articles+ search results
4,407 articles+ results
1 - 50
Next
Number of results to display per page
1 - 50
Next
Number of results to display per page
-
Gaspar AS, Silva NA, Price AN, Ferreira AM, and Nunes RG
Magnetic resonance in medicine [Magn Reson Med] 2023 Aug; Vol. 90 (2), pp. 539-551. Date of Electronic Publication: 2023 Apr 10.
- Subjects
-
Humans, Magnetic Resonance Imaging methods, Magnetic Resonance Spectroscopy, Phantoms, Imaging, Acceleration, Reproducibility of Results, Heart diagnostic imaging, Image Interpretation, Computer-Assisted methods, and Myocardium
- Abstract
-
Purpose: Enabling fast and accessible myocardial T 1 mapping is crucial for extending its clinical application. We introduce Open-MOLLI-SMS combining simultaneous multi-slice (SMS) with auto-calibration and variable-rate selective excitation (VERSE)-multiband pulses to obtain all slices in a fast single-shot T 1 mapping sequence.
Methods: Open-MOLLI-SMS was developed by integrating SMS with the open-source method Open-MOLLI previously implemented in Pulseq. Three methods were integrated for Open-MOLLI-SMS: (1) auto-calibration blip patterns to ensure consistency between the data and coil information; (2) a blipped-balanced SSFP (bSSFP) readout to induce controlled aliasing in parallel imaging shifts without disturbing the bSSFP frequency response; and (3) a VERSE-multiband pulse for minimizing the achievable TR and the specific absortion rate (SAR) impact of SMS. Two (SMS2) or three (SMS3) slices were excited simultaneously and encoded with an in-plane acceleration factor of 2. Experiments were performed in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom and five healthy volunteers.
Results: Phantom results show accurate T 1 estimates for reference values between 400 to 2200 ms. Artifacts were visible for Open-MOLLI-SMS3 but not replicated in vivo. In vivo Open-MOLLI-SMS (T 1 SMS2 = 993 ± 10 ms; T 1 SMS3 = 1031 ± 17 ms) provided similar values to mean T 1 single-band Open-MOLLI estimates (T 1 Open-MOLLI = 1005 ± 47 ms). Open-MOLLI-SMS2 provided the closest estimates to the reference.
Conclusion: This proof-of-principle implementation study demonstrates the feasibility of speeding up T 1 -mapping acquisitions and increasing coverage by combining auto-calibration strategies with a blipped-bSFFP readout and VERSE multiband RF excitation pulses. The proposed methodology was built on the Open-MOLLI mapping sequence, which provides a fast means for prototyping and enables open-source sharing of the method.
(© 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)
- Full text View on content provider's site
2. Rapid prototyping for quantifying belief weights of competing hypotheses about emergent diseases. [2023]
-
Robertson EP, Walsh DP, Martin J, Work TM, Kellogg CA, Evans JS, Barker V, Hawthorn A, Aeby G, Paul VJ, Walker BK, Kiryu Y, Woodley CM, Meyer JL, Rosales SM, Studivan M, Moore JF, Brandt ME, and Bruckner A
Journal of environmental management [J Environ Manage] 2023 Jul 01; Vol. 337, pp. 117668. Date of Electronic Publication: 2023 Mar 22.
- Subjects
-
Animals, Bayes Theorem, Uncertainty, and Anthozoa
- Abstract
-
Emerging diseases can have devastating consequences for wildlife and require a rapid response. A critical first step towards developing appropriate management is identifying the etiology of the disease, which can be difficult to determine, particularly early in emergence. Gathering and synthesizing existing information about potential disease causes, by leveraging expert knowledge or relevant existing studies, provides a principled approach to quickly inform decision-making and management efforts. Additionally, updating the current state of knowledge as more information becomes available over time can reduce scientific uncertainty and lead to substantial improvement in the decision-making process and the application of management actions that incorporate and adapt to newly acquired scientific understanding. Here we present a rapid prototyping method for quantifying belief weights for competing hypotheses about the etiology of disease using a combination of formal expert elicitation and Bayesian hierarchical modeling. We illustrate the application of this approach for investigating the etiology of stony coral tissue loss disease (SCTLD) and discuss the opportunities and challenges of this approach for addressing emergent diseases. Lastly, we detail how our work may apply to other pressing management or conservation problems that require quick responses. We found the rapid prototyping methods to be an efficient and rapid means to narrow down the number of potential hypotheses, synthesize current understanding, and help prioritize future studies and experiments. This approach is rapid by providing a snapshot assessment of the current state of knowledge. It can also be updated periodically (e.g., annually) to assess changes in belief weights over time as scientific understanding increases. Synthesis and applications: The rapid prototyping approaches demonstrated here can be used to combine knowledge from multiple experts and/or studies to help with fast decision-making needed for urgent conservation issues including emerging diseases and other management problems that require rapid responses. These approaches can also be used to adjust belief weights over time as studies and expert knowledge accumulate and can be a helpful tool for adapting management decisions.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Full text View on content provider's site
-
Schulze-Meeßen L and Hamborg KC
Applied ergonomics [Appl Ergon] 2023 Jul; Vol. 110, pp. 104012. Date of Electronic Publication: 2023 Mar 14.
- Subjects
-
Humans, Models, Psychological, and Text Messaging
- Abstract
-
In an experiment so-termed sociotechnical prototypes based on either a graphical or a textual representation of an envisioned work system were evaluated with regard to their ability to communicate a design vision to people involved in a participatory design process. Results of the study reveal, in line with hypotheses, that the graphical prototype, in contrast to the textual one, was significantly better accepted as well as faster explored and evaluated. Moreover, results support the hypothesis that the graphical sociotechnical prototype helps to build up a more accurate mental representation of the system with regard to its elements (e.g. job roles, tasks). However, no positive effect on the mental representation of the system in terms of the relations between its elements (e.g. which role performs which task?) was found. Finally, practical implications and perspectives for further development of the sociotechnical prototyping approach to envision future work systems are discussed.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Full text View on content provider's site
-
Silva-Barroso AS, Cabral CSD, Ferreira P, Moreira AF, and Correia IJ
International journal of biological macromolecules [Int J Biol Macromol] 2023 Jun 01; Vol. 239, pp. 124258. Date of Electronic Publication: 2023 Mar 31.
- Subjects
-
Humans, Lignin, Alginates pharmacology, Alginates chemistry, Calcium Phosphates pharmacology, Calcium Phosphates chemistry, Bone Regeneration, Osteogenesis, Printing, Three-Dimensional, Tissue Scaffolds chemistry, and Tissue Engineering methods
- Abstract
-
The bone is a connective, vascularized, and mineralized tissue that confers protection to organs, and participates in the support and locomotion of the human body, maintenance of homeostasis, as well as in hematopoiesis. However, throughout the lifetime, bone defects may arise due to traumas (mechanical fractures), diseases, and/or aging, which when too extensive compromise the ability of the bone to self-regenerate. To surpass such clinical situation, different therapeutic approaches have been pursued. Rapid prototyping techniques using composite materials (consisting of ceramics and polymers) have been used to produce customized 3D structures with osteoinductive and osteoconductive properties. In order to reinforce the mechanical and osteogenic properties of these 3D structures, herein, a new 3D scaffold was produced through the layer-by-layer deposition of a tricalcium phosphate (TCP), sodium alginate (SA), and lignin (LG) mixture using the Fab@Home 3D-Plotter. Three different TCP/LG/SA formulations, LG/SA ratio 1:3, 1:2, or 1:1, were produced and subsequently evaluated to determine their suitability for bone regeneration. The physicochemical assays demonstrated that the LG inclusion improved the mechanical resistance of the scaffolds, particularly in the 1:2 ratio, since a 15 % increase in the mechanical strength was observed. Moreover, all TCP/LG/SA formulations showed an enhanced wettability and maintained their capacity to promote the osteoblasts' adhesion and proliferation as well as their bioactivity (formation of hydroxyapatite crystals). Such results support the LG inclusion and application in the development of 3D scaffolds aimed for bone regeneration.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Marchal-Chaud H, Rieger R, Mai VT, Courtial EJ, Ottenio M, Bonnefont-Rebeix C, Bruyère K, and Boulocher C
Biomaterials advances [Biomater Adv] 2023 Jun; Vol. 149, pp. 213401. Date of Electronic Publication: 2023 Mar 25.
- Subjects
-
Stress, Mechanical, Bioreactors, Polyesters, Tissue Engineering methods, and Mechanotransduction, Cellular physiology
- Abstract
-
Objective: Tissue engineering (TE) is the study and development of biological substitutes to restore, maintain or improve tissue function. Tissue engineered constructs (TECs) still present differences in mechanical and biological properties compared to native tissue. Mechanotransduction is the process through which mechanical stimulation triggers proliferation, apoptosis, and extracellular matrix synthesis, among other cell activities. Regarding that aspect, the effect of in vitro stimulations such as compression, stretching, bending or fluid shear stress loading modalities have been extensively studied. A fluid flow used to produce contactless mechanical stimulation induced by an air pulse could be easily achieved in vivo without altering the tissue integrity.
Methods: A new air-pulse device for contactless and controlled mechanical simulation of a TECs was developed and validated in this study conducted in the following three phases: 1) conception of the controlled air-pulse device combined with a 3D printed bioreactor; 2) experimental and numerical mechanical characterization of the air-pulse impact by digital image correlation; and 3) achieving sterility and noncytotoxicity of the air-pulse and of the 3D printed bioreactor using a novel dedicated sterilization process.
Results: We demonstrated that the treated PLA (polylactic acid) was noncytotoxic and did not influence cell proliferation. An ethanol/autoclaved sterilization protocol for 3D printed objects in PLA has been developed in this study, enabling the use of 3D printing in cell culture. A numerical twin of the device was developed and experimentally characterized by digital image correlation. It showed a coefficient of determination R 2 = 0.98 between the numerical and averaged experimental surface displacement profiles of the TEC substitute.
Conclusion: The results of the study assessed the noncytotoxicity of PLA for prototyping by 3D printing the homemade bioreactor. A novel sterilization process for PLA was developed in this study based on a thermochemical process. A numerical twin using fluid-structure interaction method has been developed to investigate the micromechanical effects of air pulses inside the TEC, which cannot all be measured experimentally, for instance, wave propagation generated during the air-pulse impact. The device could be used to study the cell response to contactless cyclic mechanical stimulation, particularly in TEC with fibroblasts, stromal cells and mesenchymal stem cells, which have been shown to be sensitive to the frequency and strain level at the air-liquid interface.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
- Full text View on content provider's site
-
Garmasukis R, Hackl C, Charvat A, Mayr SG, and Abel B
Current opinion in biotechnology [Curr Opin Biotechnol] 2023 Jun; Vol. 81, pp. 102948. Date of Electronic Publication: 2023 May 08.
- Subjects
-
Biotechnology, Microtechnology, Printing, Three-Dimensional, Microfluidics methods, and Cell Culture Techniques
- Abstract
-
Rapid prototyping of microfluidic chips is a key enabler for controlled biotechnology applications in microspaces, as it allows for the efficient design and production of microfluidic systems. With rapid prototyping, researchers and engineers can quickly create and test new microfluidic chip designs, which can then be optimized for specific applications in biotechnology. One of the key advantages of microfluidic chips for biotechnology is the ability to manipulate and control biological samples in a microspace, which enables precise and controlled experiments under well-defined conditions. This is particularly useful for applications such as cell culture, drug discovery, and diagnostic assays, where precise control over the biological environment is crucial for obtaining accurate results. Established methods, for example, soft lithography, 3D printing, injection molding, as well as other recently highlighted innovative approaches, will be compared and challenges as well as limitations will be discussed. It will be shown that rapid prototyping of microfluidic chips enables the use of advanced materials and technologies, such as smart materials and digital sensors, which can further enhance the capabilities of microfluidic systems for biotechnology applications. Overall, rapid prototyping of microfluidic chips is an important enabling technology for controlled biotechnology applications in microspaces, as well as for upscaling it into macroscopic bioreactors, and its continued development and improvement will play a critical role in advancing the field. The review will highlight recent trends in terms of materials and competing approaches and shed light on current challenges on the way toward integrated microtechnologies. Also, the possibility to easy and direct implementation of novel functions (membranes, functionalization of interfaces, etc.) is discussed.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Full text View on content provider's site
7. Application of User-Centered Codesign Principles to Address Barriers in Therapeutic Drug Monitoring. [2023]
-
Wong S, Davis A, Selby PR, Khoo R, Gwilt I, Stocker SL, Ward MB, and Reuter SE
Therapeutic drug monitoring [Ther Drug Monit] 2023 Jun 01; Vol. 45 (3), pp. 368-375.
- Subjects
-
Humans, Software, Pharmacists, Vancomycin, and Drug Monitoring
- Abstract
-
Background: Different software applications have been developed to support health care professionals in individualized drug dosing. However, their translation into clinical practice is limited, partly because of poor usability and integration into workflow, which can be attributed to the limited involvement of health care professionals in the development and implementation of drug dosing software. This study applied codesign principles to inform the design of a drug dosing software to address barriers in therapeutic drug monitoring using vancomycin as an example.
Methods: Three workshops (face-to-face and online) were conducted by design researchers with pharmacists and prescribers. User journey storyboards, user personas, and prototyping tools were used to explore existing barriers to practice and opportunities for innovation through drug dosing software design. A prototype of the software interface was developed for further evaluation.
Results: Health care professionals (11 hospital pharmacists and 6 prescribers) with ≥2 years of clinical experience were recruited. Confidence and software usability emerged as the main themes. Participants identified a lack of confidence in vancomycin dosing and pharmacokinetic understanding and difficulty in accessing practice guidelines as key barriers that could be addressed through software implementation. Accessibility to information (eg, guidelines and pharmacokinetic resources) and information presentation (eg, graphical) within the dosing software were dependent on the needs and experience of the user. A software prototype with a speedometer-dial visual to convey optimal doses was well received by participants.
Conclusions: The perspectives of health care professionals highlight the need for drug dosing software to be user centered and adaptable to the needs and workflow of end users. Continuous engagement with stakeholders on tool usability, training, and education is needed to promote the implementation in practice.
Competing Interests: The authors declare no conflict of interest.
(Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.)
- Full text View on content provider's site
8. Microfluidic Approaches for Microactuators: From Fabrication, Actuation, to Functionalization. [2023]
-
Ma ZC, Fan J, Wang H, Chen W, Yang GZ, and Han B
Small (Weinheim an der Bergstrasse, Germany) [Small] 2023 Jun; Vol. 19 (22), pp. e2300469. Date of Electronic Publication: 2023 Feb 28.
- Abstract
-
Microactuators can autonomously convert external energy into specific mechanical motions. With the feature sizes varying from the micrometer to millimeter scale, microactuators offer many operation and control possibilities for miniaturized devices. In recent years, advanced microfluidic techniques have revolutionized the fabrication, actuation, and functionalization of microactuators. Microfluidics can not only facilitate fabrication with continuously changing materials but also deliver various signals to stimulate the microactuators as desired, and consequently improve microfluidic chips with multiple functions. Herein, this cross-field that systematically correlates microactuator properties and microfluidic functions is comprehensively reviewed. The fabrication strategies are classified into two types according to the flow state of the microfluids: stop-flow and continuous-flow prototyping. The working mechanism of microactuators in microfluidic chips is discussed in detail. Finally, the applications of microactuator-enriched functional chips, which include tunable imaging devices, micromanipulation tools, micromotors, and microsensors, are summarized. The existing challenges and future perspectives are also discussed. It is believed that with the rapid progress of this cutting-edge field, intelligent microsystems may realize high-throughput manipulation, characterization, and analysis of tiny objects and find broad applications in various fields, such as tissue engineering, micro/nanorobotics, and analytical devices.
(© 2023 Wiley-VCH GmbH.)
- Full text View on content provider's site
-
Mohaghegh Montazeri M, Raeiszadeh M, and Taghipour F
Journal of environmental chemical engineering [J Environ Chem Eng] 2023 Jun; Vol. 11 (3), pp. 110040. Date of Electronic Publication: 2023 May 05.
- Abstract
-
Microplasma UV lamps have recently emerged as viable excimer-based sources of UV radiation, garnering significant attention during the recent COVID-19 pandemic for their use in disinfection applications because of their ability to emit human-safe far-UVC (200-240 nm) spectrums. An accurate model to simulate the radiation profile of microplasma UV lamps is of paramount importance to develop efficient microplasma lamp-implemented systems. We developed a 3D numerical model of microplasma UV lamps using the ray optics method. The simulation results for lamp irradiance and fluence rate were experimentally validated with standard optical radiometry and actinometry measurements, respectively. To improve the optical efficiency of microplasma lamps, an in-depth analysis of radiation behavior inside the standard commercially available lamp was performed using the geometrical optics method, and several potential scenarios were explored. A 2D modeling of an individual microcavity indicated that the current common lamp design can be significantly improved by preventing radiation loss, and small modifications in optical design can greatly increase the energy performance of the system. Based on the findings of this study, several virtual design concepts were proposed, and their performances were numerically compared with that of the original design of commercial microplasma lamps. The developed model can potentially be integrated with hydrodynamic and kinetic models for the virtual prototyping of complex photoreactors operating with UV microplasma lamps.
Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(© 2023 Elsevier Ltd. All rights reserved.)
- Full text View on content provider's site
-
McNamee AP, Griffith TA, Smith AG, Kuck L, and Simmonds MJ
ASAIO journal (American Society for Artificial Internal Organs : 1992) [ASAIO J] 2023 Jun 01. Date of Electronic Publication: 2023 Jun 01.
- Abstract
-
Ex vivo hemocompatibility testing is a vital element of preclinical assessment for blood-contacting medical devices. Current approaches are resource intensive; thus, we investigated the feasibility of accelerating hemocompatibility testing by standardizing the number of pump exposures in loops of various sizes. Three identical blood loops were constructed, each with a custom-molded reservoir able to facilitate large-volume expansion. Using the HVAD rotary blood pump operating at 5 L·min-1 and 100 mmHg, three test volumes (80, 160, and 320 ml) were circulated for 4000 pump exposures. Blood sampling was performed at individualized intervals every one-sixth of total duration for the assessment of hemolysis and von Willebrand Factor (vWF) degradation. While steady increases in hemolysis (~24 mg·dl-1) were identified in all tests at completion, loop volume was not a primary discriminator. The normalized index of hemolysis did not vary significantly between loops (4.2-4.9 mg·100 L-1). vWF degradation progressively occurred with duration of testing to a similar extent under all conditions. These data support an accelerated approach to preclinical assessment of ex vivo blood damage. Adopting this approach enables: enhanced efficiency for rapid prototyping; reduced ex vivo blood aging, and; greater utility of blood, which is presently limited if 450 ml loops are desired.
Competing Interests: Disclosure: The authors have no conflicts of interest to report.
(Copyright © ASAIO 2023.)
- Full text View on content provider's site
11. Development of a novel hand cleansing product for low-income contexts: The case of tab soap. [2023]
-
Brial E, Aunger R, Muangi WC, and Baxter W
PloS one [PLoS One] 2023 May 31; Vol. 18 (5), pp. e0283741. Date of Electronic Publication: 2023 May 31 (Print Publication: 2023).
- Abstract
-
Handwashing with soap is a widely advocated public health measure, but seldom practiced, partly because it is often difficult (especially outside of rich Western country contexts) to make both soap and water readily available in relevant situations. This study used both Behaviour Centred Design and Human Centred Design to guide development of a novel hand cleansing technology appropriate for the context of post-toilet hand cleansing in resource-poor societies. Extensive prototyping and field testing resulted in the pilot production of 'tab' soap, a small but durable single-use, decomposable substrate embedded with soap. It can be produced in dispenser roll or tear-off formats. With this affordable solution, one may use soap without worrying about contamination pretty much anytime and anywhere. A small-scale field test showed that all poor households in rural and peri-urban areas in Tanzania included in the proof-of-concept study (N = 12 households) would use the product reliably over the medium term. Tab soap awaits full-scale production and marketing but could make hand cleansing a more popular practice around the world.
Competing Interests: The authors have an interest in the innovation becoming available at scale and are working to develop partnerships, apply for grants and otherwise support such progress though no financial gain is expected. While a product is in development, there are currently no patents associated with this research to declare. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
(Copyright: © 2023 Brial et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Full text View on content provider's site
-
Roberts M, Martin E, Brown MD, Cox BT, and Treeby BE
IEEE transactions on ultrasonics, ferroelectrics, and frequency control [IEEE Trans Ultrason Ferroelectr Freq Control] 2023 May 31; Vol. PP. Date of Electronic Publication: 2023 May 31.
- Abstract
-
Fast imaging methods are needed to promote widespread clinical adoption of Ultrasound Tomography (UST), and more widely available UST hardware could support the experimental validation of new measurement configurations. In this work, an open-source 256-element transducer ring array was developed (morganjroberts.github.io/open-UST) and manufactured using rapid prototyping, for only £2k. Novel manufacturing techniques were used, resulting in a 1.17° mean beam axis skew angle, a 104 μm mean element position error, and a ±13.6 μm deviation in matching layer thickness. The nominal acoustic performance was measured using hydrophone scans and watershot data, and the 61.2 dB SNR, 55.4° opening angle, 10.2 mm beamwidth and 54% transmit-receive bandwidth (-12 dB), were found to be similar to existing systems, and compatible with state of the art full-waveform-inversion image reconstruction methods. The inter-element variation in acoustic performance was typically <10% without using normalisation, meaning that the elements can be modelled identically during image reconstruction, removing the need for individual source definitions based on hydrophone measurements. Finally, data from a phantom experiment was successfully reconstructed. These results demonstrate that the open-UST system is accessible for users, and suitable for UST imaging research.
- Full text View on content provider's site
-
Novrianda D, Herini ES, Haryanti F, Supriyadi E, and Lazuardi L
BMC pediatrics [BMC Pediatr] 2023 May 30; Vol. 23 (1), pp. 274. Date of Electronic Publication: 2023 May 30.
- Subjects
-
Humans, Child, User-Centered Design, Indonesia, Mobile Applications, Telemedicine methods, and Leukemia
- Abstract
-
Background: A mobile health (mHealth) application can encourage parents and pediatric patients to be involved in caring for their child's health condition by providing the ability to identify and actively manage chemotherapy-related symptoms in their child. Several monitoring systems available today are diverse in features and system basis. This study aimed to develop and trial the Chemo Assist for Children (CAC) mHealth application for symptom management in children with acute lymphoblastic leukemia (ALL).
Methods: In this study, the development of the CAC application went through multiple phases and methods. Study phases included: (1) development of the application's feature based on the need assessment, (2) creation of content of application based on literature review, (3) develop prototyping of CAC, (4) expert review and feedback on the application content, (5) usability testing by targeted end-user.
Results: Based on need assessment, it was determined that parents with leukemia children were interested in symptom management of chemotherapy and preferred mobile applications. Therefore, a mHealth application was designed to include features to identify symptoms and provide recommendation strategies to manage the symptom. Usability evaluation by end-user revealed that mHealth is a valid, accessible, and appropriate application for users.
Conclusions: The CAC mHealth application developed can meet the needs of technology users to identify symptoms and manage chemotherapy-related symptoms in children with ALL. The CAC mHealth application can accommodate data not recorded at out-of-hospital care, increase the independence of symptom management, and improve communication between parents of children with ALL and health workers.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
Geerts J, Pieterse M, Laverman G, Waanders F, Oosterom N, Slegten J, Salemink E, and Bode C
JMIR formative research [JMIR Form Res] 2023 May 29; Vol. 7, pp. e43636. Date of Electronic Publication: 2023 May 29.
- Abstract
-
Background: Fatigue is an important symptom for many patients, including patients with kidney disease. Cognitive biases, such as attentional bias and self-identity bias, are thought to influence fatigue. Cognitive bias modification (CBM) training is a promising technique to counter fatigue.
Objective: We aimed to evaluate a CBM training among patients with kidney disease and health care professionals (HCPs) and assess acceptability and applicability in the clinical setting using an iterative design process to evaluate expectations and experiences with the training.
Methods: This was a longitudinal, qualitative, and multiple stakeholder-perspective usability study in which we interviewed end users and HCPs during the prototyping phase and after the end of training. We conducted semistructured interviews with 29 patients and 16 HCPs. The interviews were transcribed and analyzed thematically. Next to a general evaluation of the training, the acceptability of the training was evaluated using the Theoretical Framework of Acceptability, and applicability was assessed by evaluating obstacles and solutions for implementation in the kidney care setting.
Results: Generally, participants were positive about the training and its applicability. The biggest negatives were doubts about effectiveness and annoyance about the repetitive character of CBM. Acceptability was judged with a mixed evaluation, with a negative evaluation of perceived effectiveness; mixed results for burden, intervention coherence, and self-efficacy; and positive results for affective attitude, ethicality, and opportunity costs. Barriers for applicability were patients' varying computer skills, subjectivity of fatigue, and integration with regular treatment (eg, the role of HCPs). Possible solutions included assigning representatives among nurses, offering training on an app, and providing assistance via a help desk. The iterative design process, including repeated waves of testing user expectations and experiences, yielded complementary data.
Conclusions: To the best of our knowledge, this study is the first to introduce a CBM training targeting fatigue. Furthermore, this study provides one of the first user evaluations of a CBM training, both among patients with kidney disease and their care providers. Overall, the training was evaluated positively, although acceptability showed mixed results. Applicability was positive although barriers were identified. The proposed solutions require further testing, preferably following the same frameworks, as the iteration in this study contributed positively to the quality of the training. Therefore, future research should follow the same frameworks and consider stakeholders and end users in eHealth intervention design.
(©Jody Geerts, Marcel Pieterse, Goos Laverman, Femke Waanders, Nicole Oosterom, Jacqueline Slegten, Elske Salemink, Christina Bode. Originally published in JMIR Formative Research (https://formative.jmir.org), 29.05.2023.)
- Full text View on content provider's site
-
Mahmoud Halabi J, Al-Handawi MB, Ceballos R, and Naumov P
Journal of the American Chemical Society [J Am Chem Soc] 2023 May 26. Date of Electronic Publication: 2023 May 26.
- Abstract
-
Despite being researched for decades, shape-shifting molecular crystals have yet to claim their spot as an actuating materials class among the primary functional materials. While the process for developing and commercializing materials can be lengthy, it inevitably starts with building an extensive knowledge base, which for molecular crystal actuators remains scattered and disjointed. Using machine learning for the first time, we identify inherent features and structure-function relationships that fundamentally impact the mechanical response of molecular crystal actuators. Our model can factor in different crystal properties in tandem and decipher their intersectional and combined effects on each actuation performance. This analysis is an open invitation to utilize interdisciplinary expertise in translating the current basic research on molecular crystal actuators into technology-based development that promotes large-scale experimentation and prototyping.
- Full text View on content provider's site
-
Adeyemi SA, Az-Zamakhshariy Z, and Choonara YE
AAPS PharmSciTech [AAPS PharmSciTech] 2023 May 24; Vol. 24 (5), pp. 123. Date of Electronic Publication: 2023 May 24.
- Subjects
-
Female, Humans, Spectroscopy, Fourier Transform Infrared, Fluorouracil, Polyesters, and Uterine Cervical Neoplasms drug therapy
- Abstract
-
Solid lipid nanoparticles (SLNs) are used extensively to achieve site-specific drug delivery with improved bioavailability and reduced toxicity. This work focused on a new approach to provide site-specific stimuli-responsive delivery of SLNs loaded within thermo-sonic nano-organogel (TNO) variants to deliver the model chemotherapeutic agent 5-FU in treating cervical cancer. Pharmaceutically stable nanospherical SLNs comprising poly-L-lactic acid (PLA), palmitic acid (PA), and polyvinyl alcohol (PVA) were prepared and incorporated into TNO variants augmented by external thermal and ultrasound stimuli for release of 5-FU in the cervix. Results revealed that rate-modulated 5-FU release was achieved from SLNs (particle size =450.9 nm; PDI =0.541; zeta potential =-23.2 mV; %DL =33%) within an organogel upon exposure to either a single (thermo-) and/or both (thermo-sonic) stimuli. 5FU was released from all TNO variants with an initial burst on day 1 followed by sustained release over 14 days. TNO 1 provided desirable release over 15 days (44.29% vs. 67.13% under single (T) or combined (TU) stimuli, respectively). Release rates were primarily influenced by the SLN:TO ratio in tandem with biodegradation and hydrodynamic influx. Biodegradation by day 7 revealed that variant TNO 1 (1:5) released 5FU (46.8%) analogous to its initial mass than the other TNO variants (i.e., ratios of 2:5 and 3:5). FT-IR spectra revealed assimilation of the system components and corroborative with the DSC and XRD analysis (i.e., in ratios of PA:PLA 1:1 and 2:1). In conclusion, the TNO variants produced may be used as a potential stimuli-responsive platform for the site-specific delivery of chemotherapeutic agents such as 5-FU to treat cervical cancer.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
Elhadidy MS, Ahmed M, and Ali S
Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery [J Craniomaxillofac Surg] 2023 May 24. Date of Electronic Publication: 2023 May 24.
- Abstract
-
The aim of this study was to introduce a new computer guided technique for debulking and contouring the craniofacial fibrous dysplasia involving the fronto-orbital and fronto-cranial regions. Computer-guided contouring was performed using a modified patient-specific surgical depth guide for six patients with craniofacial fibrous dysplasia involving the fronto-orbital and fronto-cranial regions. Virtual planning was performed to determine the desired amount of bone removal and construct the patient-specific surgical depth guide. Then, the guide was printed using rapid prototyping. In the surgical theatre, the guide was seated in position. Implant drills were inserted through the created depth holes according to the planned fixed depth to create depth holes. Finally, the bone in between the created holes was removed using cutting discs, bone chisels and surgical burs. Satisfaction with facial aesthetics was evaluated by the patients using a Likert scale, and by the surgeons using the Whitaker rating scale. The surgical procedures were uneventful for all the patients. All the patients were satisfied with the post-operative facial esthetics and categorized as category I Whitaker rating scale. Patient-specific surgical guide technique for recontouring of fronto-orbital and fronto-cranial fibrous dysplasia can be considered an accurate substitution technique that overcomes the drawbacks of the unpredictable conventional one. Further investigations are required.
Competing Interests: Declaration of competing interest None.
(Copyright © 2023 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.)
- Full text View on content provider's site
-
Pandelidi C, Blakis R, Lee KPM, Bateman S, Brandt M, and Kajtaz M
Polymers [Polymers (Basel)] 2023 May 21; Vol. 15 (10). Date of Electronic Publication: 2023 May 21.
- Abstract
-
The transition of additive manufacturing (AM) from a technique for rapid prototyping to one for manufacturing of near net or net components has been led by the development of methods that can repeatedly fabricate quality parts. High-speed laser sintering and the recently developed multi-jet fusion (MJF) processes have seen quick adoption from industry due to their ability to produce high-quality components relatively quickly. However, the recommended refresh ratios of new powder led to notable amounts of used powder being discarded. In this research, polyamide-11 powder, typically used in AM, was thermally aged to investigate its properties at extreme levels of reuse. The powder was exposed to 180 °C in air for up to 168 h and its chemical, morphological, thermal, rheological, and mechanical properties were examined. To decouple the thermo-oxidative aging phenomena from AM process related effects, such as porosity, rheological and mechanical properties characterisation was performed on compression-moulded specimens. It was found that exposure notably affected the properties of both the powder and the derived compression-moulded specimens within the first 24 h of exposure; however, consecutive exposure did not have a significant effect.
- Full text View on content provider's site
-
Kazlovich K, Donahoe LL, Yasufuku K, Wang SX, and Marshall MB
Journal of surgical education [J Surg Educ] 2023 May 16. Date of Electronic Publication: 2023 May 16.
- Abstract
-
Objective: The objective of this paper is to describe the techniques and process of developing and testing a take-home surgical anastomosis simulation model.
Design: Through an iterative process, a simulation model was customized and designed to target specific skill development and performance objectives that focused on anastomotic techniques in thoracic surgery and consist of 3D printed and silicone molded components. Various manufacturing techniques such as silicone dip spin coating and injection molding have been described in this paper and explored as part of the research and development process. The final prototype is a low-cost, take-home model with reusable and replaceable components.
Setting: The study took place at a single-center quaternary care university-affiliated hospital.
Participants: The participants included in the model testing were 10 senior thoracic surgery trainees who completed an in-person training session held during an annual hands- on thoracic surgery simulation course. Feedback was then collected in the form of an evaluation of the model from participants.
Results: All 10 participants had an opportunity to test the model and complete at least 1 pulmonary artery and bronchial anastomosis. The overall experience was rated highly, with minor feedback provided regarding the set- up and fidelity of the materials used for the anastomoses. Overall, the trainees agreed that the model was suitable for teaching advanced anastomotic techniques and expressed an interest in being able to use this model to practice skill development.
Conclusions: Developed simulation model can be easily reduced, with customized components that accurately simulate real-life vascular and bronchial components suitable for training of anastomoses technique amongst senior thoracic surgery trainees.
(Copyright © 2023. Published by Elsevier Inc.)
- Full text View on content provider's site
-
Isarn I, Hodásová Ľ, Pérez-Madrigal MM, Estrany F, Armelin E, and Bravo F
Macromolecular rapid communications [Macromol Rapid Commun] 2023 May 16, pp. e2300132. Date of Electronic Publication: 2023 May 16.
- Abstract
-
Six acrylamide resins, derived from l-phenylalanine and l-leucine, are designed for application in digital light processing (DLP) printers to obtain biodegradable thermoset polymers. The acrylamide copolymers are prepared under light irradiation at 405 nm and thermal post-curing processes. Low molecular weight poly(ethylene glycol)diacrylate (PEGDA) and N,N-dimethylacrylamide (DMAM), both liquid resins, are used as co-monomers and diluents for the amino acid-derived acrylamide solubilization. The presence of two phenylalanine units and two ester groups in the acrylamide monomer accuses a fast degradation rate in hydrolytic medium in 90 days. The residual products leached in the aqueous media prove to be non-cytotoxic, when 3D-printed samples are cultured with osteoblast cells (MG63), which represents an advantage for the safe disposal of printer waste materials. The scaled-up pieces derived from l-phenylalanine and diethylene glycol, as amino acid-derived acrylamide (named compound C), PEGDA and DMAM, present high dimensional stability after DLP printing of complex structures used as testing samples. Layers of 50 µm of thickness are well cohesive having isotropic behavior, as demonstrated with tensile-strain measurements performed in X-Y-Z (plane) directions. The compound C, which contains phenylalanine amino acid, reveals a promising potential to replace non-biodegradable acrylate polymers used in prototyping systems.
(© 2023 Wiley-VCH GmbH.)
- Full text View on content provider's site
-
Zhao T, Zhu H, and Zhang H
Biosensors [Biosensors (Basel)] 2023 May 14; Vol. 13 (5). Date of Electronic Publication: 2023 May 14.
- Subjects
-
Humans, Porosity, Electrodes, and Graphite
- Abstract
-
Flexible pressure sensors are widely applied in tactile perception, fingerprint recognition, medical monitoring, human-machine interfaces, and the Internet of Things. Among them, flexible capacitive pressure sensors have the advantages of low energy consumption, slight signal drift, and high response repeatability. However, current research on flexible capacitive pressure sensors focuses on optimizing the dielectric layer for improved sensitivity and pressure response range. Moreover, complicated and time-consuming fabrication methods are commonly applied to generate microstructure dielectric layers. Here, we propose a rapid and straightforward fabrication approach to prototyping flexible capacitive pressure sensors based on porous electrodes. Laser-induced graphene (LIG) is produced on both sides of the polyimide paper, resulting in paired compressible electrodes with 3D porous structures. When the elastic LIG electrodes are compressed, the effective electrode area, the relative distance between electrodes, and the dielectric property vary accordingly, thereby generating a sensitive pressure sensor in a relatively large working range (0-9.6 kPa). The sensitivity of the sensor is up to 7.71%/kPa -1 , and it can detect pressure as small as 10 Pa. The simple and robust structure allows the sensor to produce quick and repeatable responses. Our pressure sensor exhibits broad potential in practical applications in health monitoring, given its outstanding comprehensive performance combined with its simple and quick fabrication method.
- Full text View on content provider's site
-
Pei Y, An J, Wang K, Hui Z, Zhang X, Pan H, Zhou J, and Sun G
Small (Weinheim an der Bergstrasse, Germany) [Small] 2023 May 10, pp. e2301884. Date of Electronic Publication: 2023 May 10.
- Abstract
-
Flexible electronics have gained great attention in recent years owing to their promising applications in biomedicine, sustainable energy, human-machine interaction, and toys for children. Paper mainly produced from cellulose fibers is attractive substrate for flexible electronics because it is biodegradable, foldable, tailorable, and light-weight. Inspired by daily handwriting, the rapid prototyping of sensing devices with arbitrary patterns can be achieved by directly drawing conductive inks on flat or curved paper surfaces; this provides huge freedom for children to design and integrate "do-it-yourself (DIY)" electronic toys. Herein, viscous and additive-free ink made from Ti 3 C 2 T X MXene sediment is employed to prepare disposable paper electronics through a simple ball pen drawing. The as-drawn paper sensors possess hierarchical microstructures with interweaving nanosheets, nanoflakes, and nanoparticles, therefore exhibiting superior mechanosensing performances to those based on single/fewer-layer MXene nanosheets. As proof-of-concept applications, several popular children's games are implemented by the MXene-based paper sensors, including "You say, I guess," "Emotional expression," "Rock-Paper-Scissors," "Arm wrestling," "Throwing game," "Carrot squat," and "Grab the cup," as well as a DIY smart whisker for a cartoon mouse. Moreover, MXene-based paper sensors are safe and disposable, free from producing any e-waste and hazard to the environment.
(© 2023 Wiley-VCH GmbH.)
- Full text View on content provider's site
23. Ultrafast and Resist-Free Nanopatterning of 2D Materials by Femtosecond Laser Irradiation. [2023]
-
Enrico A, Hartwig O, Dominik N, Quellmalz A, Gylfason KB, Duesberg GS, Niklaus F, and Stemme G
ACS nano [ACS Nano] 2023 May 09; Vol. 17 (9), pp. 8041-8052. Date of Electronic Publication: 2023 Apr 19.
- Abstract
-
The performance of two-dimensional (2D) materials is promising for electronic, photonic, and sensing devices since they possess large surface-to-volume ratios, high mechanical strength, and broadband light sensitivity. While significant advances have been made in synthesizing and transferring 2D materials onto different substrates, there is still the need for scalable patterning of 2D materials with nanoscale precision. Conventional lithography methods require protective layers such as resist or metals that can contaminate or degrade the 2D materials and deteriorate the final device performance. Current resist-free patterning methods are limited in throughput and typically require custom-made equipment. To address these limitations, we demonstrate the noncontact and resist-free patterning of platinum diselenide (PtSe 2 ), molybdenum disulfide (MoS 2 ), and graphene layers with nanoscale precision at high processing speed while preserving the integrity of the surrounding material. We use a commercial, off-the-shelf two-photon 3D printer to directly write patterns in the 2D materials with features down to 100 nm at a maximum writing speed of 50 mm/s. We successfully remove a continuous film of 2D material from a 200 μm × 200 μm substrate area in less than 3 s. Since two-photon 3D printers are becoming increasingly available in research laboratories and industrial facilities, we expect this method to enable fast prototyping of devices based on 2D materials across various research areas.
- Full text View on content provider's site
-
Černík M, Poláková K, Kubala L, Vítečková Wünschová A, Mac Gillavry Danylevska A, Pešková M, and Víteček J
ACS biomaterials science & engineering [ACS Biomater Sci Eng] 2023 May 08; Vol. 9 (5), pp. 2755-2763. Date of Electronic Publication: 2023 Apr 27.
- Subjects
-
Microfluidics, Cell Culture Techniques, Hydrophobic and Hydrophilic Interactions, Endothelial Cells, and Endothelium, Vascular
- Abstract
-
On-chip vascular microfluidic models provide a great tool to study aspects of cardiovascular diseases in vitro. To produce such models, polydimethylsiloxane (PDMS) has been the most widely used material. For biological applications, its hydrophobic surface has to be modified. The major approach has been plasma-based surface oxidation, which has been very challenging in the case of channels enclosed within a microfluidic chip. The preparation of the chip combined a 3D-printed mold with soft lithography and commonly available materials. We have introduced the high-frequency low-pressure air-plasma surface modification of seamless channels enclosed within a PDMS microfluidic chip. The plasma treatment modified the luminal surface more uniformly than in previous works. Such a setup enabled a higher degree of design freedom and a possibility of rapid prototyping. Further, plasma treatment in combination with collagen IV coating created a biomimetic surface for efficient adhesion of vascular endothelial cells as well as promoted long-term cell culture stability under flow. The cells within the channels were highly viable and showed physiological behavior, confirming the benefit of the presented surface modification.
- Full text View on content provider's site
-
Deliv C, Devane D, Putnam E, Healy P, Hall A, Rosenbaum S, and Toomey E
Digital health [Digit Health] 2023 May 02; Vol. 9, pp. 20552076231170696. Date of Electronic Publication: 2023 May 02 (Print Publication: 2023).
- Abstract
-
Objectives: We aimed to develop a video animation knowledge translation (KT) resource to explain the purpose, use and importance of evidence synthesis to the public regarding healthcare decision-making.
Methods: We drew on a user-centred design approach to develop a spoken animated video (SAV) by conducting two cycles of idea generation, prototyping, user testing, analysis, and refinement. Six researchers identified the initial key messages of the SAV and informed the first draft of the storyboard and script. Seven members of the public provided input on this draft and the key messages through think-aloud interviews, which we used to develop an SAV prototype. Seven additional members of the public participated in think-aloud interviews while watching the video prototype. All members of the public also completed a questionnaire on perceived usefulness, desirability, clarity and credibility. We subsequently synthesised all data to develop the final SAV.
Results: Researchers identified the initial key messages as 1) the importance of evidence synthesis, 2) what an evidence synthesis is and 3) how evidence synthesis can impact healthcare decision-making. Members of the public rated the initial video prototype as 9/10 for usefulness, 8/10 for desirability, 8/10 for clarity and 9/10 for credibility. Using their guidance and feedback, we produced a three-and-a-half-minute video animation. The video was uploaded on YouTube, has since been translated into two languages, and viewed over 12,000 times to date.
Conclusions: Drawing on user-centred design methods provided a structured and transparent approach to the development of our SAV. Involving members of the public enhanced the credibility and usefulness of the resource. Future work could explore involving the public from the outset to identify key messages in developing KT resources explaining methodological topics. This study describes the systematic development of a KT resource with limited resources and provides transferrable learnings for others wishing to do similar.
Competing Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
(© The Author(s) 2023.)
- Full text View on content provider's site
-
Quinn ARJ, Saxby DJ, Yang F, de Sousa ACC, and Pizzolato C
Journal of biomechanics [J Biomech] 2023 May; Vol. 152, pp. 111557. Date of Electronic Publication: 2023 Mar 27.
- Subjects
-
Humans, Knee Joint, Knee, Biomechanical Phenomena, Ligaments, Articular, Range of Motion, Articular, and Robotic Surgical Procedures
- Abstract
-
Medical device regulatory standards are increasingly incorporating computational modelling and simulation to accommodate advanced manufacturing and device personalization. We present a method for robust testing of engineered soft tissue products involving a digital twin paradigm in combination with robotic systems. We developed and validated a digital twin framework for calibrating and controlling robotic-biological systems. A forward dynamics model of the robotic manipulator was developed, calibrated, and validated. After calibration, the accuracy of the digital twin in reproducing the experimental data improved in the time domain for all fourteen tested configurations and improved in frequency domain for nine configurations. We then demonstrated displacement control of a spring in lieu of a soft tissue element in a biological specimen. The simulated experiment matched the physical experiment with 0.09 mm (0.001%) root-mean-square error for a 2.9 mm (5.1%) length change. Finally, we demonstrated kinematic control of a digital twin of the knee through 70-degree passive flexion kinematics. The root-mean-square error was 2.00°, 0.57°, and 1.75° degrees for flexion, adduction, and internal rotations, respectively. The system well controlled novel mechanical elements and generated accurate kinematics in silico for a complex knee model. This calibration method could be applied to other situations where the specimen is poorly represented in the model environment (e.g., human or animal tissues), and the control system could be extended to track internal parameters such as tissue strain (e.g., control knee ligament strain). Further development of this framework can facilitate medical device testing and innovative biomechanics research.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023. Published by Elsevier Ltd.)
- Full text View on content provider's site
27. Personalisation of Plantarflexor Musculotendon Model Parameters in Children with Cerebral Palsy. [2023]
-
Veerkamp K, van der Krogt MM, Harlaar J, O'Brien TD, Kalkman B, Seth A, and Bar-On L
Annals of biomedical engineering [Ann Biomed Eng] 2023 May; Vol. 51 (5), pp. 938-950. Date of Electronic Publication: 2022 Nov 15.
- Subjects
-
Humans, Child, Muscle, Skeletal physiology, Tendons, Ankle, Ankle Joint, and Cerebral Palsy
- Abstract
-
Neuromusculoskeletal models can be used to evaluate aberrant muscle function in cerebral palsy (CP), for example by estimating muscle and joint contact forces during gait. However, to be accurate, models should include representative musculotendon parameters. We aimed to estimate personalised parameters that capture the mechanical behaviour of the plantarflexors in children with CP and typically developing (TD) children. Ankle angle (using motion capture), torque (using a load-cell), and medial gastrocnemius fascicle lengths (using ultrasound) were measured during slow passive ankle dorsiflexion rotation for thirteen children with spastic CP and thirteen TD children. Per subject, the measured rotation was input to a scaled OpenSim model to simulate the torque and fascicle length output. Musculotendon model parameters were personalised by the best match between simulated and experimental torque-angle and fascicle length-angle curves according to a least-squares fit. Personalised tendon slack lengths were significantly longer and optimal fibre lengths significantly shorter in CP than model defaults and than in TD. Personalised tendon compliance was substantially higher in both groups compared to the model default. The presented method to personalise musculotendon parameters will likely yield more accurate simulations of subject-specific muscle mechanics, to help us understand the effects of altered musculotendon properties in CP.
(© 2022. The Author(s).)
- Full text View on content provider's site
28. Rewritable photonic integrated circuits using dielectric-assisted phase-change material waveguides. [2023]
-
Miller F, Chen R, Fröch JE, Rarick H, Geiger S, and Majumdar A
Optics letters [Opt Lett] 2023 May 01; Vol. 48 (9), pp. 2385-2388.
- Abstract
-
Photonic integrated circuits (PICs) can drastically expand the capabilities of quantum and classical optical information science and engineering. PICs are commonly fabricated using selective material etching, a subtractive process. Thus, the chip's functionality cannot be substantially altered once fabricated. Here, we propose to exploit wide-bandgap non-volatile phase-change materials (PCMs) to create rewritable PICs. A PCM-based PIC can be written using a nanosecond pulsed laser without removing any material, akin to rewritable compact disks. The whole circuit can then be erased by heating, and a new circuit can be rewritten. We designed a dielectric-assisted PCM waveguide consisting of a thick dielectric layer on top of a thin layer of wide-bandgap PCMs Sb 2 S 3 and Sb 2 Se 3 . The low-loss PCMs and our designed waveguides lead to negligible optical loss. Furthermore, we analyzed the spatiotemporal laser pulse shape to write the PICs. Our proposed platform will enable low-cost manufacturing and have a far-reaching impact on the rapid prototyping of PICs, validation of new designs, and photonic education.
- Full text View on content provider's site
29. Insights and trends review: the role of three-dimensional technology in upper extremity surgery. [2023]
-
Bodansky DMS, Sandow MJ, Volk I, Luria S, Verstreken F, and Horwitz MD
The Journal of hand surgery, European volume [J Hand Surg Eur Vol] 2023 May; Vol. 48 (5), pp. 383-395. Date of Electronic Publication: 2023 Feb 07.
- Subjects
-
Humans, Printing, Three-Dimensional, Prostheses and Implants, Arthroplasty, Upper Extremity surgery, Fractures, Bone surgery, and Surgery, Computer-Assisted
- Abstract
-
The use of three-dimensional (3-D) technology in upper extremity surgery has the potential to revolutionize the way that hand and upper limb procedures are planned and performed. 3-D technology can assist in the diagnosis and treatment of conditions, allowing virtual preoperative planning and surgical templating. 3-D printing can allow the production of patient-specific jigs, instruments and implants, allowing surgeons to plan and perform complex procedures with greater precision and accuracy. Previously, cost has been a barrier to the use of 3-D technology, which is now falling rapidly. This review article will discuss the current status of 3-D technology and printing, including its applications, ethics and challenges in hand and upper limb surgery. We have provided case examples to outline how clinicians can incorporate 3-D technology in their clinical practice for congenital deformities, management of acute fracture and malunion and arthroplasty.
- Full text View on content provider's site
-
Gao Z, Wang X, Blumenfeld Gaines B, Shi X, Bi J, and Song M
Molecular informatics [Mol Inform] 2023 May; Vol. 42 (5), pp. e2200215. Date of Electronic Publication: 2023 Mar 17.
- Subjects
-
Models, Molecular, Neural Networks, Computer, Benchmarking, and Drug Discovery
- Abstract
-
Graph generative models have recently emerged as an interesting approach to construct molecular structures atom-by-atom or fragment-by-fragment. In this study, we adopt the fragment-based strategy and decompose each input molecule into a set of small chemical fragments. In drug discovery, a few drug molecules are designed by replacing certain chemical substituents with their bioisosteres or alternative chemical moieties. This inspires us to group decomposed fragments into different fragment clusters according to their local structural environment around bond-breaking positions. In this way, an input structure can be transformed into an equivalent three-layer graph, in which individual atoms, decomposed fragments, or obtained fragment clusters act as graph nodes at each corresponding layer. We further implement a prototype model, named multi-resolution graph variational autoencoder (MRGVAE), to learn embeddings of constituted nodes at each layer in a fine-to-coarse order. Our decoder adopts a similar but conversely hierarchical structure. It first predicts the next possible fragment cluster, then samples an exact fragment structure out of the determined fragment cluster, and sequentially attaches it to the preceding chemical moiety. Our proposed approach demonstrates comparatively good performance in molecular evaluation metrics compared with several other graph-based molecular generative models. The introduction of the additional fragment cluster graph layer will hopefully increase the odds of assembling new chemical moieties absent in the original training set and enhance their structural diversity. We hope that our prototyping work will inspire more creative research to explore the possibility of incorporating different kinds of chemical domain knowledge into a similar multi-resolution neural network architecture.
(© 2023 Wiley-VCH GmbH.)
- Full text View on content provider's site
-
Hou L, Liu T, Wang H, Bai M, Tang X, Wang Z, Zhang M, Li S, Wang T, Zhou K, and Ma Y
Small (Weinheim an der Bergstrasse, Germany) [Small] 2023 May; Vol. 19 (21), pp. e2207638. Date of Electronic Publication: 2023 Feb 26.
- Abstract
-
Hard carbons (HCs) are extensively investigated as the potential anodes for commercialization of sodium-ion batteries (SIBs). However, the practical deployment of HC anode suffers from the retarded Na + diffusion at the high-rate or low-temperature operation scenarios. Herein, a multiscale modification strategy by tuning HC microstructure on the particle level as well as replenishing extra Na + reservoir for the electrode through a homogeneous presodiation therapy is presented. Consequently, the coulombic efficiency of HC anode can be precisely controlled till the close-to-unit value. Detailed kinetics analysis observes that the Na + diffusivity can be drastically enhanced by two orders of magnitude at the low potential region (< 0.1 V vs. Na + /Na), which accelerates the rate-limiting step. As pairing the presodiated HC anode (≈5.0 ± 0.2 mg cm -2 ) with the NaVPO 4 F cathode (≈10.3 mg cm -2 ) in the 200 mAh pouch cell, the optimal balance of the cyclability (83% over 1000 cycles), low-temperature behavior till -40 °C as well as the maximized power output of 1500 W kg -1 can be simultaneously achieved. This synergistic modification strategy opens a new avenue to exploit the reversible, ultrafast Na + storage kinetics of HC anodes, which thus constitutes a quantum leap forward toward high-rate SIB prototyping.
(© 2023 Wiley-VCH GmbH.)
- Full text View on content provider's site
-
Németh A, Vitai V, Czumbel ML, Szabó B, Varga G, Kerémi B, Hegyi P, Hermann P, and Borbély J
Journal of dentistry [J Dent] 2023 Apr 28; Vol. 134, pp. 104532. Date of Electronic Publication: 2023 Apr 28.
- Abstract
-
Objectives: Thus far, the findings of numerous studies conducted on the accuracy of three-dimensional (3D) printed dental models are conflicting. Therefore, the aim of the network meta-analysis (NMA) is to determine the accuracy of 3D printed dental models compared with digital reference models.
Data: Studies comparing the accuracy of 3D printed full-arch dental models manufactured using different printing techniques to initial STL files were included.
Sources: This study was registered in PROSPERO (CRD42021285863). An electronic search was performed across four databases in November 2021, and search was restricted to the English language.
Study Selection: A systematic search was conducted based on a prespecified search query. 16,303 articles were pooled after the removal of the duplicates. Following study selection and data extraction, 11 eligible studies were included in the NMA in 6 subgroups. The outcomes were specified as trueness and precision and expressed as root mean square (RMS) and absolute mean deviation values. Seven printing technologies were analyzed: stereolithography (SLA), digital light processing (DLP), fused deposition modeling/fused filament fabrication (FDM/FFF), MultiJet, PolyJet, continuous liquid interface production (CLIP), and LCD technology. The QUADAS-2 and GRADE were used to evaluate the risk of bias and certainty of evidence.
Conclusions: SLA, DLP, and PolyJet technologies were the most accurate in producing full-arch dental models.
Clinical Significance: The findings of the NMA suggest that SLA, DLP, and PolyJet technologies are sufficiently accurate for full-arch dental model production for prosthodontic purposes. In contrast, FDM/FFF, CLIP, and LCD technologies are less suitable for manufacturing dental models.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Full text View on content provider's site
-
Pagés-Llobet A, Espinach FX, Julián F, Oliver-Ortega H, and Méndez JA
Polymers [Polymers (Basel)] 2023 Apr 24; Vol. 15 (9). Date of Electronic Publication: 2023 Apr 24.
- Abstract
-
FDM (Fused Deposition Modeling) is one of the most used and industrially applied additive manufacturing processes due to its fast prototyping and manufacturing, simplicity, and low cost of the equipment. However, the mechanical properties of the printed products have a large dependence on orientation and interface strength between layers which is mainly related to the thermal union obtained. This thermal union has a large dependence on the melting and cooling down process. Additionally, the materials used must be extruded in a continuous filament before their use, which limits the materials used. However, a pellet extruder could be used directly in the printing equipment, avoiding filament extrusion. In this work, specimens of PLA (Poly(lactic acid)) with different bead orientations have been produced via filament or pellet extrusion to compare the effect of the different melting processes in the manufacturing methodology. Pellet extruded specimens showed higher infill and mechanical properties. These results were related to better adhesion between layers due to the longer melting and cooling process. The result was confirmed using DSC and XRD techniques, where a higher crystallinity was observed. A bicomponent specimen (50% pellet-50% filament) was prepared and tested, showing higher mechanical results than expected, which was, again, due to the better thermal union obtained in the pellet extruder.
- Full text View on content provider's site
-
Hadjileontiadou S, Dias SB, and Hadjileontiadis L
JMIR serious games [JMIR Serious Games] 2023 Apr 24; Vol. 11, pp. e41824. Date of Electronic Publication: 2023 Apr 24.
- Abstract
-
Background: Design dynamics that evolve during a designer's prototyping process encapsulate important insights about the way the designer is using his or her knowledge, creativity, and reflective thinking. Nevertheless, the capturing of such dynamics is not always an easy task, as they are built through alternations between the self-first and self-third person views.
Objective: This study aimed at introducing a conceptual framework, namely 2D-ME, to provide an explainable domain that could express the dynamics across the design timeline during a prototyping process of serious games.
Methods: Within the 2D-ME framework, the Technological-Pedagogical-Content Knowledge (TPACK), its adaptation to the serious games (TPACK-Game), and the activity theory frameworks were combined to produce dynamic constructs that incorporate self-first and self-third person extension of the TPACK-Game to Games TPACK, rules, division of labor, and object. The dynamic interplay between such constructs was used as an adaptation engine within an optimization prototype process, so each sequential version of the latter could converge to the designer's initial idea of the serious game. Moreover, higher-order thinking is scaffolded with the internal Activity Interview Script proposed in this paper.
Results: An experimental case study of the application of the 2D-ME conceptual framework in the design of a light reflection game was showcased, revealing all the designer's dynamics, both from internal (via a diary) and external (via the prototype version) views. The findings of this case study exemplified the convergence of the prototyping process to an optimized output, by minimizing the mean square error between the conceptual (initial and updated) idea of the prototype, following explainable and tangible constructs within the 2D-ME framework.
Conclusions: The generic structure of the proposed 2D-ME framework allows its transferability to various levels of expertise in serious games mastering, and it is used both for the designer's process exploration and training of the novice ones.
(©Sofia Hadjileontiadou, Sofia B Dias, Leontios Hadjileontiadis. Originally published in JMIR Serious Games (https://games.jmir.org), 24.04.2023.)
- Full text View on content provider's site
-
Lee JY, Oh MH, Park JH, Kang SH, and Kang SK
Polymers [Polymers (Basel)] 2023 Apr 23; Vol. 15 (9). Date of Electronic Publication: 2023 Apr 23.
- Abstract
-
Three-dimensional (3D) printing has various applications in many fields, such as soft electronics, robotic systems, biomedical implants, and the recycling of thermoplastic composite materials. Three-dimensional printing, which was only previously available for prototyping, is currently evolving into a technology that can be utilized by integrating various materials into customized structures in a single step. Owing to the aforementioned advantages, multi-functional 3D objects or multi-material-designed 3D patterns can be fabricated. In this study, we designed and fabricated 3D-printed expandable structural electronics in a substrateless auxetic pattern that can be adapted to multi-dimensional deformation. The printability and electrical conductivity of a stretchable conductor (Ag-RTV composite) were optimized by incorporating a lubricant. The Ag-RTV and RTV were printed in the form of conducting voxels and frame voxels through multi-nozzle printing and were arranged in a negative Poisson's ratio pattern with a missing rib structure, to realize an expandable passive component. In addition, the expandable structural electronics were embedded in a soft actuator via one-step printing, confirming the possibility of fabricating stable interconnections in expanding deformation via a missing rib pattern.
- Full text View on content provider's site
-
Li N, Shao K, He J, Wang S, Li S, Wu X, Li J, Guo C, Yu L, Murto P, Chen J, and Xu X
Small (Weinheim an der Bergstrasse, Germany) [Small] 2023 Apr 22, pp. e2301474. Date of Electronic Publication: 2023 Apr 22.
- Abstract
-
Solar-powered interfacial heating has emerged as a sustainable technology for hybrid applications with minimal carbon footprints. Aerogels, hydrogels, and sponges/foams are the main building blocks for state-of-the-art photothermal materials. However, these conventional three-dimensional (3D) structures and related fabrication technologies intrinsically fail to maximize important performance-enhancing strategies and this technology still faces several performance roadblocks. Herein, monolithic, self-standing, and durable aerogel matrices are developed based on composite photothermal inks and ink-extrusion 3D printing, delivering all-in-one interfacial steam generators (SGs). Rapid prototyping of multiscale hierarchical structures synergistically reduce the energy demand for evaporation, expand actual evaporation areas, generate massive environmental energy input, and improve mass flows. Under 1 sun, high water evaporation rates of 3.74 kg m -2 h -1 in calm air and 25.3 kg m -2 h -1 at a gentle breeze of 2 m s -1 are achieved, ranking among the best-performing solar-powered interfacial SGs. 3D-printed microchannels and hydrophobic modification deliver an icephobic surface of the aerogels, leading to self-propelled and rapid removal of ice droplets. This work shines light on rational fabrication of hierarchical photothermal materials, not merely breaking through the constraints of solar-powered interfacial evaporation and clean water production, but also discovering new functions for photothermal interfacial deicing.
(© 2023 Wiley-VCH GmbH.)
- Full text View on content provider's site
-
Sedlak J, Joska Z, Jansky J, Zouhar J, Kolomy S, Slany M, Svasta A, and Jirousek J
Materials (Basel, Switzerland) [Materials (Basel)] 2023 Apr 21; Vol. 16 (8). Date of Electronic Publication: 2023 Apr 21.
- Abstract
-
The Fused Filament Fabrication (FFF) method is an additive technology that is used for the creation of prototypes within Rapid Prototyping (RP) as well as for the creation of final components in piece or small-series production. The possibility of using FFF technology in the creation of final products requires knowledge of the properties of the material and, at the same time, how these properties change due to degradation effects. In this study, the mechanical properties of the selected materials (PLA, PETG, ABS, and ASA) were tested in their non-degenerate state and after exposure of the samples to the selected degradation factors. For the analysis, which was carried out by the tensile test and the Shore D hardness test, samples of normalized shape were prepared. The effects of UV radiation, high temperature environments, high humidity environments, temperature cycles, and exposure to weather conditions were monitored. The parameters obtained from the tests (tensile strength and Shore D hardness) were statistically evaluated, and the influence of degradation factors on the properties of individual materials was assessed. The results showed that even between individual manufacturers of the same filament there are differences, both in the mechanical properties and in the behavior of the material after exposure to degradation effects.
- Full text View on content provider's site
-
Kauth K, Stadtmann T, Sobhani V, and Gemmeke T
Frontiers in computational neuroscience [Front Comput Neurosci] 2023 Apr 20; Vol. 17, pp. 1144143. Date of Electronic Publication: 2023 Apr 20 (Print Publication: 2023).
- Abstract
-
Introduction: Research in the field of computational neuroscience relies on highly capable simulation platforms. With real-time capabilities surpassed for established models like the cortical microcircuit, it is time to conceive next-generation systems: neuroscience simulators providing significant acceleration, even for larger networks with natural density, biologically plausible multi-compartment models and the modeling of long-term and structural plasticity.
Methods: Stressing the need for agility to adapt to new concepts or findings in the domain of neuroscience, we have developed the neuroAIx-Framework consisting of an empirical modeling tool, a virtual prototype, and a cluster of FPGA boards. This framework is designed to support and accelerate the continuous development of such platforms driven by new insights in neuroscience.
Results: Based on design space explorations using this framework, we devised and realized an FPGA cluster consisting of 35 NetFPGA SUME boards.
Discussion: This system functions as an evaluation platform for our framework. At the same time, it resulted in a fully deterministic neuroscience simulation system surpassing the state of the art in both performance and energy efficiency. It is capable of simulating the microcircuit with 20× acceleration compared to biological real-time and achieves an energy efficiency of 48nJ per synaptic event.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Kauth, Stadtmann, Sobhani and Gemmeke.)
- Full text View on content provider's site
-
Grubbs J, Sousa BC, and Cote DL
Polymers [Polymers (Basel)] 2023 Apr 19; Vol. 15 (8). Date of Electronic Publication: 2023 Apr 19.
- Abstract
-
Developments in polymer 3D printing (3DP) technologies have expanded their scope beyond the rapid prototyping space into other high-value markets, including the consumer sector. Processes such as fused filament fabrication (FFF) are capable of quickly producing complex, low-cost components using a wide variety of material types, such as polylactic acid (PLA). However, FFF has seen limited scalability in functional part production partly due to the difficulty of process optimization with its complex parameter space, including material type, filament characteristics, printer conditions, and "slicer" software settings. Therefore, the aim of this study is to establish a multi-step process optimization methodology-from printer calibration to "slicer" setting adjustments to post-processing-to make FFF more accessible across material types, using PLA as a case study. The results showed filament-specific deviations in optimal print conditions, where part dimensions and tensile properties varied depending on the combination of nozzle temperature, print bed conditions, infill settings, and annealing condition. By implementing the filament-specific optimization framework established in this study beyond the scope of PLA, more efficient processing of new materials will be possible for enhanced applicability of FFF in the 3DP field.
- Full text View on content provider's site
-
Gole L, Liu F, Ong KH, Li L, Han H, Young D, Marini GPL, Wee A, Zhao J, Rao H, Yu W, and Wei L
Scientific reports [Sci Rep] 2023 Apr 19; Vol. 13 (1), pp. 6384. Date of Electronic Publication: 2023 Apr 19.
- Subjects
-
Humans, Antiviral Agents pharmacology, Antiviral Agents therapeutic use, Hepacivirus physiology, Liver Cirrhosis diagnostic imaging, Liver Cirrhosis drug therapy, Liver Cirrhosis etiology, Collagen therapeutic use, Hepatitis C, and Hepatitis C, Chronic
- Abstract
-
The novel targeted therapeutics for hepatitis C virus (HCV) in last decade solved most of the clinical needs for this disease. However, despite antiviral therapies resulting in sustained virologic response (SVR), a challenge remains where the stage of liver fibrosis in some patients remains unchanged or even worsens, with a higher risk of cirrhosis, known as the irreversible group. In this study, we provided novel tissue level collagen structural insight into early prediction of irreversible cases via image based computational analysis with a paired data cohort (of pre- and post-SVR) following direct-acting-antiviral (DAA)-based treatment. Two Photon Excitation and Second Harmonic Generation microscopy was used to image paired biopsies from 57 HCV patients and a fully automated digital collagen profiling platform was developed. In total, 41 digital image-based features were profiled where four key features were discovered to be strongly associated with fibrosis reversibility. The data was validated for prognostic value by prototyping predictive models based on two selected features: Collagen Area Ratio and Collagen Fiber Straightness. We concluded that collagen aggregation pattern and collagen thickness are strong indicators of liver fibrosis reversibility. These findings provide the potential implications of collagen structural features from DAA-based treatment and paves the way for a more comprehensive early prediction of reversibility using pre-SVR biopsy samples to enhance timely medical interventions and therapeutic strategies. Our findings on DAA-based treatment further contribute to the understanding of underline governing mechanism and knowledge base of structural morphology in which the future non-invasive prediction solution can be built upon.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
Frithioff A, Weiss K, Frendø M, Senn P, Mikkelsen PT, Sieber D, Sørensen MS, Pedersen DB, and Andersen SAW
3D printing in medicine [3D Print Med] 2023 Apr 17; Vol. 9 (1), pp. 12. Date of Electronic Publication: 2023 Apr 17.
- Abstract
-
Background: 3D-printed temporal bone models can potentially provide a cost-effective alternative to cadaver surgery that can be manufactured locally at the training department. The objective of this study was to create a cost-effective 3D-printed model suitable for mastoidectomy training using entry level and commercially available print technologies, enabling individuals, without prior experience on 3D-printing, to manufacture their own models for basic temporal bone training.
Methods: Expert technical professionals and an experienced otosurgeon identified the best material for replicating the temporal bone and created a cost-effective printing routine for the model using entry-level print technologies. Eleven participants at a temporal bone dissection course evaluated the model using a questionnaire.
Results: The 3D-printed temporal bone model was printed using a material extrusion 3D-printer with a heat resistant filament, reducing melting during drilling. After printing, a few simple post-processing steps were designed to replicate the dura, sigmoid sinus and facial nerve. Modifying the 3D-printer by installing a direct-drive and ruby nozzle resulted in more successful prints and less need for maintenance. Upon evaluation by otorhinolaryngology trainees, unanimous feedback was that the model provided a good introduction to the mastoidectomy procedure, and supplementing practice to cadaveric temporal bones.
Conclusion: In-house production of a cost-effective 3D-printed model for temporal bone training is feasible and enables training institutions to manufacture their own models. Further, this work demonstrates the feasibility of creating new temporal bone models with anatomical variation to provide ample training opportunity.
(© 2023. The Author(s).)
- Full text View on content provider's site
-
Lloyd DG, Saxby DJ, Pizzolato C, Worsey M, Diamond LE, Palipana D, Bourne M, de Sousa AC, Mannan MMN, Nasseri A, Perevoshchikova N, Maharaj J, Crossley C, Quinn A, Mulholland K, Collings T, Xia Z, Cornish B, Devaprakash D, Lenton G, and Barrett RS
Journal of science and medicine in sport [J Sci Med Sport] 2023 Apr 16. Date of Electronic Publication: 2023 Apr 16.
- Abstract
-
Objectives: The physical demands of military service place soldiers at risk of musculoskeletal injuries and are major concerns for military capability. This paper outlines the development new training technologies to prevent and manage these injuries.
Design: Narrative review.
Methods: Technologies suitable for integration into next-generation training devices were examined. We considered the capability of technologies to target tissue level mechanics, provide appropriate real-time feedback, and their useability in-the-field.
Results: Musculoskeletal tissues' health depends on their functional mechanical environment experienced in military activities, training and rehabilitation. These environments result from the interactions between tissue motion, loading, biology, and morphology. Maintaining health of and/or repairing joint tissues requires targeting the "ideal" in vivo tissue mechanics (i.e., loading and strain), which may be enabled by real-time biofeedback. Recent research has shown that these biofeedback technologies are possible by integrating a patient's personalised digital twin and wireless wearable devices. Personalised digital twins are personalised neuromusculoskeletal rigid body and finite element models that work in real-time by code optimisation and artificial intelligence. Model personalisation is crucial in obtaining physically and physiologically valid predictions.
Conclusions: Recent work has shown that laboratory-quality biomechanical measurements and modelling can be performed outside the laboratory with a small number of wearable sensors or computer vision methods. The next stage is to combine these technologies into well-designed easy to use products.
Competing Interests: Declaration of interest statement All authors disclose that they have no interests to declare with other people or organisations that could inappropriately influence this work. Furthermore, all co-authors have agreed by email to be co-authors on the manuscript.
(Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Full text View on content provider's site
43. Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks. [2023]
-
Pelzer L, Posada-Moreno AF, Müller K, Greb C, and Hopmann C
Polymers [Polymers (Basel)] 2023 Apr 14; Vol. 15 (8). Date of Electronic Publication: 2023 Apr 14.
- Abstract
-
Additive manufacturing has revolutionized prototyping and small-scale production in the past years. By creating parts layer by layer, a tool-less production technology is established, which allows for rapid adaption of the manufacturing process and customization of the product. However, the geometric freedom of the technologies comes with a large number of process parameters, especially in Fused Deposition Modeling (FDM), all of which influence the resulting part's properties. Since those parameters show interdependencies and non-linearities, choosing a suitable set to create the desired part properties is not trivial. This study demonstrates the use of Invertible Neural Networks (INN) for generating process parameters objectively. By specifying the desired part in the categories of mechanical properties, optical properties and manufacturing time, the demonstrated INN generates process parameters capable of closely replicating the desired part. Validation trials prove the precision of the solution with measured properties achieving the desired properties to up to 99.96% and a mean accuracy of 85.34%.
- Full text View on content provider's site
-
Alizadeh N and Salimi A
Analytical methods : advancing methods and applications [Anal Methods] 2023 Apr 13; Vol. 15 (15), pp. 1896-1902. Date of Electronic Publication: 2023 Apr 13.
- Subjects
-
Animals, Rats, Electrochemical Techniques methods, Hydrogen Peroxide, Peroxidase, Peroxidases, Microfluidics, and Nanostructures
- Abstract
-
We present a novel electrochemical microfluidic device for the sensitive and selective detection of hydrogen peroxide (H 2 O 2 ) through a VO 2 nanostructure enzyme mimic. The low-cost ($0.50) microfluidic chip was fabricated using a simple and rapid prototyping technique via three syringe needles. Each needle played the role of an electrode (working, reference, and counter), and was connected by micro-hoses to a construction of the electrochemical microfluidic chip. The colloidal VO 2 nanoflakes with peroxidase-like activity could be easily transferred on to the electrodes by a syringe, for development of a novel electrochemical platform to enable the detection of H 2 O 2 . The unique microfluidic electrochemical sensor delivered a wide linear dynamic range from 0.5 to 300 μM, with a limit of detection of 0.14 μM. The facile, rapid, sensitive, and selective as-fabricated H 2 O 2 sensors were proven to be appropriate for the real-time monitoring of H 2 O 2 released from PC12 cells. The integration of a microfluidic sensor with an enzyme mimic nanostructure is essentially a promising strategy for the low-cost and accurate monitoring of physiological processes.
- Full text View on content provider's site
45. Methods to Reduce Energy and Polymer Consumption for Fused Filament Fabrication 3D Printing. [2023]
-
Harding OJ, Griffiths CA, Rees A, and Pletsas D
Polymers [Polymers (Basel)] 2023 Apr 13; Vol. 15 (8). Date of Electronic Publication: 2023 Apr 13.
- Abstract
-
Fused Filament Fabrication (FFF) 3D printing is an additive technology used to manufacture parts. Used in the engineering industry for prototyping polymetric parts, this disruptive technology has been adopted commercially and there are affordable printers on the market that allow for at-home printing. This paper examines six methods of reducing the energy and material consumption of 3D printing. Using different commercial printers, each approach was investigated experimentally, and the potential savings were quantified. The modification most effective at reducing energy consumption was the hot-end insulation, with savings of 33.8-30.63%, followed by the sealed enclosure, yielding an average power reduction of 18%. For material, the most influential change was noted using 'lightning infill', reducing material consumption by 51%. The methodology includes a combined energy- and material-saving approach in the production of a referenceable 'Utah Teapot' sample object. Using combined techniques on the Utah Teapot print, the material consumption was reduced by values between 55.8% and 56.4%, and power consumption was reduced by 29% to 38%. The implementation of a data-logging system allowed us to identify significant thermal management and material usage opportunities to minimise power consumption, providing solutions for a more positive impact on the sustainable manufacturing of 3D printed parts.
- Full text View on content provider's site
-
Zainuddin MZ, Abu Bakar AA, Adam AN, Abdullah SM, Tamchek N, Alauddin MS, Mahat MM, Wiwatcharagoses N, Alforidi A, and Ghazali MIM
Polymers [Polymers (Basel)] 2023 Apr 12; Vol. 15 (8). Date of Electronic Publication: 2023 Apr 12.
- Abstract
-
Today, additive manufacturing (AM) is considered one of the vital tenets of the industry 4.0 revolution due to its high productivity, decentralized production and rapid prototyping. This work aims to study the mechanical and structural properties of polyhydroxybutyrate as an additive in blend materials and its potential in medical applications. PHB/PUA blend resins were formulated with 0 wt.%, 6 wt.%, 12 wt.% and 18 wt.% of PHB concentration. Stereolithography or an SLA 3D printing technique were used to evaluate the printability of the PHB/PUA blend resins. Additionally, from FESEM analysis, a change was observed in PUA's microstructure, with an additional number of voids spotted. Furthermore, from XRD analysis, as PHB concentration increased, the crystallinity index (CI) also increased. This indicates the brittleness properties of the materials, which correlated to the weak performance of the tensile and impact properties. Next, the effect of PHB loading concentration within PHB/PUA blends and aging duration towards the mechanical performance of tensile and impact properties was also studied by using analysis of variance (ANOVA) with a two-way method. Finally, 12 wt.% of PHB/PUA was selected to 3D print the finger splint due to its characteristics, which are compatible to be used in finger bone fracture recovery.
- Full text View on content provider's site
-
Alkim E, Dowst H, DiCarlo J, Dobrolecki LE, Hernández-Herrera A, Hormuth DA 2nd, Liao Y, McOwiti A, Pautler R, Rimawi M, Roark A, Srinivasan RR, Virostko J, Zhang B, Zheng F, Rubin DL, Yankeelov TE, and Lewis MT
Tomography (Ann Arbor, Mich.) [Tomography] 2023 Apr 10; Vol. 9 (2), pp. 810-828. Date of Electronic Publication: 2023 Apr 10.
- Subjects
-
Humans, Magnetic Resonance Imaging, Image Processing, Computer-Assisted, and Triple Negative Breast Neoplasms pathology
- Abstract
-
Co-clinical trials are the concurrent or sequential evaluation of therapeutics in both patients clinically and patient-derived xenografts (PDX) pre-clinically, in a manner designed to match the pharmacokinetics and pharmacodynamics of the agent(s) used. The primary goal is to determine the degree to which PDX cohort responses recapitulate patient cohort responses at the phenotypic and molecular levels, such that pre-clinical and clinical trials can inform one another. A major issue is how to manage, integrate, and analyze the abundance of data generated across both spatial and temporal scales, as well as across species. To address this issue, we are developing MIRACCL (molecular and imaging response analysis of co-clinical trials), a web-based analytical tool. For prototyping, we simulated data for a co-clinical trial in "triple-negative" breast cancer (TNBC) by pairing pre- (T0) and on-treatment (T1) magnetic resonance imaging (MRI) from the I-SPY2 trial, as well as PDX-based T0 and T1 MRI. Baseline (T0) and on-treatment (T1) RNA expression data were also simulated for TNBC and PDX. Image features derived from both datasets were cross-referenced to omic data to evaluate MIRACCL functionality for correlating and displaying MRI-based changes in tumor size, vascularity, and cellularity with changes in mRNA expression as a function of treatment.
- Full text View on content provider's site
48. The application of additive manufacturing technology in pelvic surgery: A bibliometrics analysis. [2023]
-
Li J, Wang J, Lv J, Bai J, Meng S, Li J, and Wu H
Frontiers in bioengineering and biotechnology [Front Bioeng Biotechnol] 2023 Apr 06; Vol. 11, pp. 1123459. Date of Electronic Publication: 2023 Apr 06 (Print Publication: 2023).
- Abstract
-
With the development of material science, additive manufacturing technology has been employed for pelvic surgery, addressing the challenges, such as the complex structure of the pelvis, difficulty in exposing the operative area, and poor visibility, of the traditional pelvic surgery. However, only limited studies have been done to review the research hotspots and trends of the additive manufacturing technology applied for pelvic surgery. In this study, we comprehensively analyzed the literatures related to additive manufacturing technology in pelvic surgery by a bibliometrics analysis and found that additive manufacturing technology is widely used in several aspects of preoperative diagnosis, preoperative planning, intraoperative navigation, and personalized implants for pelvic surgery. Firstly, we searched and screened 856 publications from the Web of Science Core Collection (WoSCC) with TS = (3D printing OR 3D printed OR three-dimensional printing OR additive manufacturing OR rapid prototyping) AND TS = (pelvis OR sacrum OR ilium OR pubis OR ischium OR ischia OR acetabulum OR hip) as the search strategy. Then, 565 of these were eliminated by evaluating the titles and abstracts, leaving 291 pieces of research literature whose relevant information was visually displayed using VOSviewer. Furthermore, 10 publications with high citations were selected by reading all publications extensively for carefully evaluating their Titles, Purposes, Results, Limitations, Journal of affiliation, and Citations. Our results of bibliometric analysis demonstrated that additive manufacturing technology is increasingly applied in pelvic surgery, providing readers with a valuable reference for fully comprehending the research hotspots and trends in the application of additive manufacturing technology in pelvic surgery.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Li, Wang, Lv, Bai, Meng, Li and Wu.)
- Full text View on content provider's site
-
Telega J, Kaczynski P, Śmiałek MA, Pawlowski P, and Szwaba R
Materials (Basel, Switzerland) [Materials (Basel)] 2023 Apr 04; Vol. 16 (7). Date of Electronic Publication: 2023 Apr 04.
- Abstract
-
This paper describes some insights on applicability of a Selective Laser Melting and Direct Metal Laser Sintering technology-manufactured turbine blade models for aerodynamic tests in a wind tunnel. The principal idea behind this research was to assess the possibilities of using 'raw' DLMS printed turbine blade models for gas-flow experiments. The actual blade, manufactured using the DLMS technology, is assessed in terms of surface quality (roughness), geometrical shape and size (outline), quality of counterbores and quality of small diameter holes. The results are evaluated for the experimental aerodynamics standpoint. This field of application imposes requirements that have not yet been described in the literature. The experimental outcomes prove the surface quality does not suffice to conduct quantitative experiments. The holes that are necessary for pressure measurements in wind tunnel experiments cannot be reduced below 1 mm in diameter. The dimensional discrepancies are on the level beyond acceptable. Additionally, the problem of 'reversed tolerance', with the material building up and distorting the design, is visible in elements printed with the DLMS technology. The results indicate the necessity of post-machining of the printed elements prior their experimental usage, as their features in the 'as fabricated' state significantly disturb the flow conditions.
- Full text View on content provider's site
-
Nazir MH, Al-Marzouqi AH, Ahmed W, and Zaneldin E
Heliyon [Heliyon] 2023 Apr 04; Vol. 9 (4), pp. e15023. Date of Electronic Publication: 2023 Apr 04 (Print Publication: 2023).
- Abstract
-
Natural fibers or their derivatives have gained significant attention as green fillers or reinforcement materials due to their abundant availability, environment-friendly nature and biodegradability for sustainable development. Despite the availability of modern alternatives such as concrete, glass-fiber/resin composites, steel, and plastics, there is still considerable demand for naturally occurring based materials for different applications due to their low cost, durability, strength, heat, sound, and fire-resistance characteristics. 3D printing has provided a novel approach to the development and advancement of natural fiber-based composite materials, as well as an important platform for the advancement of biomass materials toward intelligentization and industrialization. The features of 3D printing, particularly fast prototyping and small start-up, allow the easy fabrication of materials for a wide range of applications. This review highlights the current progress and potential commercial applications of 3D printed composites reinforced with natural fibers or biomass. This study discussed that 3D printing technology can be effectively utilized for different applications, including producing electroactive papers, fuel cell membranes, adhesives, wastewater treatment, biosensors, and its potential applications in the automobile, building, and construction industries. The research in the literature showed that even if the field of 3D printing has advanced significantly, problems still need to be solved, such as material incompatibility and material cost. Further studies could be conducted to improve and adapt the methods to work with various materials. More effort should be put into developing affordable printer technologies and materials that work with these printers to broaden the applications for 3D printed objects.
Competing Interests: The authors declare no conflict of interest.The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(© 2023 The Author(s).)
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 50
Next