articles+ search results
3,362 articles+ results
1 - 20
Next
Number of results to display per page
1 - 20
Next
Number of results to display per page
1. Technologies for implementing of artificial intelligence as a service based on hardware accelerators [2023]
-
Artem Perepelitsyn, Yelyzaveta Kasapien, Herman Fesenko, and Vyacheslav Kharchenko
- Авіаційно-космічна техніка та технологія, Vol 0, Iss 6, Pp 57-65 (2023)
- Subjects
-
штучний інтелект, fpga, ші як сервіс, гетерогенні проєкти ші систем, апаратні прискорювачі ші, dpu, інструментальні засоби розробки ші, xrt, Motor vehicles. Aeronautics. Astronautics, and TL1-4050
- Abstract
-
The subject of study in this article is modern technologies, tools and methods of building AI systems as a service using FPGA as a platform. The goal is to analyze modern technologies and tools used to develop FPGA-based projects for systems that implement artificial intelligence as a service and to prepare a practical AI service prototype. Task: to analyze the evolution of changes in the products of leading manufacturers of programmable logic devices and experimental and practical examples of the implementation of the paradigm of continuous reprogramming of programmable logic; analyze the dynamics of changes in the development environment of programmable logic systems for AI; analyze the essential elements of building projects for AI systems using programmable logic. According to the tasks, the following results were obtained. The area of application of hardware implementation of artificial intelligence for on-board and embedded systems including airspace industry, smart cars and medical systems is analyzed. The process of programming FPGA accelerators for AI projects is analyzed. The analysis of the capabilities of FPGA with HBM for building projects that require enough of high speed memory is performed. Description languages, frameworks, the hierarchy of tools for building of hardware accelerators for AI projects are analyzed in detail. The stages of prototyping of AI projects using new FPGA development tools and basic DPU blocks are analyzed. The parameters of the DPU blocks were analyzed. Practical steps for building such systems are offered. The practical recommendations for optimizing the neural network for FPGA implementation are given. The stages of neural network optimization are provided. The proposed steps include pruning of branches with low priority and the use of fixed point computations with custom range based on the requirements of an exact neural network. Based on these solutions, a practical case of AI service was prepared, trained and tested. Conclusions. The main contribution of this study is that, based on the proposed ideas and solutions, the next steps to create heterogeneous systems based on the combination of three elements are clear: AI as a service, FPGA accelerators as a technology for improving performance, reliability and security, and cloud or Edge resources to create FPGA infrastructure and AI as service. The development of this methodological and technological basis is the direction of further R&D.
- Full text View record in DOAJ
-
Noah Sargent, Yuankang Wang, Daozheng Li, Yunhao Zhao, Xin Wang, and Wei Xiong
- Additive Manufacturing Letters, Vol 6, Iss , Pp 100133- (2023)
- Subjects
-
Directed energy deposition, entropy, grain refinement, alloy design, Industrial engineering. Management engineering, and T55.4-60.8
- Abstract
-
Additive manufacturing (AM) is a tool for rapid prototyping with complex geometry. However, the cyclic heating and cooling in laser melting processes often cause large columnar grains that dominate the as-printed microstructure, resulting in a strong texture and anisotropic properties that limit the application of AM. In this work, we apply powder-based directed energy deposition to discover new alloys using mixtures of Inconel 718 (IN718) and Stainless Steel 316L (SS316L). We discovered that the 77 wt.% IN718 alloy mixture, with the highest configurational entropy, demonstrated an intriguingly fine grain structure in the as-built condition and after homogenization at 1180°C. Residual stress from the laser melting process was identified as the primary cause of the observed grain refinement phenomenon. Although, a quantitative analysis of the changes in grain size after homogenization in the alloy mixtures of IN718 and SS316L requires further research. The discovery of this unique microstructural behavior shows how in-situ mixing of commercially available powders can be used to develop next-generation feedstock materials for AM and improve the understanding of fundamental process-microstructure-property relationships.
- Full text View record in DOAJ
-
Chunxu Li, Fengbo Sun, Jingjing Tian, Jiahao Li, Haidan Sun, Yong Zhang, Shigong Guo, Yuanhua Lin, Xiaodan Sun, and Yu Zhao
- Bioactive Materials, Vol 24, Iss , Pp 361-375 (2023)
- Subjects
-
3D printing, Zinc submicron particles, Osteoinductivity, Anti-inflammatory, Bone defect repair, Materials of engineering and construction. Mechanics of materials, TA401-492, Biology (General), and QH301-705.5
- Abstract
-
Long-term nonunion of bone defects has always been a major problem in orthopedic treatment. Artificial bone graft materials such as Poly (lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds are expected to solve this problem due to their suitable degradation rate and good osteoconductivity. However, insufficient mechanical properties, lack of osteoinductivity and infections after implanted limit its large-scale clinical application. Hence, we proposed a novel bone repair bioscaffold by adding zinc submicron particles to PLGA/β-TCP using low temperature rapid prototyping 3D printing technology. We first screened the scaffolds with 1 wt% Zn that had good biocompatibility and could stably release a safe dose of zinc ions within 16 weeks to ensure long-term non-toxicity. As designed, the scaffold had a multi-level porous structure of biomimetic cancellous bone, and the Young's modulus (63.41 ± 1.89 MPa) and compressive strength (2.887 ± 0.025 MPa) of the scaffold were close to those of cancellous bone. In addition, after a series of in vitro and in vivo experiments, the scaffolds proved to have no adverse effects on the viability of BMSCs and promoted their adhesion and osteogenic differentiation, as well as exhibiting higher osteogenic and anti-inflammatory properties than PLGA/β-TCP scaffold without zinc particles. We also found that this osteogenic and anti-inflammatory effect might be related to Wnt/β-catenin, P38 MAPK and NFkB pathways. This study lay a foundation for the follow-up study of bone regeneration mechanism of Zn-containing biomaterials. We envision that this scaffold may become a new strategy for clinical treatment of bone defects.
- Full text View on content provider's site
-
Tommaso Caldognetto, Andrea Petucco, Andrea Lauri, and Paolo Mattavelli
- HardwareX, Vol 14, Iss , Pp e00411- (2023)
- Subjects
-
Power electronics, Inverters, Rapid control prototyping, Experimental setups, Science (General), and Q1-390
- Abstract
-
A flexible power electronic converter embedding a rapid control prototyping platform suitable to be applied in research test setups and teaching laboratories is proposed and described in this paper. The electronic system is composed of three subsystems, namely, i) three half-bridge power boards, ii) a dc-link capacitor bank with a half-bridge power module for active dc-link control, iii) an interfacing board, called motherboard, to couple the power modules with a control unit, iv) a digital control unit with rapid control prototyping functionalities for controlling power electronic circuits. Power modules integrate sensors with related conditioning circuits, driving circuits for power switches, and protection circuits. Conversion circuits exploit GaN electronic switches for optimal performance. The architecture and implementation of the system are described in detail in this manuscript. Main applications are in the implementation of conversion circuits for supplying arbitrary ac or dc voltages or currents, testing of new control algorithms for power electronic converters, testing of systems of electronic converters in, for example, smart nanogrids or renewable energy applications, training of undergraduate and graduate students.
- Full text View on content provider's site
-
LI Qun xing
- 口腔疾病防治, Vol 31, Iss 6, Pp 381-388 (2023)
- Subjects
-
jaw defect, functional reconstruction, digital technology, computer-aided design, 3d printing, personalized surgical instruments, preoperative virtual surgery, immediate implantation, and Medicine
- Abstract
-
With the development of computer-aided surgery and rapid prototyping via 3D printing technology, digital surgery has rapidly advanced in clinical practice, especially in the field of oral and maxillofacial surgery. 3D printing technology has been applied to the functional restoration and reconstruction of the jawbone. Before surgery, a 3D digital model is constructed through software to plan the scope of the osteotomy, shape the bone graft and plan the placement of the implant. Additionally, 3D models of personalized surgical instrument guides are printed prior to surgery. With these 3D-printed models and guides, accurate excision of the jaw tumor, accurate placement of the grafted bone and precise placement of implants can be achieved during surgery. Postoperative evaluation of accuracy and function shows that 3D printing technology can aid in achieving the biomechanical goals of simultaneous implant placement in jaw reconstruction, and in combination with dental implant restoration, the technology can improve patients' postoperative occlusal and masticatory functions. Nevertheless, 3D printing technology still has limitations, such as time-consuming preparation before surgery. In the future, further development of 3D printing technology, optimization of surgical plans, and alternative biological materials are needed. Based on domestic and foreign literature and our research results, we have reviewed the process and clinical application prospects of jaw reconstruction via 3D printing technology to provide a reference for oral and maxillofacial surgeons.
- Full text View on content provider's site
-
Marc Schmitt
- Intelligent Systems with Applications, Vol 18, Iss , Pp 200188- (2023)
- Subjects
-
Artificial intelligence, Machine learning, AutoML, Business analytics, Data-driven decision making, Digital transformation, Cybernetics, Q300-390, Electronic computers. Computer science, and QA75.5-76.95
- Abstract
-
The realization that AI-driven decision-making is indispensable in today's fast-paced and ultra-competitive marketplace has raised interest in industrial machine learning (ML) applications significantly. The current demand for analytics experts vastly exceeds the supply. One solution to this problem is to increase the user-friendliness of ML frameworks to make them more accessible for the non-expert. Automated machine learning (AutoML) is an attempt to solve the problem of expertise by providing fully automated off-the-shelf solutions for model choice and hyperparameter tuning. This paper analyzed the potential of AutoML for applications within business analytics, which could help to increase the adoption rate of ML across all industries. The H2O AutoML framework was benchmarked against a manually tuned stacked ML model on three real-world datasets. The manually tuned ML model could reach a performance advantage in all three case studies used in the experiment. Nevertheless, the H2O AutoML package proved to be quite potent. It is fast, easy to use, and delivers reliable results, which come close to a professionally tuned ML model. The H2O AutoML framework in its current capacity is a valuable tool to support fast prototyping with the potential to shorten development and deployment cycles. It can also bridge the existing gap between supply and demand for ML experts and is a big step towards automated decisions in business analytics. Finally, AutoML has the potential to foster human empowerment in a world that is rapidly becoming more automated and digital.
- Full text View record in DOAJ
-
Galina Guentchev, Erika J. Palin, Jason A. Lowe, and Mark Harrison
- Climate Services, Vol 30, Iss , Pp 100352- (2023)
- Subjects
-
Upscaling, Scaling up, Climate services, Prototyping, Pilot projects, Meteorology. Climatology, QC851-999, Social sciences (General), and H1-99
- Abstract
-
Translating climate data and information for use in real-world applications often involves the development of climate service prototypes within the constraints of pilot or demonstration projects. However, these services rarely make the transition from prototype to fully-fledged, transferrable and/or repeatable climate services – that is, there are problems with upscaling them beyond the pilot/demonstrator phase.In this paper we are using the mainstream understanding of the three main types of upscaling: reaching many (horizontal), enhancing the enabling environment (vertical), and expanding the product or service’s features (functional). Through a review of the general upscaling literature, coupled with focused interviews with weather/climate services experts, we found that there are common barriers to, and enablers for, successful upscaling – many of which apply to the specific case of upscaling climate services. Barriers include problems with leadership (e.g. the absence of a long-term vision and/or strategy for upscaling); limited funding or lack of a business model for the service at scale; issues with the enabling environment for upscaling (e.g. poor policy context, inadequate governance systems); and poor user engagement.Lessons learned from the literature in the context of upscaling climate services include planning for it as early as possible in the prototyping process; including a monitoring, evaluation and learning approach to inform upscaling progress; taking actions to foster and enhance the enabling environment; and searching for a balance between generic solutions and fit-for-purpose products.
- Full text View record in DOAJ
8. Virtual and Physical Prototyping [2023]
- Subjects
-
additive manufacturing, 3d printing, materials mechanics, manufacturing engineering, industrial engineering, Science, Manufactures, and TS1-2301
- Full text View record in DOAJ
-
Zihua Zhang, Zhenjiang Zhu, Yongbing Feng, and Ran Li
- Advances in Mechanical Engineering, Vol 15 (2023)
- Subjects
-
Mechanical engineering and machinery and TJ1-1570
- Abstract
-
To overcome the inefficiency of slicing process of rapid prototyping based on STL models, an improved slicing algorithm is proposed. The method builds integral topology of STL models in advance using a Hash table, which enables to get contours directly, and then reduces the search range in slicing by establishing the slicing relation matrix, which can effectively reduce the time cost of slicing. It has been demonstrated that the algorithm has nearly linear time complexity. The method is proved to be effective and efficient through application cases, and the results show better performance than other existing algorithms, especially when the STL model is complex or large.
- Full text View on content provider's site
10. Simulation device for shoulder reductions: overview of prototyping, testing, and design instructions [2023]
-
Sorab Taneja, Will Tenpas, Mehul Jain, Peter Alfonsi, Abhinav Ratagiri, Ann Saterbak, and Jason Theiling
- Advances in Simulation, Vol 8, Iss 1, Pp 1-10 (2023)
- Subjects
-
Shoulder reduction, Simulation device, Traction-countertraction, External rotation maneuver, Computer applications to medicine. Medical informatics, and R858-859.7
- Abstract
-
Abstract Background Shoulder dislocations are common occurrences, yet there are few simulation devices to train medical personnel on how to reduce these dislocations. Reductions require a familiarity with the shoulder and a nuanced motion against strong muscle tension. The goal of this work is to describe the design of an easily replicated, low-cost simulator for training shoulder reductions. Materials and methods An iterative, stepwise engineering design process was used to design and implement ReducTrain. A needs analysis with clinical experts led to the selection of the traction-countertraction and external rotation methods as educationally relevant techniques to include. A set of design requirements and acceptance criteria was established that considered durability, assembly time, and cost. An iterative prototyping development process was used to meet the acceptance criteria. Testing protocols for each design requirement are also presented. Step-by-step instructions are provided to allow the replication of ReducTrain from easily sourced materials, including plywood, resistance bands, dowels, and various fasteners, as well as a 3D-printed shoulder model, whose printable file is included at a link in the Additional file 1: Appendix. Results A description of the final model is given. The total cost for all materials for one ReducTrain model is under US $200, and it takes about 3 h and 20 min to assemble. Based on repetitive testing, the device should not see any noticeable changes in durability after 1000 uses but may exhibit some changes in resistance band strength after 2000 uses. Discussion The ReducTrain device fills a gap in emergency medicine and orthopedic simulation. Its wide variety of uses points to its utility in several instructional formats. With the rise of makerspaces and public workshops, the construction of the device can be easily completed. While the device has some limitations, its robust design allows for simple upkeep and a customizable training experience. Conclusion A simplified anatomical design allows for the ReducTrain model to serve as a viable training device for shoulder reductions.
- Full text View on content provider's site
11. A user-centred virtual city information model for inclusive community design: State-of-art. [2023]
-
Najafi, Peyman, Mohammadi, Masi, van Wesemael, Pieter, and Le Blanc, Pascale M.
Cities . Mar2023, Vol. 134, pN.PAG-N.PAG. 1p.
- Full text View on content provider's site
12. Studies on the Numerical Control Programming for Multi-Axis Machining of Turbomolecular Pump Rotor [2023]
-
Teng-Hui Chen, Jeng-Nan Lee, Ming-Jhang Shie, and Yu-Cheng Chen
- Electronics, Vol 12, Iss 1281, p 1281 (2023)
- Subjects
-
multi-axis machining, reverse engineering, rotor, turbomolecular pump (TMP), Electronics, and TK7800-8360
- Abstract
-
Turbomolecular pumps (TMPs), boasting advantageous high pumping rates, stability, and cleanliness, have been widely used in the semiconductor and photoelectric industries. In the aviation industry, the lightweight rotors of turbomolecular pumps can enhance the performance of generators. With technological advancements and increased industrial performance demands, various designs for turbomolecular pump rotors utilizing twisted and curved blade surfaces have been proposed. This increase in complexity runs parallel with machining difficulties. Contact and noncontact reverse engineering equipment was used to reconstruct a computer-aided design (CAD) model of turbomolecular pump rotors. The machining of thin and long blades, cutting tool arrangement, and toolpath was planned. Postprocessing was used to convert the toolpath into numerical control (NC) programming codes, which were combined with solid model cutting simulation software to verify the efficacy of the generated machining NC program for turbomolecular pump rotors. A five-axis horizontal machining center (CK type) with aluminum alloy AL6061-T6 was used to conduct actual machining tests measuring the efficiency of the machining methods. The rapid prototyping (RP) blocks can be creatively used as a jig and stuffed between the blades to suppress the chatter problem during processing, and the roughness of the surface of the blades can be reduced from 4.4 μm to 1.3 μm. The processed rotor can meet the flow test requirements, and the overall research can be used as a reference for the industry.
- Full text View on content provider's site
-
Tania Islam and Sayan Roy
- Electronics, Vol 12, Iss 1416, p 1416 (2023)
- Subjects
-
wireless body area network, WBAN, multiband antenna, specific absorption rate, SAR, phantom, Electronics, and TK7800-8360
- Abstract
-
In this work, we propose a novel multiband meander line antenna that can operate at three different frequency bands and offer suitable performance for wireless body area network (WBAN) applications. The net geometry of the antenna is 36 × 30 × 1.524 mm3. The proposed low-profile antenna is analytically modeled and designed in full wave ANSYS HFSS using Rogers TMM4 as the substrate, followed by in-lab prototyping. The designed antenna resonates at 4.5 GHz, 5 GHz, and 5.8 GHz and maintains positive gain, efficiency, and acceptable specific absorption rates at each resonant band. The effectiveness of the antenna for WBAN applications is demonstrated using an in-lab manufactured phantom. The fabrication process of the phantom is described, and dielectric characterization of the phantom mimicking different human tissue layers is presented. Considering results with and without human body phantoms available in the full wave ANSYS HFSS tool, a comparative analysis between simulated and measured antenna parameters concludes this work. Both the simulated and measured results show good agreement.
- Full text View on content provider's site
-
Jie Zhu, Jiangtao Yu, Yingcheng Wu, Yanhong Chao, Peiwen Wu, Linjie Lu, Linlin Chen, Jing He, and Wenshuai Zhu
- Green Chemical Engineering, Vol 4, Iss 1, Pp 73-80 (2023)
- Subjects
-
3D printing, Direct ink writing, Ceramic slurry, Kaolin, Adsorption, Chemical engineering, TP155-156, Biochemistry, and QD415-436
- Abstract
-
The construction of rapid prototyping for structured ceramics has a promoting effect on potential applications. In this work, engineering slurry with different formulations were used to develop aqueous colloidal ceramic slurry for direct ink writing (DIW). Optimized slurry of Formulation 5 possessed good printing effect for DIW with stable mechanical properties. Related characteristics, including shrinkage, compressive strength, rheological behavior, and chemical property, were also examined. DIW ceramics prepared from optimized slurry can be preliminarily applied to adsorption of Rhodamine B and chlortetracycline, and possessed the advantages of easy separation and operation compared with powder adsorbents. This work provides a strategy for the design of 3D-printed kaolin ceramic slurry, and also extends to potential application in adsorption.
- Full text View record in DOAJ
-
You-Lei Fu, Ruoqi Dai, Xiaoshun Xie, and Wu Song
- Heliyon, Vol 9, Iss 3, Pp e13624- (2023)
- Subjects
-
Prototype intervention, Usability testing, sEMG, Supine sitting posture, Comfort perception, Science (General), Q1-390, Social sciences (General), and H1-99
- Abstract
-
Employees who work long hours frequently complain of muscle fatigue caused by prolonged sitting. As a result, products that assist them when resting in a chair in a reclining position, in order to relieve fatigue and improve comfort are required. To ensure that the new product works as intended, a usability test based on prototyping must be developed. The research process was divided into three stages: firstly, the development of the perception assessment questionnaire; secondly, a validated factor analysis (CFA) was conducted on the perception assessment data of 26 subjects and the measurement model was fitted to verify the reliability and validity of the questionnaire; finally, the sEMG technique was used to verify the comfort level of 21 subjects. Based on usability experiments and an exploration of human factor relationships, this study develops a prototype testing model, which focuses on the comfort perception of body parts, as a means of promoting innovation in the design and manufacturing industry.
- Full text View on content provider's site
-
Ankita M Mohite, Lalita G Nanjannawar, Jiwanasha M Agrawal, Sangamesh Fulari, Shraddha Shetti, Vishwal Kagi, Amol Shirkande, and Sanjivani Gofane
- Journal of Clinical and Diagnostic Research, Vol 17, Iss 3, Pp ZC01-ZC05 (2023)
- Subjects
-
digital orthodontics, stereolithography, three-dimensional printing, and Medicine
- Abstract
-
Introduction: The digitalisation of dental models has made significant contribution to the current success of orthodontic practices. Rapid Prototyping (RP) is an innovative method of producing physical objects based on Computer-Aided Design (CAD) Computer-Aided Manufacturing (CAM). Aim: To compare the accuracy of the Three-Dimensional (3D) printed rapid prototyped models with orthodontic stone models across different ranges of crowding. Materials and Methods: A cross-sectional study carried out at the Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Sangli, Maharashtra, India during September 2019 to September 2020. A total of 36 rapid prototyped models were reconstructed from stone models using Light Emitting Diode (LED) scanner and Digital Light Processing (DLP) technology. Dental stone models and RP models were evaluated using digital caliper for different linear measurements and arch dimensions. The data was analysed using Statistical Package for Social Sciences (SPSS) version 26.0. To evaluate accuracy, t-test analyses and Bland-Altman plotting were performed. Results: T-test showed statistically non significant difference in all parameters of measurements of RP models when compared to stone models. According to Bland-Altman plotting. The mean difference between stone and RP models for the various degree of crowding was minimal and within ±0.07 mm in all planes. Conclusion: Discrepancy between dental plaster models and RP models were less than 0.5 mm which was considered clinically non significant. Suggesting that RP models can be effectively used as an alternative to stone models.
- Full text View record in DOAJ
-
Christina Myers, Lara Piccolo, and Trevor Collins
- Journal of Learning for Development, Vol 10, Iss 1 (2023)
- Subjects
-
Theory and practice of education and LB5-3640
- Abstract
-
Digital games can be used as educational tools for tackling structural inequalities and promoting social justice. Designing games with these purposes is often a complex task that requires a myriad of combined expertise, including games’ mechanics, software development, educational game design, pedagogy, and knowledge of the educational topic (which can target very specific social issues). Democratising the design of educational games is used to increase the agency and participation of diverse and novice groups throughout design processes - and can be used to improve the efficiency of such games as it directly leads to the inclusion of broad voices, knowledge, experiences and perspectives. This research adopted a Design-Based Research methodology to create, evaluate and validate 13 design principles to democratise the design of educational games for social change. Three research phases were implemented in turn: a preliminary research, prototyping and evaluation phase. The preliminary research phase was based on creating these principles by grounding them on fundamentals of Critical Pedagogy, a theory of education which presents pedagogical techniques to accelerate learning, engagement and social change. The prototyping phase was based on conducting semi-structured interviews to assess and improve these principles with educational and game design experts. During the evaluation phase, these principles were applied and evaluated during two weekend-long game design events, which were mostly attended by diverse groups who had never designed a digital game before. This research presents theoretical and practical contributions related to how to democratise educational game design for social change. It evidenced the relevance of facilitating design principles that addresses what could be done to trigger learning in games by presenting design principles; why this learning could be facilitated, from both educational and gaming perspectives; and how to implement these principles into an educational game.
- Full text View record in DOAJ
-
Weison Lin, Yajun Zhu, and Tughrul Arslan
- Journal of Low Power Electronics and Applications, Vol 13, Iss 21, p 21 (2023)
- Subjects
-
edge AI accelerator, CNN, dynamic reconfiguration, fault tolerance, Applications of electric power, and TK4001-4102
- Abstract
-
Edge AI accelerators are utilized to accelerate the computation in edge AI devices such as image recognition sensors on robotics, door lockers, drones, and remote sensing satellites. Instead of using a general-purpose processor (GPP) or graphic processing unit (GPU), an edge AI accelerator brings a customized design to meet the requirements of the edge environment. The requirements include real-time processing, low-power consumption, and resource-awareness, including resources on field programmable gate array (FPGA) or limited application-specific integrated circuit (ASIC) area. The system’s reliability (e.g., permanent fault tolerance) is essential if the devices target radiation fields such as space and nuclear power stations. This paper proposes a dynamic reconfigurable column streaming-based convolution engine (DycSe) with programmable adder modules for low-power and resource-aware edge AI accelerators to meet the requirements. The proposed DycSe design does not target the FPGA platform only. Instead, it is an intellectual property (IP) core design. The FPGA platform used in this paper is for prototyping the design evaluation. This paper uses the Vivado synthesis tool to evaluate the power consumption and resource usage of DycSe. Since the synthesis tool is limited to giving the final complete system result in the designing stage, we compare DycSe to a commercial edge AI accelerator for cross-reference with other state-of-the-art works. The commercial architecture shares the competitive performance within the low-power ultra-small (LPUS) edge AI scopes. The result shows that DycSe contains 3.56% less power consumption and slight resources (1%) overhead with reconfigurable flexibility.
- Full text View on content provider's site
-
Jan-Erik Rath, Robert Graupner, and Thorsten Schüppstuhl
- Machines, Vol 11, Iss 365, p 365 (2023)
- Subjects
-
fiber-reinforced plastic, composite, dieless forming, incremental forming, robotics, automation, Mechanical engineering and machinery, and TJ1-1570
- Abstract
-
The demand for lightweight materials, such as fiber-reinforced plastics (FRP), is constantly growing. However, current FRP production mostly relies on expensive molds representing the final part geometry, which is not economical for prototyping or highly individualized products, such as in the medical or sporting goods sector. Therefore, inspired by incremental sheet metal forming, we conduct a systematic functional analysis on new processing methods for shaping woven FRP without the use of molds. Considering different material combinations, such as dry fabric with thermoset resin, thermoset prepreg, thermoplastic commingled yarn weave and organo sheets, we propose potential technical implementations of novel dieless forming techniques, making use of simple robot-guided standard tools, such as hemispherical tool tips or rollers. Feasibility of selected approaches is investigated in basic practical experiments with handheld tools. Results show that the main challenge of dieless local forming, the conservation of already formed shapes while allowing drapability of remaining areas, is best fulfilled by local impregnation, consolidation and solidification of commingled yarn fabric, as well as concurrent forming of prepreg and metal wire mesh support material. Further research is proposed to improve part quality.
- Full text View on content provider's site
-
Cecilia Goracci, Jovana Juloski, Claudio D’Amico, Dario Balestra, Alessandra Volpe, Jelena Juloski, and Alessandro Vichi
- Materials, Vol 16, Iss 2166, p 2166 (2023)
- Subjects
-
3D printing, additive manufacturing, rapid prototyping, orthodontics, materials, review, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, and QC120-168.85
- Abstract
-
The review aimed at analyzing the evidence available on 3D printable materials and techniques used for the fabrication of orthodontic appliances, focusing on materials properties that are clinically relevant. MEDLINE/PubMed, Scopus, and Cochrane Library databases were searched. Starting from an initial retrieval of 669 citations, 47 articles were finally included in the qualitative review. Several articles presented proof-of-concept clinical cases describing the digital workflow to manufacture a variety of appliances. Clinical studies other than these case reports are not available. The fabrication of aligners is the most investigated application of 3D printing in orthodontics, and, among materials, Dental LT Clear Resin (Formlabs) has been tested in several studies, although Tera Harz TC-85 (Graphy) is currently the only material specifically marketed for direct printing of aligners. Tests of the mechanical properties of aligners materials lacked homogeneity in the protocols, while biocompatibility tests failed to assess the influence of intraoral conditions on eluents release. The aesthetic properties of 3D-printed appliances are largely unexplored. The evidence on 3D-printed metallic appliances is also limited. The scientific evidence on 3D printable orthodontic materials and techniques should be strengthened by defining international standards for laboratory testing and by starting the necessary clinical trials.
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 20
Next