275-281 (2022)
- Subjects
-
electroless nickel plating, acrylonitrile butadiene styrene, rapid prototyping, Mechanical engineering and machinery, and TJ1-1570
- Abstract
-
Electroless plating on Acrylonitrile Butadiene Styrene (ABS) is a metallization process that involves a reduction and oxidation reaction between the nickel source and the substrate material. The purpose of this research is to determine the ability of nickel deposition in the nickel electroless plating process with a specific etching time variation. This nickel electroless procedure begins with a chromic acid etching process that can last anywhere from 15 to 55 minutes and is useful for increasing roughness and creating submicroscopic cavities. After the etching process is finished, the surface roughness test is performed with a Mitutoyo SJ-210. Additionally, the activation step is carried out for 5 minutes in order for the polymer to become a conductor, allowing the plating process to proceed. The electroless plating process was then carried out for 55 and 75 minutes, with the goal of depositing nickel metal on the ABS surface. The coating results were analyzed using Fourier Transform Infrared (FTIR) spectroscopy IRSpirit/ATR-S serial No. A224158/Shimadzu to determine the functional groups formed both before and after the coating process, X-Ray Diffraction (XRD) to determine the character of the crystal structure, and phase analysis of a solid material using PANalytical type E'xpert Pro, To determine the surface morphology, the Zeiss EVO MA 10 was used to perform scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) at 1000x magnification. The test findings demonstrate that, based on a range of investigations, etching variations of 15,25,35,45, and 55 minutes etching time 55 minutes are the best nickel deposited substrates, as evidenced by EDS data, where this treatment has the largest weight fraction of nickel. As a result, the longer the etching period, the rougher the surface becomes, affecting the capacity of nickel deposition to increase. Furthermore, it can be demonstrated in this investigation that the nickel deposited is in an amorphous form.
- Full text View record in DOAJ
16. Generalized Method of Mathematical Prototyping of Energy Processes for Digital Twins Development [2023]
-
Sergey Khalyutin, Igor Starostin, and Irina Agafonkina
- Energies, Vol 16, Iss 1933, p 1933 (2023)
- Subjects
-
mathematical prototyping method, energy processes, systems identification, symbolic regression, digital twins, and Technology
- Abstract
-
The use of digital twins in smart power systems at the stages of the life cycle is promising. The dynamics of such systems (smart energy renewable sources, smart energy hydrogen systems, etc.), are determined mainly by the physical and chemical processes occurring inside the systems. The basis for developing digital twins is reliable mathematical models of the systems. In the present paper, the authors present a method of energy processes mathematical prototyping—an overall approach to modeling processes of various physical and chemical natures based on modern non-equilibrium thermodynamics, mechanics, and electrodynamics. Controlled parameters are connected with measured ones by developing a theoretically correct system of process dynamics equations with accuracy up to the experimentally studied properties of substances and processes. Subsequent transformation into particular mathematical models of a specific class of systems makes this approach widely applicable. The properties of substances and processes are given in the form of functional dependencies on the state of the system up to experimentally determined constant coefficients. The authors consider algorithms for identifying the constant coefficients of the functions of substances and processes properties, which complement the proposed unified approach of designing models of various physical and chemical nature systems.
- Full text View on content provider's site
-
Mahdi Katsumata Shah, Bruno Jactat, Toshiyuki Yasui, and Murod Ismailov
- Education Sciences, Vol 13, Iss 53, p 53 (2023)
- Subjects
-
prototyping, design thinking, higher education institution, HEI management, cognitive biases, and Education
- Abstract
-
A project using design thinking (DT) was conducted among internal stakeholders of a large state Japanese university to design a user-centric brochure promoting study abroad programs at francophone partner universities. The low-fidelity prototype and the final product created with DT were tested by asking potential student-users to compare it with a standard brochure through two sets of surveys. Analysis of the quantitative and qualitative data revealed that low-fidelity prototyping was effective to enhance both the utility and usability of the final product. We also show how DT helped expose cognitive biases among designers.
- Full text View on content provider's site
-
Lisa Alice Hwang, Chi-Yuan Chang, Wei-Chia Su, Chi-Wha Chang, and Chien-Yu Huang
- BMC Oral Health, Vol 22, Iss 1, Pp 1-8 (2022)
- Subjects
-
Autotransplantation, Rapid prototyping, Root canal treatment, Dentistry, and RK1-715
- Abstract
-
Abstract Background Autotransplantation is a beneficial treatment with a high success rate for young patients. However, most adult patients require root canal treatment (RCT) of the donor teeth after the autotransplantation procedure, which causes a prolonged treatment time and additional expenses and increases the rate of future tooth fracture. Rapid prototyping (RP)-assisted autotransplantation shortens the extra-alveolar time and enables a superior clinical outcome. However, no cohort studies of the application of this method on adult populations have been reported. Methods This study is a retrospective cohort study. All patients underwent autotransplantation from 2012 to 2020 in the Kaohsiung and Chia-Yi branches of Chang Gung Memorial Hospital, and the procedure and clinical outcomes were analysed. Differences in clinical outcomes, age, sex, extra-alveolar time, fixation method, and RCT rate were compared between the two groups. Results We enrolled 21 patients, 13 treated using the conventional method and 8 treated using the RP-based technique. The RCT rates of the conventional group and RP group were 92.3% and 59%, respectively. The mean age of the two groups was significantly different (28.8 ± 10 vs. 21.6 ± 2.1); after performing subgroup analysis by excluding all of the patients aged > 40 years, we found that the RCT rates were still significantly different (91.0% vs. 50%). The mean extra-alveolar time was 43 s in the RP group, and the autotransplantation survival rate in both groups was 100%. Conclusions Rapid prototyping-assisted autotransplantation was successfully adopted for all patients in our study population. By shortening the extra-alveolar time, only 50% of the patients required a root canal treatment with a 100% autotransplantation survival rate. Trial Registration : Retrospectively registered.
- Full text View on content provider's site
-
Koray Caliskan and Matt Wade
- She Ji: The Journal of Design, Economics and Innovation, Vol 8, Iss 3, Pp 319-335 (2022)
- Subjects
-
Strategic design, Methodology, Actor-Network Theory, Prototyping, Research, Technology (General), T1-995, Economics as a science, and HB71-74
- Abstract
-
Published in two parts, this article presents an evidence-based research and prototyping method for strategic design. In Part 1, we introduce the concept of DARN as an updated version of Actor-Network Theory (ANT). DARN is a theoretical framework used to study, rearrange, or remake the constituents of an organization or problem universe. In Part 2, we propose that DARN can be used to for several purposes. (1) It can help organizations reach their stated objectives. (2) It can define, darn, or solve organizational problems with evidence-based and collaborative design interventions. (3) It allows us to imagine new organizational models with complex and distributed agency considerations. (4) It can improve and measure the impact of design interventions within organizational strategy. The DARN approach is critical of social engineering and design solutionism. This approach proposes using collaborative strategic design in sector-agnostic organizational contexts to support designers in problematization, research, conceptualization, prototyping, testing, and impact measurement. Further, DARN presents a single frame that designers and scientists can use simultaneously without imposing an a priori language on each other. It can also serve other actors with whom they work and study. The article concludes with a practical discussion of how to apply DARN on the ground while considering its limits.
- Full text View record in DOAJ
-
Koray Caliskan and Matt Wade
- She Ji: The Journal of Design, Economics and Innovation, Vol 8, Iss 3, Pp 299-318 (2022)
- Subjects
-
Strategic Design, Methodology, Actor-Network Theory, Prototyping, Research, Technology (General), T1-995, Economics as a science, and HB71-74
- Abstract
-
This article presents the first part of a study that aims at proposing an evidence-based research and prototyping methodology for strategic design. Analyzing the emergence of Strategic Design, we argue that a historically unprecedented rapprochement between intangible design and social research opens a spectrum of possibility for conducting design and science in a new way. First, we examine the emergence of strategic design and discuss its institutionalization in academic and professional contexts. Second, we summarize the three ways of approaching Strategic Design as (1) Discipline, (2) Practice and (3) Attitude. Third, drawing on the social sciences as inspired by Actor-Network Theory (ANT), we define Strategic Design as an evidence-based and social scientifically informed creative practice that aims at proposing a new way to arrange or remake the interaction between devices (D), actors (A), representations (R), and networks (N) in any given organization or problem universe. Preparing a groundwork to develop a research and prototyping methodology for strategic design, the paper ends with a methodological discussion as a segue to Part 2 (available in this issue of She-Ji) that presents DARN as a theoretical toolkit for strategic designers.
- Full text View record in DOAJ
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 20
Next