articles+ search results
8,881 articles+ results
1 - 20
Next
Number of results to display per page
1 - 20
Next
Number of results to display per page
1. Technologies for implementing of artificial intelligence as a service based on hardware accelerators [2023]
-
Artem Perepelitsyn, Yelyzaveta Kasapien, Herman Fesenko, and Vyacheslav Kharchenko
- Авіаційно-космічна техніка та технологія, Vol 0, Iss 6, Pp 57-65 (2023)
- Subjects
-
штучний інтелект, fpga, ші як сервіс, гетерогенні проєкти ші систем, апаратні прискорювачі ші, dpu, інструментальні засоби розробки ші, xrt, Motor vehicles. Aeronautics. Astronautics, and TL1-4050
- Abstract
-
The subject of study in this article is modern technologies, tools and methods of building AI systems as a service using FPGA as a platform. The goal is to analyze modern technologies and tools used to develop FPGA-based projects for systems that implement artificial intelligence as a service and to prepare a practical AI service prototype. Task: to analyze the evolution of changes in the products of leading manufacturers of programmable logic devices and experimental and practical examples of the implementation of the paradigm of continuous reprogramming of programmable logic; analyze the dynamics of changes in the development environment of programmable logic systems for AI; analyze the essential elements of building projects for AI systems using programmable logic. According to the tasks, the following results were obtained. The area of application of hardware implementation of artificial intelligence for on-board and embedded systems including airspace industry, smart cars and medical systems is analyzed. The process of programming FPGA accelerators for AI projects is analyzed. The analysis of the capabilities of FPGA with HBM for building projects that require enough of high speed memory is performed. Description languages, frameworks, the hierarchy of tools for building of hardware accelerators for AI projects are analyzed in detail. The stages of prototyping of AI projects using new FPGA development tools and basic DPU blocks are analyzed. The parameters of the DPU blocks were analyzed. Practical steps for building such systems are offered. The practical recommendations for optimizing the neural network for FPGA implementation are given. The stages of neural network optimization are provided. The proposed steps include pruning of branches with low priority and the use of fixed point computations with custom range based on the requirements of an exact neural network. Based on these solutions, a practical case of AI service was prepared, trained and tested. Conclusions. The main contribution of this study is that, based on the proposed ideas and solutions, the next steps to create heterogeneous systems based on the combination of three elements are clear: AI as a service, FPGA accelerators as a technology for improving performance, reliability and security, and cloud or Edge resources to create FPGA infrastructure and AI as service. The development of this methodological and technological basis is the direction of further R&D.
- Full text View record in DOAJ
-
Chunxu Li, Fengbo Sun, Jingjing Tian, Jiahao Li, Haidan Sun, Yong Zhang, Shigong Guo, Yuanhua Lin, Xiaodan Sun, and Yu Zhao
- Bioactive Materials, Vol 24, Iss , Pp 361-375 (2023)
- Subjects
-
3D printing, Zinc submicron particles, Osteoinductivity, Anti-inflammatory, Bone defect repair, Materials of engineering and construction. Mechanics of materials, TA401-492, Biology (General), and QH301-705.5
- Abstract
-
Long-term nonunion of bone defects has always been a major problem in orthopedic treatment. Artificial bone graft materials such as Poly (lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds are expected to solve this problem due to their suitable degradation rate and good osteoconductivity. However, insufficient mechanical properties, lack of osteoinductivity and infections after implanted limit its large-scale clinical application. Hence, we proposed a novel bone repair bioscaffold by adding zinc submicron particles to PLGA/β-TCP using low temperature rapid prototyping 3D printing technology. We first screened the scaffolds with 1 wt% Zn that had good biocompatibility and could stably release a safe dose of zinc ions within 16 weeks to ensure long-term non-toxicity. As designed, the scaffold had a multi-level porous structure of biomimetic cancellous bone, and the Young's modulus (63.41 ± 1.89 MPa) and compressive strength (2.887 ± 0.025 MPa) of the scaffold were close to those of cancellous bone. In addition, after a series of in vitro and in vivo experiments, the scaffolds proved to have no adverse effects on the viability of BMSCs and promoted their adhesion and osteogenic differentiation, as well as exhibiting higher osteogenic and anti-inflammatory properties than PLGA/β-TCP scaffold without zinc particles. We also found that this osteogenic and anti-inflammatory effect might be related to Wnt/β-catenin, P38 MAPK and NFkB pathways. This study lay a foundation for the follow-up study of bone regeneration mechanism of Zn-containing biomaterials. We envision that this scaffold may become a new strategy for clinical treatment of bone defects.
- Full text View on content provider's site
-
García-Moll L, Sixto A, Carrasco-Correa EJ, and Miró M
Talanta [Talanta] 2023 Apr 01; Vol. 255, pp. 124211. Date of Electronic Publication: 2022 Dec 24.
- Abstract
-
Low force stereolithography is exploited for the first time for one-step facile fabrication of chemiluminescence (CL) flow-through cells that bear unrivalled features as compared to those available through milling or blowing procedures or alternative 3D printing technologies. A variety of bespoke cross-section geometries with polyhedral features (namely, triangular, square, and five-side polygon) as well as semicircular cross-section are herein critically evaluated in terms of analytical performance against the standardcircular cross-section in a flat spirally-shape format. The idea behind is to maximize capture of elicited light by the new designs while leveraging 3D printing further for fabrication of (i) customized gaskets that enable reliable attaching of the active mixing zone of the CL cell to the detection window, (ii) in-line 3D-printed serpentine reactors, and (iii) flow confluences with tailorable shapes for enhancing mixing of samples with CL reagents. Up to twenty transparent functional cells were simultaneously fabricated without inner supports following post-curing and surface treatment protocols lasting less than 5 h. In fact, previous attempts to print spirally-shaped cells in one-step by resorting to less cost effective photopolymer inkjet printing technologies were unsuccessful because of the requirement of lengthy procedures (>15 days) for quantitative removal of the support material. By exploiting the phthalazinedione-hydrogen peroxide chemistry as a model reaction, the five-side irregular pentagon cell exhibited superior analytical figures of merit in terms of LOD, dynamic range and intermediate precision as compared to alternative designs. Computational fluid dynamic simulations for mapping velocities at the entry region of the spiral cell corroborated the fact that the 5-side polygon cross-section flow-cell with Y-type confluence permitted the most efficient mixing of reagents and sample while enabling larger flow velocities near the inlet that contribute to a more efficient capture of the photons from the flash-type reaction. The applicability of the 3D-printed 5-side polygon CL cell for automatic determination of hydrogen peroxide using a computerized hybrid flow system was demonstrated for the analysis of high matrix samples, viz., seawater and saliva, with relative recoveries ranging from 83 to 103%.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Teekayupak K, Aumnate C, Lomae A, Preechakasedkit P, Henry CS, Chailapakul O, and Ruecha N
Talanta [Talanta] 2023 Mar 01; Vol. 254, pp. 124131. Date of Electronic Publication: 2022 Dec 01.
- Subjects
-
Humans, Creatinine chemistry, Limit of Detection, Smartphone, Electrochemical Techniques, Electrodes, Graphite chemistry, and Nanoparticles chemistry
- Abstract
-
3D printing technologies are an attractive for fabricating electrochemical sensors due to their ease of operation, freedom of design, fast prototyping, low waste, and low cost. We report the fabrication of a simple 3D-printed electrochemical sensing device for non-enzymatic detection of creatinine, an important indicator of renal function. To create the 3D-printed electrodes (3DE), carbon black/polylactic acid (CB/PLA) composite filament was used. The 3DE was activated using 0.5 M NaOH via amperometry prior to use to improve electrochemical performance. To give selectivity for creatinine, the activated 3DE was modified with a copper oxide nanoparticle-ionic liquid/reduced graphene oxide (CuO-IL/rGO) composite. The modified 3DE was characterized using microscopy and electrochemistry. Cyclic voltammetry and amperometry were used to evaluate sensor performance. The modified 3DE provided electrocatalytic activity towards creatinine without enzymes. Under optimal conditions, the modified 3DE directly coupled with a portable smartphone potentiostat exhibited the linear detection range of 0.5-35.0 mM, and the limit of detection was 37.3 μM, which is sufficient for detecting creatinine in human urine samples. Furthermore, the other physiological compounds present in human urine were not detected on the modified 3DE. Therefore, the modified 3DE could be a tool for effective creatinine screening in the urine.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022 Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Tayyaba Sahar, Muhammad Rauf, Ahmar Murtaza, Lehar Asip Khan, Hasan Ayub, Syed Muslim Jameel, and Inam Ul Ahad
- Results in Engineering, Vol 17, Iss , Pp 100803- (2023)
- Subjects
-
Metal additive manufacturing (MAM), Laser powder bed fusion (L-PBF), Machine learning (ML), Process parameter optimization, Anomaly detection, and Technology
- Abstract
-
Metal Additive Manufacturing (MAM) applications are growing rapidly in high-tech industries such as biomedical and aerospace, and in many other industries including tooling, casting, automotive, oil and gas for production and prototyping. The onset of Laser Powder Bed Fusion (L-PBF) technology proved to be an efficient technique that can convert metal additive manufacturing into a reformed process if anomalies occurred during this process are eliminated. Industrial applications demand high accuracy and risk-free products whereas prototyping using MAM demand lower process and product development time. In order to address these challenges, Machine Learning (ML) experts and researchers are trying to adopt an efficient method for anomaly detection in L-PBF so that the MAM process can be optimized and desired final part properties can be achieved. This review provides an overview of L-PBF and outlines the ML methods used for anomaly detection in L-PBF. The paper also explains how ML methods are being used as a step forward toward enabling the real-time process control of MAM and the process can be optimized for higher accuracy, lower production time, and less material waste. Authors have a strong believe that ML techniques can reform MAM process, whereas research concerned to the anomaly detection using ML techniques is limited and needs attention.This review has been done with a hope that ML experts can easily find a direction and contribute in this field.
- Full text View record in DOAJ
6. Design and prototyping of a robotic hand for sign language using locally-sourced materials [2023]
-
Ibrahim A. Adeyanju, Sheriffdeen O. Alabi, Adebimpe O. Esan, Bolaji A. Omodunbi, Oluwaseyi O. Bello, and Samuel Fanijo
- Scientific African, Vol 19, Iss , Pp e01533- (2023)
- Subjects
-
Android, Communication, Deaf, Disability, Dumb, Hardware, and Science
- Abstract
-
People living with disability constitute a significant percentage of the world population. For many people with disabilities, assistance and support are prerequisites for participating in societal activities. This research work developed a hardware prototype of a robotic hand forfor sign language communication with persons living with hard-of-hearing disabilities (deaf and/or dumb). The prototype has three basic modules: the input unit, the control unit, and the robotic hand. The input unit is designed as an Android-based mobile application with speech recognition capabilities while the control unit is ATMEGA 2560 microcontroller board. The robotic hand is constructed using locally available materials (bathroom Slippers, expandable rubber, straw pipe, and tiny rope) together with three servo motors and is designed to look and perform movements similar to a human hand. The prototype was evaluated quantitatively in terms of empirical accuracy and response time. It was also evaluated qualitatively by thirty-five (35) users which included fifteen (15) experience ASL users, eighteen (18) non-experience ASL users, and two (2) ASL experts, who completed questionnaires to rate the prototype on a 5-point Likert scale in terms of five parameters: functionality, reliability, ease of use, efficiency, and portability. An accuracy of 78.43% with an average response time of 2 s was obtained from empirical experiments. Statistical analysis of user responses showed that 97%, 68%, 77%, 80%, and 83% of users rated the system as above average for functionality, reliability, ease of use, efficiency, and portability, respectively. The robotic hand effectively communicates American Sign Language which includes English Alphabets, numbers (1–9), and some selected common words, which can be demonstrated with a single hand for hard of hearing persons. To the best of our knowledge, this work is the first ASL robotic hand that is based on locally sourced cost-effective materials, and we build on flaws from existing literature, most of which are either template-based, not real-time, or expensive. In terms of future work, the prototype can be improved by extending the single robotic hand to a fully robotic body with two hands.
- Full text View record in DOAJ
7. 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid [2023]
-
Parrilla, Marc, Vanhooydonck, Andres, Johns, Maby, Watts, Regan, and De Wael, Karolien
- Sensors & Actuators: B. Chemical. March 1, 2023, Vol. 378
- Full text View on content provider's site
-
Mohaghegh Montazeri M and Taghipour F
Water research [Water Res] 2023 Feb 15; Vol. 230, pp. 119581. Date of Electronic Publication: 2023 Jan 05.
- Subjects
-
Hydrodynamics, Kinetics, Ultraviolet Rays, Disinfection methods, and Water Purification methods
- Abstract
-
We developed and studied one of the first high-flow UV-LED water disinfection reactors applicable to point-of-entry (POE) water disinfection. A multiphysics computational model was created to predict the performance of UV reactor design concepts by modeling the synergic effect of radiation, hydrodynamics, and the inactivation kinetics of microorganisms. The geometrical optics that describe light propagation in terms of rays were employed to model the radiation profile of multiple UV-LEDs with optical components in complex reactor geometries, the first account of such an approach. The computational solution of the mass, momentum, and species equations was applied to model the hydrodynamics and kinetics. We designed a reactor through a detailed computational study of the optical and hydrodynamic performance of various design strategies. Highly efficient UV fluence distribution in the reactor was achieved by creating nearly collimated UV radiation beams across the reactor and managing the hydrodynamics using a flow distributor. We fabricated a prototype of the optimized reactor design for experimental studies. Biodosimetry tests were conducted for various flow rates and UV transmittances (UVTs), and the experimental results were compared with the model predictions. The design, which employed 14 UV-LEDs assembled over custom-made optical modules, resulted in a reduction equivalent dose (RED) of 65 mJ/cm 2 at a flow rate of 20 liters per minute (LPM) while consuming about 50 W energy. This reactor design required only 0.05 W radiant power per LPM flow rate to achieve an NSF Class A UV dose equivalent of 40 mJ/cm 2 . The findings of this study provide insights into UV-LED reactor development strategies as well as the creation and application of reactor virtual prototyping tools for designing and optimizing highly efficient UV-LED reactors.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023. Published by Elsevier Ltd.)
- Full text View on content provider's site
9. Fanpy: A python library for prototyping multideterminant methods in ab initio quantum chemistry. [2023]
-
Kim TD, Richer M, Sánchez-Díaz G, Miranda-Quintana RA, Verstraelen T, Heidar-Zadeh F, and Ayers PW
Journal of computational chemistry [J Comput Chem] 2023 Feb 15; Vol. 44 (5), pp. 697-709. Date of Electronic Publication: 2022 Nov 28.
- Abstract
-
Fanpy is a free and open-source Python library for developing and testing multideterminant wavefunctions and related ab initio methods in electronic structure theory. The main use of Fanpy is to quickly prototype new methods by making it easier to convert the mathematical formulation of a new wavefunction ansätze to a working implementation. Fanpy is designed based on our recently introduced Flexible Ansatz for N-electron Configuration Interaction (FANCI) framework, where multideterminant wavefunctions are represented by their overlaps with Slater determinants of orthonormal spin-orbitals. In the simplest case, a new wavefunction ansatz can be implemented by simply writing a function for evaluating its overlap with an arbitrary Slater determinant. Fanpy is modular in both implementation and theory: the wavefunction model, the system's Hamiltonian, and the choice of objective function are all independent modules. This modular structure makes it easy for users to mix and match different methods and for developers to quickly explore new ideas. Fanpy is written purely in Python with standard dependencies, making it accessible for various operating systems. In addition, it adheres to principles of modern software development, including comprehensive documentation, extensive testing, quality assurance, and continuous integration and delivery protocols. This article is considered to be the official release notes for the Fanpy library.
(© 2022 Wiley Periodicals LLC.)
- Full text View on content provider's site
-
Borda E, Medagoda DI, Airaghi Leccardi MJI, Zollinger EG, and Ghezzi D
Biomaterials [Biomaterials] 2023 Feb; Vol. 293, pp. 121979. Date of Electronic Publication: 2022 Dec 27.
- Abstract
-
Off-stoichiometry thiol-ene-epoxy (OSTE+) thermosets show low permeability to gases and little absorption of dissolved molecules, allow direct low-temperature dry bonding without surface treatments, have a low Young's modulus, and can be manufactured via UV polymerisation. For these reasons, OSTE+ thermosets have recently gained attention for the rapid prototyping of microfluidic chips. Moreover, their compatibility with standard clean-room processes and outstanding mechanical properties make OSTE+ an excellent candidate as a novel material for neural implants. Here we exploit OSTE+ to manufacture a conformable multilayer micro-electrocorticography array with 16 platinum electrodes coated with platinum black. The mechanical properties allow conformability to curved surfaces such as the brain. The low permeability and strong adhesion between layers improve the stability of the device. Acute experiments in mice show the multimodal capacity of the array to record and stimulate the neural tissue by smoothly conforming to the mouse cortex. Devices are not cytotoxic, and immunohistochemistry stainings reveal only modest foreign body reaction after two and six weeks of chronic implantation. This work introduces OSTE+ as a promising material for implantable neural interfaces.
Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Diego Ghezzi reports financial support was provided by Medtronic plc.
(Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Full text View on content provider's site
-
Alarçin E, İzbudak B, Yüce Erarslan E, Domingo S, Tutar R, Titi K, Kocaaga B, Guner FS, and Bal-Öztürk A
Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2023 Feb; Vol. 111 (2), pp. 209-223. Date of Electronic Publication: 2022 Oct 10.
- Subjects
-
Nanogels
- Abstract
-
Layered double hydroxides (LDHs) offer unique source of inspiration for design of bone mimetic biomaterials due to their superior mechanical properties, drug delivery capability and regulation cellular behaviors, particularly by divalent metal cations in their structure. Three-dimensional (3D) bioprinting of LDHs holds great promise as a novel strategy thanks to highly tunable physiochemical properties and shear-thinning ability of LDHs, which allow shape fidelity after deposition. Herein, we introduce a straightforward strategy for extrusion bioprinting of cell laden nanocomposite hydrogel bioink of gelatin methacryloyl (GelMA) biopolymer and LDHs nanoparticles. First, we synthesized LDHs by co-precipitation process and systematically examined the effect of LDHs addition on printing parameters such as printing pressure, extrusion rate, printing speed, and finally bioink printability in creating grid-like constructs. The developed hydrogel bioinks provided precise control over extrudability, extrusion uniformity, and structural integrity after deposition. Based on the printability and rheological analysis, the printability could be altered by controlling the concentration of LDHs, and printability was found to be ideal with the addition of 3 wt % LDHs. The addition of LDHs resulted in remarkably enhanced compressive strength from 652 kPa (G-LDH0) to 1168 kPa (G-LDH3). It was shown that the printed nanocomposite hydrogel scaffolds were able to support encapsulated osteoblast survival, spreading, and proliferation in the absence of any osteoinductive factors taking advantage of LDHs. In addition, cells encapsulated in G-LDH3 had a larger cell spreading area and higher cell aspect ratio than those encapsulated in G-LDH0. Altogether, the results demonstrated that the developed GelMA/LDHs nanocomposite hydrogel bioink revealed a high potential for extrusion bioprinting with high structural fidelity to fabricate implantable 3D hydrogel constructs for repair of bone defects.
(© 2022 Wiley Periodicals LLC.)
- Full text View on content provider's site
-
Yuan J, Cheng J, Fan C, Wu P, Zhang Y, Cao M, and Shi T
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2023 Feb; Vol. 107 (2-3), pp. 985.
- Full text View on content provider's site
-
Davidson JB, Cashaback JGA, and Fischer SL
Computer methods in biomechanics and biomedical engineering [Comput Methods Biomech Biomed Engin] 2023 Feb; Vol. 26 (2), pp. 187-198. Date of Electronic Publication: 2022 Mar 17.
- Abstract
-
Multi-objective optimization digital human models permit users to predict postures that follow performance criteria, such as minimizing torques. Currently, it is unknown how to weight different objective functions to best predict postures. Objective one was to describe a response surface method to determine optimal objective function weightings to predict lift postures. Objective two was to evaluate the sensitivity of different error calculation methods. Our response surface approach has utility for determining optimal objective function weightings when using a digital human model to evaluate human-system interactions in early design stages. The approach was not dependent on variations in error calculation methods.
- Full text View on content provider's site
-
Silcock J, Marques I, Olaniyan J, Raynor DK, Baxter H, Gray N, Zaidi STR, Peat G, Fylan B, Breen L, Benn J, and Alldred DP
Health expectations : an international journal of public participation in health care and health policy [Health Expect] 2023 Feb; Vol. 26 (1), pp. 399-408. Date of Electronic Publication: 2022 Nov 24.
- Subjects
-
Humans, Aged, Caregivers, United Kingdom, Polypharmacy, Frailty, and Deprescriptions
- Abstract
-
Background: In older people living with frailty, polypharmacy can lead to preventable harm like adverse drug reactions and hospitalization. Deprescribing is a strategy to reduce problematic polypharmacy. All stakeholders should be actively involved in developing a person-centred deprescribing process that involves shared decision-making.
Objective: To co-design an intervention, supported by a logic model, to increase the engagement of older people living with frailty in the process of deprescribing.
Design: Experience-based co-design is an approach to service improvement, which uses service users and providers to identify problems and design solutions. This was used to create a person-centred intervention with the potential to improve the quality and outcomes of the deprescribing process. A 'trigger film' showing older people talking about their healthcare experiences was created and facilitated discussions about current problems in the deprescribing process. Problems were then prioritized and appropriate solutions were developed. The review located the solutions in the context of current processes and procedures. An ideal care pathway and a complex intervention to deliver better care were developed.
Setting and Participants: Older people living with frailty, their informal carers and professionals living and/or working in West Yorkshire, England, UK. Deprescribing was considered in the context of primary care.
Results: The current deprescribing process differed from an ideal pathway. A complex intervention containing seven elements was required to move towards the ideal pathway. Three of these elements were prototyped and four still need development. The complex intervention responded to priorities about (a) clarity for older people about what was happening at all stages in the deprescribing process and (b) the quality of one-to-one consultations.
Conclusions: Priorities for improving the current deprescribing process were successfully identified. Solutions were developed and structured as a complex intervention. Further work is underway to (a) complete the prototyping of the intervention and (b) conduct feasibility testing.
Patient or Public Contribution: Older people living with frailty (and their informal carers) have made a central contribution, as collaborators, to ensure that a complex intervention has the greatest possible potential to enhance the experience of deprescribing medicines.
(© 2022 The Authors. Health Expectations published by John Wiley & Sons Ltd.)
- Full text View on content provider's site
-
Simon Orlob, Christoph Hobisch, Johannes Wittig, Daniel Auinger, Otto Touzil, Gabriel Honnef, Otmar Schindler, Philipp Metnitz, Georg Feigl, and Gerhard Prause
- Data in Brief, Vol 46, Iss , Pp 108767- (2023)
- Subjects
-
cardiopulmonary resuscitation, Mechanical ventilation, Mechanical chest-compression, Respiratory monitoring, Thiel embalmed cadaver, Biomechanics, Computer applications to medicine. Medical informatics, R858-859.7, Science (General), and Q1-390
- Abstract
-
The data presented in this article relate to the research article, “Reliability of mechanical ventilation during continuous chest compressions: a crossover study of transport ventilators in a human cadaver model of CPR” [1].This article contains raw data of continuous recordings of airflow, airway and esophageal pressure during the whole experiment. Data of mechanical ventilation was obtained under ongoing chest compressions and from repetitive measurements of pressure-volume curves. All signals are presented as raw time series data with a sample rate of 200Hz for flow and 500 Hz for pressure. Additionally, we hereby publish extracted time series recordings of force and compression depth from the used automated chest compression device. Concomitantly, we report tables with time stamps from our laboratory book by which the data can be sequenced into different phases of the study protocol.We also present a dataset of derived volumes which was used for statistical analysis in our research article together with the used exclusion list.The reported dataset can help to understand mechanical properties of Thiel-embalmed cadavers better and compare different models of cardiopulmonary resuscitation (CPR). Future research may use this data to translate our findings from bench to bedside. Our recordings may become useful in developing respiratory monitors for CPR, especially in prototyping and testing algorithms of such devices.
- Full text View on content provider's site
-
Jonathan Silcock, Iuri Marques, Janice Olaniyan, David K. Raynor, Helen Baxter, Nicky Gray, Syed T. R. Zaidi, George Peat, Beth Fylan, Liz Breen, Jonathan Benn, and David P. Alldred
- Health Expectations, Vol 26, Iss 1, Pp 399-408 (2023)
- Subjects
-
aged, deprescribing, frailty, polypharmacy, primary health care, referral and consultation, Medicine (General), R5-920, Public aspects of medicine, and RA1-1270
- Abstract
-
Abstract Background In older people living with frailty, polypharmacy can lead to preventable harm like adverse drug reactions and hospitalization. Deprescribing is a strategy to reduce problematic polypharmacy. All stakeholders should be actively involved in developing a person‐centred deprescribing process that involves shared decision‐making. Objective To co‐design an intervention, supported by a logic model, to increase the engagement of older people living with frailty in the process of deprescribing. Design Experience‐based co‐design is an approach to service improvement, which uses service users and providers to identify problems and design solutions. This was used to create a person‐centred intervention with the potential to improve the quality and outcomes of the deprescribing process. A ‘trigger film’ showing older people talking about their healthcare experiences was created and facilitated discussions about current problems in the deprescribing process. Problems were then prioritized and appropriate solutions were developed. The review located the solutions in the context of current processes and procedures. An ideal care pathway and a complex intervention to deliver better care were developed. Setting and Participants Older people living with frailty, their informal carers and professionals living and/or working in West Yorkshire, England, UK. Deprescribing was considered in the context of primary care. Results The current deprescribing process differed from an ideal pathway. A complex intervention containing seven elements was required to move towards the ideal pathway. Three of these elements were prototyped and four still need development. The complex intervention responded to priorities about (a) clarity for older people about what was happening at all stages in the deprescribing process and (b) the quality of one‐to‐one consultations. Conclusions Priorities for improving the current deprescribing process were successfully identified. Solutions were developed and structured as a complex intervention. Further work is underway to (a) complete the prototyping of the intervention and (b) conduct feasibility testing. Patient or Public Contribution Older people living with frailty (and their informal carers) have made a central contribution, as collaborators, to ensure that a complex intervention has the greatest possible potential to enhance the experience of deprescribing medicines.
- Full text
View/download PDF
-
Russell Galea, Pierre-Sandre Farrugia, Krzysztof K. Dudek, Daphne Attard, Joseph N. Grima, and Ruben Gatt
- Materials & Design, Vol 226, Iss , Pp 111596- (2023)
- Subjects
-
Perforations, Subtractive manufacturing, Negative Poisson’s ratio, 3D auxetic structures, Materials of engineering and construction. Mechanics of materials, and TA401-492
- Abstract
-
Prototyping of three-dimensional mechanical metamaterials that exhibit negative Poisson’s ratio is usually performed through additive manufacturing. Although this technique has a huge potential, its use to engineer mechanical metamaterials for consumer products is still challenging. In this work, a novel design method is being proposed where 3D auxetic metamaterials can be produced by introducing continuous voids of constant cross-sectional area. Such voids would be inserted at strategic positions in different perpendicular planes of a solid block to obtain a continuous three-dimensional mechanical metamaterial that can exhibit the desired mechanical characteristics. The use of continuous voids to design the 3D meatamaterial makes it possible to use additive manufacturing, subtractive manufacturing as well as casting to produce these systems. The proposed design method is explained by using continuous voids having a diamond shaped cross-sectional area. The resulting group of structures can be described as connected polygons and were found to exhibit a negative or zero Poisson’s ratio. The analysed systems were also found to have a strain independent Poisson’s ratio up to at least 7% strain. The proposed design method can thus facilitate the availability of three dimensional auxetic metamaterials in the consumer market which to date is conspicuous by their absence.
- Full text View on content provider's site
-
Francesca Usai, Giada Loi, Franca Scocozza, Massimo Bellato, Ignazio Castagliuolo, Michele Conti, and Lorenzo Pasotti
- Materials Today Bio, Vol 18, Iss , Pp 100526- (2023)
- Subjects
-
Bioprinting, Engineered living materials, Biosensors, Synthetic biology, Engineered bacteria, Medicine (General), R5-920, Biology (General), and QH301-705.5
- Abstract
-
The intertwined adoption of synthetic biology and 3D bioprinting has the potential to improve different application fields by fabricating engineered living materials (ELMs) with unnatural genetically-encoded sense & response capabilities. However, efforts are still needed to streamline the fabrication of sensing ELMs compatible with field use and improving their functional complexity. To investigate these two unmet needs, we adopted a workflow to reproducibly construct bacterial ELMs with synthetic biosensing circuits that provide red pigmentation as visible readout in response to different proof-of-concept chemical inducers. We first fabricated single-input/single-output ELMs and we demonstrated their robust performance in terms of longevity (cell viability and evolutionary stability >15 days, and long-term storage >1 month), sensing in harsh, non-sterile or nutrient-free conditions compatible with field use (soil, water, and clinical samples, including real samples from Pseudomonas aeruginosa infected patients). Then, we fabricated ELMs including multiple spatially-separated biosensor strains to engineer: level-bar materials detecting molecule concentration ranges, multi-input/multi-output devices with multiplexed sensing and information processing capabilities, and materials with cell-cell communication enabling on-demand pattern formation. Overall, we showed successful field use and multiplexed functioning of reproducibly fabricated ELMs, paving the way to a future automation of the prototyping process and boosting applications of such devices as in-situ monitoring tools or easy-to-use sensing kits.
- Full text View on content provider's site
19. Design thinking competence as self-perceived by nursing students in Taiwan: A cross-sectional study [2023]
-
Liu, Hsing-Yuan
- Nurse Education Today. February, 2023, Vol. 121
-
Tan M, Dharani D, Dong X, Maiorana C, Chaudhuri B, Nagapudi K, Chang SY, and Ma AWK
International journal of pharmaceutics [Int J Pharm] 2023 Jan 25; Vol. 631, pp. 122540. Date of Electronic Publication: 2022 Dec 23.
- Subjects
-
Delayed-Action Preparations, Powders, Printing, Three-Dimensional, Tablets, Excipients, Hypromellose Derivatives, Drug Liberation, Technology, Pharmaceutical methods, and Acetaminophen
- Abstract
-
The additive nature and versatility of 3D printing show great promise in the rapid prototyping of solid dosage forms for clinical trials and mass customization for personalized medicine applications. This paper reports the formulation and process development of sustained release solid dosage forms, termed "printlets", using a pilot-scale binder jetting (BJT) 3D printer and acetaminophen (APAP) as the model drug. With the inclusion of hydroxypropyl methylcellulose (HPMC) as a release retardant polymer in the print powder, the drug release time of APAP increased considerably from minutes to hours. However, given the swelling propensity of HPMC, a thicker layer of powder must be laid down during printing to avoid any shape distortion of the printlets. For a fixed print volume, the level of binder saturation (i.e., ratio between the liquid binder and powder in the as-printed sample) is inversely proportional to the thickness of the spread powder layer. An increase in the spread powder layer inadvertently resulted in a lower level of binder saturation and consequently weaker printlets. By increasing the level of binder saturation with jetting from more print heads, the mechanical strength of printlets containing 18% HPMC was successfully restored. The resultant printlets have a drug release time of 3.5 h and a breaking force of 12.5 kgf that is comparable to the fast-disintegrating printlets containing no HPMC and surpasses manually pressed tablets with the same HPMC content.
Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Anson Ma reports financial support was provided by Genentech. Anson Ma reports equipment, drugs, or supplies was provided by Kerry Inc. Anson Ma reports equipment, drugs, or supplies was provided by BASF Corp. Anson Ma reports equipment, drugs, or supplies was provided by Ashland Inc. Anson Ma reports equipment, drugs, or supplies was provided by Anton Paar USA Inc. Anson Ma reports a relationship with A.D.A.M. that includes: board membership.
(Copyright © 2022 Elsevier B.V. All rights reserved.)
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 20
Next