articles+ search results
4,289 articles+ results
1 - 20
Next
Number of results to display per page
-
Mohammad Azar Bargir, Nitin G. Phafat, and Vijya Sonkamble
- Advances in Oral and Maxillofacial Surgery, Vol 12, Iss , Pp 100447- (2023)
- Subjects
-
Ti 6Al–4V alloy, Zirconia, Co–Cr–Mo alloy additive manufacturing, Osteoarthritis, Knee joint, FDM, Internal medicine, RC31-1245, Surgery, and RD1-811
- Abstract
-
Additive manufacturing (Rapid Prototyping) is a significant innovation in medical field. It allows scientists to create custom-made parts that are often more precise and robust than their standard counterparts. Osteoarthritis (OA) is very common and serious problems in aging people. It is a progressive disease that affects the cartilage, the substance that cushions the bones and joints. Artificial knee joints are being developed as a sort of replacement for the human knee joint. One of the most intricate parts of the human body is the knee joint. This complex joint comprises of a ball-and-socket relationship, which is a very difficult part of the anatomy to design. The joint consists of both the kneecap and the Cartilage, and it has been designed with the intention of having the joint supported by a bone, rather than a cartilage. In this review article the results of a recent study, which was performed by researchers from the various renowned universities of Europe & United States of America over Artificial Knee Joint by Additive Manufacturing Technology.
- Full text View record in DOAJ
-
Jonah Meyerhoff, Rachel Kornfield, Emily G. Lattie, Ashley A. Knapp, Kaylee P. Kruzan, Maia Jacobs, Caitlin A. Stamatis, Bayley J. Taple, Miranda L. Beltzer, Andrew B.L. Berry, Madhu Reddy, David C. Mohr, and Andrea K. Graham
- Internet Interventions, Vol 34, Iss , Pp 100677- (2023)
- Subjects
-
Digital mental health, Human-centered design, Methodology, Information technology, T58.5-58.64, Psychology, and BF1-990
- Abstract
-
As digital mental health interventions (DMHIs) proliferate, there is a growing need to understand the complexities of moving these tools from concept and design to service-ready products. We highlight five case studies from a center that specializes in the design and evaluation of digital mental health interventions to illustrate pragmatic approaches to the development of digital mental health interventions, and to make transparent some of the key decision points researchers encounter along the design-to-product pipeline. Case studies cover different key points in the design process and focus on partnership building, understanding the problem or opportunity, prototyping the product or service, and testing the product or service. We illustrate lessons learned and offer a series of questions researchers can use to navigate key decision points in the digital mental health intervention (DMHI) development process.
- Full text View on content provider's site
-
Aakanksha Pant, Phoebe Xin Ni Leam, Chee Kai Chua, and U-Xuan Tan
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
3d food printing, extrusion, food waste, sustainability, dysphagia, hydrocolloids, Science, Manufactures, and TS1-2301
- Abstract
-
Food waste utilisation and zero waste approach are among the many ways of building a sustainable economy. Food waste as authentic edible food being accepted by the consumers still has many barriers to overcome. One tool to help in the valorisation of food waste to value-added products is three-dimensional food printing (3DFP). These products can lead to easier and greater acceptance of food waste by consumers, having familiar nature with respect to taste, texture and appearance as other consumables. In the present study, food ink recipes were formulated from spinach stems and kale stalks, the common green leafy vegetable wastes. These spinach and kale inks were then characterised on their rheological properties of shear thinning and yield stress. The inks were subjected to IDDSI tests meant for standardisation of soft foods for dysphagia patients. This paper demonstrates ways of converting vegetable wastes into edible diets that are aesthetically pleasing through 3DFP.
- Full text View record in DOAJ
-
Abdullah Alhijaily, Zekai Murat Kilic, and A. N. Paulo Bartolo
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
3d printing, additive manufacturing, cooperative robots, mobile robots, teams of robots, cooperative printing, Science, Manufactures, and TS1-2301
- Abstract
-
Additive manufacturing (AM) is a key enabler and technological pillar of the fourth industrial revolution (Industry 4.0) as it increases productivity and improves resource efficiency. However, current AM systems present some limitations in terms of fabrication time, versatility, and efficiency. The concept of teams of robots represents a novel approach for AM aiming to address these limitations. This review paper discusses the current state-of-the-art of the use of cooperative AM systems based on gantry systems, robotic arms, and mobile robots. The information flow, path planning and slicing strategies are discussed in detail, and several examples of the use of cooperative AM systems are provided. Finally, major research challenges and future perspectives are discussed.
- Full text View record in DOAJ
-
Aschraf N. Danun, Remo Elmiger, Fabio Leuenberger, Luca Niederhauser, Jan Szlauzys, Lorin Fasel, and Mirko Meboldt
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
miniaturisation, compliant mechanisms, customization, design automation, design synthesis, Science, Manufactures, and TS1-2301
- Abstract
-
Micro-additive manufacturing techniques have the potential to meet the demand for miniaturised functional components for minimally invasive surgical instruments. These techniques create monolithic, compliant mechanisms with micro-sized free-form structures that can be tailored to patient-specific surgical procedures. The automated design synthesis of the mechanisms using building blocks results in structures that are shape-programmable. This is achieved through an algorithmic-based computational workflow, which automatically converts user-specified 2D and 3D curves into discrete curve segments. The actuated motion of the mechanisms can be designed to move in a specific way, both forwardly and inversely. The mechanisms are manufactured using micro-laser powder bed fusion and hardenable stainless steel 17-4 PH. By carefully selecting the process parameters, it is possible to 3D-print micro-sized features such as a compliant beam thickness of 80 μm and an actuation hole of 100 μm. Both 2D planar curved mechanisms and 3D spatial curved mechanisms have been implemented and experimentally validated.
- Full text View record in DOAJ
-
Aschraf N. Danun, Oliver Poole, Edouard Tarter, Patrick Beutler, and Mirko Meboldt
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
laser powder bed fusion, 3d-printing, automation, compliant mechanisms, design synthesis, design freedom, Science, Manufactures, and TS1-2301
- Abstract
-
Additive manufacturing (AM) facilitates the fabrication of compliant mechanisms through its free-form and design customisation capabilities. Specifically, the properties of kinetic mechanisms such as springs can be extended with regards to their inherent (non-)linear stiffness functions. This allows for the customisation of AM springs according to user preferences. By combining the design synthesis approach of building blocks with the structural optimisation approach for AM, it is possible to define and customise spring stiffness functionalities. The optimisation process employs an automated computational framework based on a genetic algorithm scheme, which has been demonstrated through randomised and reference case studies. This framework enables the attainment of linear, progressive (stiffening), and degressive (softening) stiffness curves. The manufacturability of the springs has been validated through laser powder bed fusion using stainless-steel material 17–4 PH (H900). The springs have resulted in an accuracy error of maximum 6.48% and precision error of maximum 5% through compression testing.
- Full text View record in DOAJ
-
Beibei Zhu, Li Meng, Qianwu Hu, Xiaoyan Zeng, Xu Liu, and Gaofeng Xu
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
bainitic crossing nose, functionally graded material (fmg), laser directed energy deposition (l-ded), microstructure, wear and rolling contact fatigue (rcf) resistance, Science, Manufactures, and TS1-2301
- Abstract
-
In this paper, 20Mn2SiCrMo bainitic crossing noses were repaired by depositing 420SS, Stellite 6, 17-4PH and 18Ni300 alloys on the rail surfaces to form functionally graded materials (FGM) using laser directed energy deposition (L-DED) technology. As a result, only 18Ni300 deposit achieves an excellent strength-toughness combination, which possesses a yield strength of ∼1120 MPa together with an impact energy of ∼85.05 J, better than those of substrates (∼1071 MPa, ∼71.34 J). Besides, the wear and rolling contact fatigue (RCF) resistance of 20Mn2SiCrMo/18Ni300 FGM is enhanced to 2.7 and 23.6 times as much as those of substrates. Massive ultrafine nanoprecipitates and a small amount of austenite make 18Ni300 deposit strong enough as well as a certain work-hardenability, ensuring good wear resistance therein; the significant RCF resistance originates from the improved shakedown limit. Therefore, all findings reveal that 18Ni300 is the most promising depositing material for repairing bainitic crossing noses by L-DED.
- Full text View record in DOAJ
-
Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Ziyad Smoqi, Harold (Scott) Halliday, and Prahalada Rao
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
additive manufacturing, sensor data fusion, thermal imaging, spatter monitoring, shape agnostic monitoring, porosity, Science, Manufactures, and TS1-2301
- Abstract
-
We developed and applied a novel approach for shape agnostic detection of multiscale flaws in laser powder bed fusion (LPBF) additive manufacturing using heterogenous in-situ sensor data. Flaws in LPBF range from porosity at the micro-scale (< 100 µm), layer related inconsistencies at the meso-scale (100 µm to 1 mm) and geometry-related flaws at the macroscale (> 1 mm). Existing data-driven models are primarily focused on detecting a specific type of LPBF flaw using signals from one type of sensor. Such approaches, which are trained on data from simple cuboid and cylindrical-shaped coupons, have met limited success when used for detecting multiscale flaws in complex LPBF parts. The objective of this work is to develop a heterogenous sensor data fusion approach capable of detecting multiscale flaws across different LPBF part geometries and build conditions. Accordingly, data from an infrared camera, spatter imaging camera, and optical powder bed imaging camera were acquired across separate builds with differing part geometries and orientations (Inconel 718). Spectral graph-based process signatures were extracted from this heterogeneous thermo-optical sensor data and used as inputs to simple machine learning models. The approach detected porosity, layer-level distortion, and geometry-related flaws with statistical fidelity exceeding 93% (F-score).
- Full text View record in DOAJ
-
Bo Liu, Jiawei Feng, Zhiwei Lin, Yong He, and Jianzhong Fu
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
negative poisson’s ratio, triply periodic minimal surfaces, auxetic structure, bone implant, hip joint, Science, Manufactures, and TS1-2301
- Abstract
-
Based on the triply periodic minimal surface (TPMS), 3D auxetic structures are successfully implemented using a dual-period function. A series of shape-controllable, dual-period deformation functions are obtained by summarising the characteristics of periodic deformation functions and applying Bezier curve fitting methods. Then, with the geometry originating from the Schwarz primitive (P) of TPMS, the periodic shape transformation of TPMS is achieved using the dual-period deformation functions. The property (negative Poisson’s ratio) of the auxetic structure is investigated based on the control parameters (the TPMS c value, periodic function η, and deformation index γ). The auxetic structures can exhibit excellent 3D negative Poisson’s ratio properties, and the Poisson’s ratio can be effectively adjusted. Moreover, a heterostructure with positive and negative Poisson’s ratio structures is obtained and applied to a stem in the hip joint. The simulation proves that the heterostructure can effectively prevent the failure of the bone implant.
- Full text View record in DOAJ
10. Terahertz reconfigurable multi-functional metamaterials based on 3D printed mortise-tenon structures [2023]
-
Bo Yu, Lesiqi Yin, Peng Wang, and Cheng Gong
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
terahertz, metamaterials, 3d printing, mortise and tenon structures, reconfigurable multi-functional, Science, Manufactures, and TS1-2301
- Abstract
-
The emergence of metamaterial has provided an unprecedented ability to manipulate electromagnetic waves, especially in the terahertz band where there is a lack of natural response materials. However, most metamaterials are fixed single function due to the fixed structure at the beginning of design. The paper reports a reconfigurable multi-functional terahertz metamaterial with variable structures based on mortise and tenon mechanism. And a hybrid 3D printing method based on FDM and E-jet is proposed to fabricate the metamaterials, which simplifies the processing process, improves the speed, and reduces the cost compared to traditional semiconductor processing methods. Through flexible mortise and tenon connections, the metamaterial can achieve: (1) narrowband transmission and broadband absorption; (2) perfect reflection; (3) narrowband reflection and broadband absorption. Relying on ingenious design and processing, the multi-functional metamaterials are expected to be widely used in fields such as electromagnetic shielding, radar stealth, communication and so on.
- Full text View record in DOAJ
-
Buddhi Herath, Markus Laubach, Sinduja Suresh, Beat Schmutz, J. Paige Little, Prasad K. D. V. Yarlagadda, Dietmar W. Hutmacher, and Marie-Luise Wille
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
design workflow, scaffolds, patient-specific, 3d printing, generative design, voronoi, scaffold-guided bone regeneration, Science, Manufactures, and TS1-2301
- Abstract
-
A streamlined design workflow that facilitates the efficient design and manufacture of patient-specific scaffolds independently applied by the surgical team has been recognised as a key step in a holistic approach towards the envisioned routine clinical translation of scaffold-guided bone regeneration (SGBR). A modular design workflow was developed to semi-automatically fill defect cavities, ensure patient specificity and ideal surgical scaffold insertion for a given surgical approach, add fixation points to secure the scaffolds to the host bone and generate scaffold based on Voronoi, periodic lattice and triply periodic minimal surface pore architectures. The adopted functional representation modelling technique produces models free from 3D printing mesh errors. It was applied to a clinical case of a complicated femoral bone defect. All models were free from mesh errors and the patient-specific fit and unobstructive insertion were validated via digital inspection and physical investigation by way of 3D printed prototypes. The real-time responsiveness of the workflow to user input allows the designer to receive real-time feedback from the surgeon, which is associated with reducing the time to finalise a patient-specific scaffold design. In summary, an efficient workflow was developed that substantially facilitates routine clinical implementation of SGBR through its ability to streamline the design of 3D printed scaffolds.
- Full text View record in DOAJ
-
Changhui Song, Zhuang Zou, Zhongwei Yan, Xiyu Yao, Feng Liu, Yongqiang Yang, Ming Yan, and Changjun Han
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
zirconium alloy, zr-4, additive manufacturing, laser powder bed fusion, annealing, Science, Manufactures, and TS1-2301
- Abstract
-
Zirconium (Zr) alloys are widely used in nuclear energy because of their excellent mechanical properties and low thermal neutron absorption cross-section. This work investigated the printability, microstructure, and mechanical properties of Zr-4 alloy additively manufactured by laser powder bed fusion (LPBF) for the first time. The effect of annealing temperature on the microstructural and the mechanical property evolution of the printed Zr-4 alloy was studied. The results exhibited that the Zr-4 alloy with a high relative density of 99.77% was obtained using optimised printing parameters. With an increase in the annealing temperature, the formed α phase of the Zr-4 alloy changed from an acicular shape to a coarse-twisted shape, and finally to an equiaxed shape. Such microstructure change endowed the alloy with a high compressive strength of 2130 MPa and compressive strain of 36%. When the annealing temperature exceeded 700°C, Zrx(Fe2Cr) compounds were precipitated, strengthening the alloy by pinning effect. These findings provide valuable guidance for the manufacture of geometrically complex Zr alloy parts for nuclear power applications.
- Full text View record in DOAJ
-
Changrong Chen, Hua He, Sunsheng Zhou, Guofu Lian, Xu Huang, and Meiyan Feng
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
wire and arc additive manufacturing (waam), recursive bead profile, multi-bead overlapping model, axisymmetric drop shape analysis (adsa), surface topography, Science, Manufactures, and TS1-2301
- Abstract
-
Dimension prediction of robotic wire and arc additive manufacturing (WAAM) part is fundamentally dependent on the modelling accuracy of single-bead profile and its subsequent overlapping ones. Current multi-bead overlapping models are still not capable of describing the flatten valley area of WAAM parts. This paper proposes a new recursive model, based on coordinate transformation and axisymmetric drop shape analysis (ADSA), to predict multi-bead overlapping profiles. First, a single-bead profile model for WAAM is established based on ADSA, followed by detailed description of conventional and proposed modified recursive ADSA profile model. The properties of developed recursive ADSA model are then investigated to reveal the effects of overlapping ratio and single-bead aspect ratio. Finally, multi-bead overlapping deposition experiment is carried out to validate the model feasibility. The results show that the modified recursive ADSA model is more accurate than the conventional one for its better accountability of valley areas. It is also indicated that the modified recursive ADSA model is suitable for the robotic WAAM process. The research outcome is beneficial to improving the forming accuracy of WAAM parts and geometry prediction of other additive manufactured products.
- Full text View record in DOAJ
-
Che-Nan Kuo and Po-Chun Peng
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
al-sc alloys, heat treatment, laser powder bed fusion (lpbf), strengthening mechanism, Science, Manufactures, and TS1-2301
- Abstract
-
According to the material nature, aluminium alloys are widely applied in aerospace, construction and automotive applications due to their characteristics, such as lightweight, good formability and good corrosion resistance. Among the aluminium alloys, scalmalloy (Al-4.49Mg-0.71Sc-0.51Mn-0.27Zr-0.07Fe-0.03Si alloy) was developed to overcome the hot crack issue during the laser powder bed fusion (LPBF) process. Hence, the degree of lightweight can be further improved by introducing this high-specific strength material with a structure of the lightweight design. However, the strengthening mechanism of the heat-treated 3D printed scalmalloy has not been sufficiently explored. In this study, the synergistic effect of the strengthening mechanisms is explored through detailed microstructure analysis. The grain size, size and spacing of the precipitate and coherent phase contribute to the strengthening of scalmalloy. Through the observation of the microstructure feature, the theoretical strength of the heat-treated 3D printed scalmalloy can thus be calculated by three strengthening mechanisms and match the experimental results perfectly.
- Full text View record in DOAJ
-
Chengde Gao, Shuai Tang, Shuo Zhao, Zhenyu Zhao, Hao Pan, and Cijun Shuai
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
mechanical alloying, selective laser melting, amorphous/crystalline, zn60zr40 alloys, mechanical properties, Science, Manufactures, and TS1-2301
- Abstract
-
In the present study, mechanical alloying (MA) was employed for synthesising non-equilibrium Zn60Zr40 amorphous powders, and then consolidated into amorphous/crystalline Zn60Zr40 alloys using selective laser melting (SLM). The results showed that the MA process destabilised the atomic periodicity of Zn and Zr powders and induced crystalline-to-amorphous transformation due to atomic size mismatch and negative heat of mixing. Moreover, the amorphisation trend of as-milled powders was intensified with increasing milling time and attained almost fully amorphous structure after 30 h of milling. During SLM, the ultra-high cooling rate restricted the long-range atomic diffusion of the amorphous powders and enabled successful survival of amorphous phase, leading to amorphous/crystalline Zn60Zr40 alloys. The alloys exhibited a maximum compressive yield strength and microhardness of 160.9 ± 9.1 MPa and 3.73 ± 0.8 GPa, respectively. These findings demonstrated that the developed MA-SLM process might be a promising strategy for the preparation of amorphous/crystalline alloys with superior properties.
- Full text View record in DOAJ
-
Chi Zhang, Ye Zhou, Kai Wei, Qidong Yang, Junhan Zhou, Hao Zhou, Xiaoyu Zhang, and Xujing Yang
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
invar 36 alloy, laser powder bed fusion, high cycle fatigue, microstructures, defects, Science, Manufactures, and TS1-2301
- Abstract
-
The Invar 36 alloy was additively manufactured by laser powder bed fusion (PBF-LB), and systematical observations and experiments for microstructure, defects, metallography, especially high cycle fatigue behaviour and fractography were conducted. Inadequate laser energy density results in hardly overlapping melting traces, generating numerous defects. Accordingly, the fabricated Invar 36 alloy presents an inferior high cycle fatigue life, as it failures from the rapid aggregation of the defects. In contrast, an adequate laser energy density remarkably enlarges the overlapping between adjacent melting traces. The large molten pools with steady boundaries are beneficially to generate favourable microstructures and low porosity. Consequently, the Invar 36 alloy shows superior high cycle fatigue life, completely generated from small crack propagation, long crack propagation and final fracture stages. Above experimental results and analysis primarily link up the PBF-LB process, microstructures (defects) and high cycle fatigue performance for PBF-LB Invar 36 alloy.
- Full text View record in DOAJ
-
Chukwuemeke William Isaac and Fabian Duddeck
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
4d printing, additive manufacturing, energy absorption, shape memory materials, recoverability, crashworthiness performance, Science, Manufactures, and TS1-2301
- Abstract
-
The emergence of 4D printing from additive manufacturing has opened new frontiers in crashworthiness application. Energy-absorbing structures with fixed geometrical shapes and irreversible deformation stages can be programmed such that after mild or extreme deformation, their initial shapes, properties and functionalities can be recovered with time when actuated by external stimuli. This survey delves into the recently-accelerated progress of shape memory/recovery energy-absorbing metamaterials (EAMM) and energy-absorbing smart/intelligent structures (EASS). First, the introduction gives some fundamental concepts of metamaterials and their application to energy-absorbing structures. Next, some common 3D printing technologies that have led to 4D printed EAMM and EASS are succinctly described. Shape memory materials, their functional properties and recovery process, are then discussed. Finally, various recoverable/reversible energy absorbers with their future challenges and perspectives, are presented. With well-tailored 4D printed EAMM and EASS, reusability with minimal maintenance and higher energy absorption capacity can be retained.
- Full text View record in DOAJ
-
Chun Kit Sit, Louis N. S. Chiu, Yunlong Tang, and Aijun Huang
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
laser powder bed fusion, overhang, downskin, high-speed thermal imaging, homography, parameter optimization, Science, Manufactures, and TS1-2301
- Abstract
-
One of the most revolutionary aspects of Laser Powder Bed Fusion (LPBF) is to be able to lift the design constraints from conventional manufacturing. However, as a rule of thumb, any surfaces lower than 45° with respect to the horizontal plane would still require sacrificial supports in order to complete the printing. Fundamentally, it is unclear whether it is feasible to print a 1st layer 0° overhang nor how the print parameters for the 1st layer can be optimised. This research demonstrates that large 1st layer 0° overhangs can be printed with a coverage above 90%. For the first time, the parameter space of laser power, scan speed and hatch spacing for the 1st layer has been simultaneously explored efficiently. The use of the rate of change of the mushy zone is proposed for the parameter selection instead of the average melt pool temperature. Adaptive Parameter 28 (AP28: 250W_4000 mm/s_50 µm) is the best choice. Several surface morphological phenomena are discussed. The core parameter (285W_960 mm/s_110 µm) causes severe balling and its mechanism is revealed. The average melt pool temperature of the 1st layer by the core parameter is lower than that of the bulk. The ramifications beyond the 1st layer are also illustrated.
- Full text View record in DOAJ
19. Additively manufactured aluminium nested composite hybrid rocket fuel grains with breathable blades [2023]
-
Dandan Qu, Xin Lin, Kun Zhang, Zhiyong Li, Zezhong Wang, Guoliang Liu, Yang Meng, Gengxing Luo, Ruoyan Wang, and Xilong Yu
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
hybrid rocket engine, additive manufacturing/three-dimensional printing, breathable blade, composite fuel grain, mechanical and combustion properties, porous structure, Science, Manufactures, and TS1-2301
- Abstract
-
Hybrid rocket engines suffer from the restricted mechanical properties and low regression rates of current polymeric fuel grains. We propose a three-dimensional printed aluminium (Al) nested composite fuel grain with millimetre-scale lattice pores (referred to as Al-L). In this study, breathable Al blades with micrometer-scale interconnected pores (Al-B) and blades combining millimetre-scale and micrometer-scale pores (Al-B&L) are designed. The formation mechanisms, characteristics, and effects of the breathable blades are analysed in simulations, micro-computed tomography, and cyclic compression tests. The mechanical properties of the composite fuel grains are investigated numerically and in compression tests. Al-B has the highest Young’s modulus at more than 15 times that of a paraffin-based fuel grain and Al-B&L has the highest yield stress at 4 times that of the paraffin-based fuel grain. Referring to combustion properties, the regression rates of the Al-B and Al-B&L grains are respectively 63.3% and 58.2% greater than the regression rate of the paraffin-based fuel grain.
- Full text View record in DOAJ
-
Dong Ma, Chunjie Xu, Shang Sui, Jun Tian, Can Guo, Xiangquan Wu, Zhongming Zhang, Sergei Remennik, and Dan Shechtman
- Virtual and Physical Prototyping, Vol 18, Iss 1 (2023)
- Subjects
-
wire arc additive manufacturing, mg-gd-y-zr alloy, heat treatment, microstructure evolution, mechanical properties, Science, Manufactures, and TS1-2301
- Abstract
-
A detailed and systematic investigation on the effect post heat treatment has on the microstructure evolution and the resultant mechanical properties of the wire arc additive manufacturing processed Mg-5.9Gd-2.8Y-0.7Zr alloy is conducted in this work. The microstructure of the as-built sample is composed mainly of fine equiaxed α-Mg grain and Mg24(Gd, Y)5 phase. The solution heat treatment (400°C × 1 h) has relatively little effect on grain size, but it can effectively reduce the content of the Mg24(Gd, Y)5 phase, which leads to a significantly improved elongation with slightly decreased strength. Further ageing heat treatment at 200°C induces prismatic βʹ precipitates formation and does not influence other phases and grain size. The samples directly following the peak ageing heat treatment process demonstrate the best tensile properties with yield strength of 227 ± 9 MPa, ultimate tensile strength of 350 ± 4 MPa and elongation of 5.5 ± 0.6%.
- Full text View record in DOAJ
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 20
Next