Biosensors [Biosensors (Basel)] 2023 May 14; Vol. 13 (5). Date of Electronic Publication: 2023 May 14.
Subjects
Humans, Porosity, Electrodes, and Graphite
Abstract
Flexible pressure sensors are widely applied in tactile perception, fingerprint recognition, medical monitoring, human-machine interfaces, and the Internet of Things. Among them, flexible capacitive pressure sensors have the advantages of low energy consumption, slight signal drift, and high response repeatability. However, current research on flexible capacitive pressure sensors focuses on optimizing the dielectric layer for improved sensitivity and pressure response range. Moreover, complicated and time-consuming fabrication methods are commonly applied to generate microstructure dielectric layers. Here, we propose a rapid and straightforward fabrication approach to prototyping flexible capacitive pressure sensors based on porous electrodes. Laser-induced graphene (LIG) is produced on both sides of the polyimide paper, resulting in paired compressible electrodes with 3D porous structures. When the elastic LIG electrodes are compressed, the effective electrode area, the relative distance between electrodes, and the dielectric property vary accordingly, thereby generating a sensitive pressure sensor in a relatively large working range (0-9.6 kPa). The sensitivity of the sensor is up to 7.71%/kPa -1 , and it can detect pressure as small as 10 Pa. The simple and robust structure allows the sensor to produce quick and repeatable responses. Our pressure sensor exhibits broad potential in practical applications in health monitoring, given its outstanding comprehensive performance combined with its simple and quick fabrication method.
Patterson ZJ, Patel DK, Bergbreiter S, Yao L, and Majidi C
Soft robotics [Soft Robot] 2023 Apr; Vol. 10 (2), pp. 292-300. Date of Electronic Publication: 2022 Jul 14.
Abstract
Because they are made of elastically deformable and compliant materials, soft robots can passively change shape and conform to their environment, providing potential advantages over traditional robotics approaches. However, existing manufacturing workflows are often labor intensive and limited in their ability to create highly integrated three-dimensional (3D) heterogeneous material systems. In this study, we address this with a streamlined workflow to produce field-deployable soft robots based on 3D printing with digital light processing (DLP) of silicone-like soft materials. DLP-based 3D printing is used to create soft actuators (2.2 g) capable of exerting up to 0.5 Newtons of force that are integrated into a bioinspired untethered soft robot. The robot walks underwater at speeds comparable with its biological analog, the brittle star. Using a model-free planning algorithm and feedback, the robot follows remote commands to move to desired positions. Moreover, we show that the robot is able to perform untethered locomotion outside of a laboratory and in a natural aquatic environment. Our results represent progress in soft robot manufacturing autonomy for a 3D printed untethered soft robot.
Xu J, Liu K, Wang L, Guo H, Zhan J, Liu X, Zhang S, and Tan J
Visual computing for industry, biomedicine, and art [Vis Comput Ind Biomed Art] 2023 Feb 27; Vol. 6 (1), pp. 4. Date of Electronic Publication: 2023 Feb 27.
Robertson EP, Walsh DP, Martin J, Work TM, Kellogg CA, Evans JS, Barker V, Hawthorn A, Aeby G, Paul VJ, Walker BK, Kiryu Y, Woodley CM, Meyer JL, Rosales SM, Studivan M, Moore JF, Brandt ME, and Bruckner A
Journal of environmental management [J Environ Manage] 2023 Jul 01; Vol. 337, pp. 117668. Date of Electronic Publication: 2023 Mar 22.
Polymers [Polymers (Basel)] 2023 Mar 21; Vol. 15 (6). Date of Electronic Publication: 2023 Mar 21.
Abstract
As part of this work, polymer composites based on polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) were obtained and used in 3D printing technology, particularly Melted Extrusion Modeling (MEM) technology. The influence of selected fillers on the properties of the obtained composites was investigated. For this purpose, modified fillers such as silica modified with alumina, bentonite modified with a quaternary ammonium salt, and hybrid lignin/silicon dioxide filler were introduced into the PC/ABS matrix. In the first part of this work, polymer blends and their composites containing 1.5-3 wt. of the filler were used to obtain the filament using the proprietary technological line. Moldings for testing the performance properties were obtained using additive manufacturing techniques and injection molding. In the subsequent part of this work, rheological properties (mass flow rate (MFR) and viscosity curves) and mechanical properties (Rockwell hardness and static tensile strength with Young's modulus) were examined. The structures of the obtained composites were also determined by scanning electron microscopy (SEM/EDS). The obtained results confirmed the results obtained from a wide-angle X-ray scattering analysis (WAXS). In turn, the physicochemical properties were characterized on the basis of the results of tests using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Based on the obtained results, it was found that the introduced modified additives had a significant impact on the processing and functional properties of the tested composites.
Micromachines [Micromachines (Basel)] 2023 Mar 14; Vol. 14 (3). Date of Electronic Publication: 2023 Mar 14.
Abstract
In this paper, we report a simple, rapid, low-cost, biocompatible, and detachable microfluidic chip fabrication method for customized designs based on Parafilm ® . Here, Parafilm ® works as both a bonding agent and a functional membrane. Its high ultimate tensile stress (3.94 MPa) allows the demonstration of high-performance actuators such as microvalves and micropumps. By laser ablation and the one-step bonding of multiple layers, 3D structured microfluidic chips were successfully fabricated within 2 h. The consumption time of this method (~2 h) was 12 times less than conventional photolithography (~24 h). Moreover, the shear stress of the PMMA-Parafilm ® -PMMA specimens (0.24 MPa) was 2.13 times higher than that of the PDMS-PDMS specimens (0.08 MPa), and 0.56 times higher than that of the PDMS-Glass specimens (0.16 MPa), showing better stability and reliability. In this method, multiple easily accessible materials such as polymethylmethacrylate (PMMA), PVC, and glass slides were demonstrated and well-incorporated as our substrates. Practical actuation devices that required high bonding strength including microvalves and micropumps were fabricated by this method with high performance. Moreover, the biocompatibility of the Parafilm ® -based microfluidic devices was validated through a seven-day E. coli cultivation. This reported fabrication scheme will provide a versatile platform for biochemical applications and point-of-care diagnostics.
Hammood M, Lin S, Yun H, Luan E, Chrostowski L, and Jaeger NAF
Optics letters [Opt Lett] 2023 Feb 01; Vol. 48 (3), pp. 582-585.
Abstract
We demonstrate a method to emulate the optical performance of silicon photonic devices fabricated using advanced deep-ultraviolet lithography (DUV) processes on a rapid-prototyping electron-beam lithography process. The method is enabled by a computational lithography predictive model generated by processing SEM image data of the DUV lithography process. We experimentally demonstrate the emulation method's accuracy on integrated silicon Bragg grating waveguides and grating-based, add-drop filter devices, two devices that are particularly susceptible to DUV lithography effects. The emulation method allows silicon photonic device and system designers to experimentally observe the effects of DUV lithography on device performance in a low-cost, rapid-prototyping, electron-beam lithography process to enable a first-time-right design flow.
Full-mouth rehabilitation can be challenging due to the complexity of restoring the vertical dimension of occlusion (VDO) and replacing missing teeth. In partially edentulous patients, the concept of a bonded composite resin prototype for increasing the VDO has previously been applied through the use of an overlay removable partial denture (RPD) with acrylic resin covering the existing dentition. Unfortunately, this type of prosthesis does not always accurately model the function and phonetics intended for the definitive prostheses, and the esthetic result often is less than ideal. It would be advantageous if direct bonding could be used with the patient's existing RPD to model the increased VDO, but this approach has not been reported in the literature. This case report describes the direct bonding of an existing RPD to create a prototype for increased VDO in a partially edentulous patient with a skeletal Class II malocclusion. The successful outcome has been maintained for more than 1 year. Competing Interests: No conflicts of interest reported.