articles+ search results
12,407 articles+ results
1 - 10
Next
Number of results to display per page
1 - 10
Next
Number of results to display per page
-
Alessio Bellino, Giorgio De Michelis, and Flavio De Paoli
- IEEE Access, Vol 11, Pp 13280-13292 (2023)
- Subjects
-
Interactive systems, rapid prototyping, interaction design, physical product design, design tools, design cycle, Electrical engineering. Electronics. Nuclear engineering, and TK1-9971
- Abstract
-
Designing interactive prototypes involves multiple tools and skills. In addition, several design cycles are required to iterate through idea generation, evaluation of design alternatives, and development. Consequently, prototyping tools should offer flexibility and adaptability to allow designers to quickly test and evaluate different ideas, design alternatives, materials, interactions, etc. To meet these requirements, we designed Protobject – a rapid prototyping tool aimed at making the early stages of prototyping interactive products more flexible. Protobject allows designers to reinvent and reuse existing objects for prototyping purposes by making them interactive. After introducing the features of Protobject and discussing the differences with similar tools, we present a user evaluation through two workshop sessions held in Milan during Brera Design Days and attended by 22 people. The results suggest that Protobject facilitates cooperation between people with different skills by allowing them to envision interactive prototypes together.
- Full text View on content provider's site
-
Jinghua Xu, Kunqian Liu, Linxuan Wang, Hongshuai Guo, Jiangtao Zhan, Xiaojian Liu, Shuyou Zhang, and Jianrong Tan
- Visual Computing for Industry, Biomedicine, and Art, Vol 6, Iss 1, Pp 1-18 (2023)
- Subjects
-
Robustness optimization design, Rapid prototyping, Functional artifacts, Fuzzy decision-making, Infrared thermographs, Visualized computing digital twins, Drawing. Design. Illustration, NC1-1940, Computer applications to medicine. Medical informatics, R858-859.7, Computer software, and QA76.75-76.765
- Abstract
-
Abstract This study presents a robustness optimization method for rapid prototyping (RP) of functional artifacts based on visualized computing digital twins (VCDT). A generalized multiobjective robustness optimization model for RP of scheme design prototype was first built, where thermal, structural, and multidisciplinary knowledge could be integrated for visualization. To implement visualized computing, the membership function of fuzzy decision-making was optimized using a genetic algorithm. Transient thermodynamic, structural statics, and flow field analyses were conducted, especially for glass fiber composite materials, which have the characteristics of high strength, corrosion resistance, temperature resistance, dimensional stability, and electrical insulation. An electrothermal experiment was performed by measuring the temperature and changes in temperature during RP. Infrared thermographs were obtained using thermal field measurements to determine the temperature distribution. A numerical analysis of a lightweight ribbed ergonomic artifact is presented to illustrate the VCDT. Moreover, manufacturability was verified based on a thermal-solid coupled finite element analysis. The physical experiment and practice proved that the proposed VCDT provided a robust design paradigm for a layered RP between the steady balance of electrothermal regulation and manufacturing efficacy under hybrid uncertainties.
- Full text View on content provider's site
-
Ahmed ELbarbary and Noha Magdy
- Journal of Architecture, Art & Humanistic Science, Vol 8, Iss 37, Pp 121-143 (2023)
- Subjects
-
3dtechnology, pattern, prototyping, garment factories, virtual simulation), Fine Arts, Architecture, and NA1-9428
- Abstract
-
3D technology is considered one of the Pattern digital technologies that help this technology to increase, ease and speed of completion of industrial processes. This study deals with how to take advantage of 3D technology in developing the performance of the samples department in the technical department of ready-to-wear factories, in order to solve the problems of the samples section associated with the implementation of the 2D Pattern, as this problem was concluded through field study and practical experiences in ready-to-wear factories in Egypt.Controlling the fitting Pattern of clothes in the samples section faces many difficulties, the most important of which is the incompatibility of the industrial Pattern drawn with the human body “Pattern ". Where defects appeared in the product after conducting and implementing the first sample, which required making adjustments to the industrial Pattern and re-executing the sample a second time until it became free from defects and ready to perform the grading according to the measurements and the "order" of the operation order required to be executed to start production processes, which results in it. In the presence of lost time to implement the sample, as well as wasted effort, and wastes in the raw materials used in the implementation of the sample (fabric/ accessories / threads / and direct and indirect costs) that will be quantified after that.In order to find a solution to this problem, this research presents a case study using the "CLO5.1" program to improve the industrial Pattern in order to improve the quality of the male industrial Pattern drawing using 3D technology by making adjustments to some areas where the stress and stress ratios are high due to the lack of nan fitting of the Pattern. Industrial, which does not appear clearly even during implementation. The study concluded that the implementation of the CLO5.1 program in the sample section has succeeded in reducing the time wastage for sample production and the wastage of raw materials, thus reducing the cost of sample productionKey words :( 3Dtechnology ، pattern، Prototyping ، Garment Factories ،virtual simulation)
- Full text View record in DOAJ
-
Tommaso Caldognetto, Andrea Petucco, Andrea Lauri, and Paolo Mattavelli
- HardwareX, Vol 14, Iss , Pp e00411- (2023)
- Subjects
-
Power electronics, Inverters, Rapid control prototyping, Experimental setups, Science (General), and Q1-390
- Abstract
-
A flexible power electronic converter embedding a rapid control prototyping platform suitable to be applied in research test setups and teaching laboratories is proposed and described in this paper. The electronic system is composed of three subsystems, namely, i) three half-bridge power boards, ii) a dc-link capacitor bank with a half-bridge power module for active dc-link control, iii) an interfacing board, called motherboard, to couple the power modules with a control unit, iv) a digital control unit with rapid control prototyping functionalities for controlling power electronic circuits. Power modules integrate sensors with related conditioning circuits, driving circuits for power switches, and protection circuits. Conversion circuits exploit GaN electronic switches for optimal performance. The architecture and implementation of the system are described in detail in this manuscript. Main applications are in the implementation of conversion circuits for supplying arbitrary ac or dc voltages or currents, testing of new control algorithms for power electronic converters, testing of systems of electronic converters in, for example, smart nanogrids or renewable energy applications, training of undergraduate and graduate students.
- Full text View on content provider's site
5. Simulation device for shoulder reductions: overview of prototyping, testing, and design instructions [2023]
-
Sorab Taneja, Will Tenpas, Mehul Jain, Peter Alfonsi, Abhinav Ratagiri, Ann Saterbak, and Jason Theiling
- Advances in Simulation, Vol 8, Iss 1, Pp 1-10 (2023)
- Subjects
-
Shoulder reduction, Simulation device, Traction-countertraction, External rotation maneuver, Computer applications to medicine. Medical informatics, and R858-859.7
- Abstract
-
Abstract Background Shoulder dislocations are common occurrences, yet there are few simulation devices to train medical personnel on how to reduce these dislocations. Reductions require a familiarity with the shoulder and a nuanced motion against strong muscle tension. The goal of this work is to describe the design of an easily replicated, low-cost simulator for training shoulder reductions. Materials and methods An iterative, stepwise engineering design process was used to design and implement ReducTrain. A needs analysis with clinical experts led to the selection of the traction-countertraction and external rotation methods as educationally relevant techniques to include. A set of design requirements and acceptance criteria was established that considered durability, assembly time, and cost. An iterative prototyping development process was used to meet the acceptance criteria. Testing protocols for each design requirement are also presented. Step-by-step instructions are provided to allow the replication of ReducTrain from easily sourced materials, including plywood, resistance bands, dowels, and various fasteners, as well as a 3D-printed shoulder model, whose printable file is included at a link in the Additional file 1: Appendix. Results A description of the final model is given. The total cost for all materials for one ReducTrain model is under US $200, and it takes about 3 h and 20 min to assemble. Based on repetitive testing, the device should not see any noticeable changes in durability after 1000 uses but may exhibit some changes in resistance band strength after 2000 uses. Discussion The ReducTrain device fills a gap in emergency medicine and orthopedic simulation. Its wide variety of uses points to its utility in several instructional formats. With the rise of makerspaces and public workshops, the construction of the device can be easily completed. While the device has some limitations, its robust design allows for simple upkeep and a customizable training experience. Conclusion A simplified anatomical design allows for the ReducTrain model to serve as a viable training device for shoulder reductions.
- Full text View on content provider's site
-
Vladimir A. Ovchinnikov, Evgeny A. Kilmyashkin, Aleksey S. Knyazkov, Alena V. Ovchinnikova, Nikolay A. Zhalnin, and Evgeny S. Zykin
- Инженерные технологии и системы, Vol 32, Iss 4, Pp 222-234 (2022)
- Subjects
-
mineral fertilizers, energy-saving technologies, working tool, uniformity of distribution, 3d, cad model, prototyping, experimental research, Engineering (General). Civil engineering (General), TA1-2040, Technology (General), and T1-995
- Abstract
-
Introduction. Improvement of the agro-industrial complex involves the creation of new and modernizations of existing working tools and machines. The important conditions for this are the application of modern technologies and ongoing cooperation with the actual manufacturing. The aim of the research is to develop an adaptive centrifugal working tool and improve the quality of mineral fertilization. Materials and Methods. The adaptive centrifugal working tool was developed and manufactured based on studying the state of the matter and requirements to machines for mineral fertilization. At all stages of the research, there were used computer-aided design and rapid prototyping methods based on additive technologies. Results. As a result of the use of the presented working tools, the machine operating width has increased by 10.0‒22.5%. Experimental working tools, in comparison with serial ones, allow decreasing uneven distribution of mineral fertilizers by 13.4% due to their redistribution from the central zone to the edges. Discussion and Conclusion. As a result of experimental studies, the efficiency of the developed adaptive centrifugal working tools has been proved. It allows increasing uniformity of mineral fertilizer distribution and the machine operating width. Modern design methods make it possible to considerably reduce time and costs.
- Full text View record in DOAJ
7. A novel axial air‐gap transverse flux switching PM generator: Design, simulation and prototyping [2023]
-
Aghil Ghaheri, Ebrahim Afjei, and Hossein Torkaman
- IET Electric Power Applications, Vol 17, Iss 4, Pp 452-463 (2023)
- Subjects
-
AC machines, AC motor drives, AC motors, AC‐AC power convertors, AC‐DC power convertors, brushless machines, Applications of electric power, and TK4001-4102
- Abstract
-
Abstract Wind energy as the cleanest source of renewable energy requires a highly efficient lightweight generator that provides maximum power density while having the least vibration noise and maintenance. In this study, an axial air gap transverse flux machine is presented, and all excitation sources are located in the stator. This structure provides lower core loss, weight and cost due to the full utilisation of the permanent magnets, SMC‐free structure and short magnetic flux path. In fact, by combining the features of a flux‐switching machine into a transverse flux generator with an axial air gap, it is possible to improve the performance of a direct‐drive wind turbine generator by overcoming traditional structures' challenges. To analyse the axial transverse flux switching permanent magnet generator performance characteristics, 3D finite element simulations have been performed, which have been validated by comparing them to the practical results of a single‐phase prototype. The results are in agreement with an acceptable error that is caused by manufacturing uncertainties.
- Full text View on content provider's site
8. STUDY OF ELECTROLESS NICKEL PLATING ON RAPID PROTOTYPING MODEL USING ACRYLONITRILE BUTADIENE STYRENE [2022]
-
Putu Hadi Setyarini, Elvin Stefano, and Slamet Wahyudi
- Rekayasa Mesin, Vol 13, Iss 1, Pp 275-281 (2022)
- Subjects
-
electroless nickel plating, acrylonitrile butadiene styrene, rapid prototyping, Mechanical engineering and machinery, and TJ1-1570
- Abstract
-
Electroless plating on Acrylonitrile Butadiene Styrene (ABS) is a metallization process that involves a reduction and oxidation reaction between the nickel source and the substrate material. The purpose of this research is to determine the ability of nickel deposition in the nickel electroless plating process with a specific etching time variation. This nickel electroless procedure begins with a chromic acid etching process that can last anywhere from 15 to 55 minutes and is useful for increasing roughness and creating submicroscopic cavities. After the etching process is finished, the surface roughness test is performed with a Mitutoyo SJ-210. Additionally, the activation step is carried out for 5 minutes in order for the polymer to become a conductor, allowing the plating process to proceed. The electroless plating process was then carried out for 55 and 75 minutes, with the goal of depositing nickel metal on the ABS surface. The coating results were analyzed using Fourier Transform Infrared (FTIR) spectroscopy IRSpirit/ATR-S serial No. A224158/Shimadzu to determine the functional groups formed both before and after the coating process, X-Ray Diffraction (XRD) to determine the character of the crystal structure, and phase analysis of a solid material using PANalytical type E'xpert Pro, To determine the surface morphology, the Zeiss EVO MA 10 was used to perform scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) at 1000x magnification. The test findings demonstrate that, based on a range of investigations, etching variations of 15,25,35,45, and 55 minutes etching time 55 minutes are the best nickel deposited substrates, as evidenced by EDS data, where this treatment has the largest weight fraction of nickel. As a result, the longer the etching period, the rougher the surface becomes, affecting the capacity of nickel deposition to increase. Furthermore, it can be demonstrated in this investigation that the nickel deposited is in an amorphous form.
- Full text View record in DOAJ
-
Md Rafiul Kabir and Sandip Ray
- IEEE Access, Vol 11, Pp 31384-31398 (2023)
- Subjects
-
Digital twin, virtual platform, Internet of Things, cyber-physical systems, Electrical engineering. Electronics. Nuclear engineering, and TK1-9971
- Abstract
-
Modern technological industries fused with the Internet-of-Things (IoT) have been advancing rapidly. The joint usage of several technologies has led to the reshaping of the modeling and simulation techniques into the virtualization of physical systems. Thus, the concept of virtual prototyping has emerged as a significant development in distributed IoT applications that includes early exploration, optimization, and security assessments. Several industries have been employing various types of prototyping e.g., virtual platforms, digital twins, and application-specific virtualization techniques, to achieve individual needs for development. In this survey, we clarify some of these concepts and the distinctions between them, provide a comprehensive overview of various prototyping technologies, and discuss how several virtualization technologies play a transformative role in the design and operation of intelligent cyber-physical systems.
- Full text View on content provider's site
-
Liao Chen, Chenguang Zhang, Vivek Yadav, Angela Wong, Satyajyoti Senapati, and Hsueh-Chia Chang
- Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
- Subjects
-
Medicine and Science
- Abstract
-
Abstract Droplet microfluidics offers a platform from which new digital molecular assay, disease screening, wound healing and material synthesis technologies have been proposed. However, the current commercial droplet generation, assembly and imaging technologies are too expensive and rigid to permit rapid and broad-range tuning of droplet features/cargoes. This rapid prototyping bottleneck has limited further expansion of its application. Herein, an inexpensive home-made pipette droplet microfluidics kit is introduced. This kit includes elliptical pipette tips that can be fabricated with a simple DIY (Do-It-Yourself) tool, a unique tape-based or 3D printed shallow-center imaging chip that allows rapid monolayer droplet assembly/immobilization and imaging with a smart-phone camera or miniature microscope. The droplets are generated by manual or automatic pipetting without expensive and lab-bound microfluidic pumps. The droplet size and fluid viscosity/surface tension can be varied significantly because of our particular droplet generation, assembly and imaging designs. The versatility of this rapid prototyping kit is demonstrated with three representative applications that can benefit from a droplet microfluidic platform: (1) Droplets as microreactors for PCR reaction with reverse transcription to detect and quantify target RNAs. (2) Droplets as microcompartments for spirulina culturing and the optical color/turbidity changes in droplets with spirulina confirm successful photosynthetic culturing. (3) Droplets as templates/molds for controlled synthesis of gold-capped polyacrylamide/gold composite Janus microgels. The easily fabricated and user-friendly portable kit is hence ideally suited for design, training and educational labs.
- Full text View on content provider's site
Catalog
Books, media, physical & digital resources
Guides
Course- and topic-based guides to collections, tools, and services.
1 - 10
Next